The Terrane Concept and the Scandinavian Caledonides: a Synthesis

Total Page:16

File Type:pdf, Size:1020Kb

The Terrane Concept and the Scandinavian Caledonides: a Synthesis The terrane concept and the Scandinavian Caledonides: a synthesis DAVID ROBERTS Roberts , D. 1988: The terrane concept and the Scandinavian Caledonides: a synthesis. Nor. geol . unders . Bull. 413. 93-99. A revised terrane map is presented for the Scandinavian Caledcnldes. and an outline is given of the principal suspect and exot ic terranes and terrane-complexe s identified outboa rd from the Baltoscand ian miogeocline. The outermost part of the Baltoscandian continental margin is itself suspect , in the terrane sense. since the true palaeogeographical location s of rocks now represented in the Seve and serey-seuano Nappes, while inferred, are not known. The orogen -internal exotic terranes embrace the oceanic/eugeoclinal elements of the Caledonides, represented by the mag­ matosed imentary assemblages of the Koli Nappes, including ophiolite fragments and island arc products. Even more exot ic terranes occur in the highest parts of the tectonostratigraphy, inclu­ ding units which are thought possibly to derive from the Laurentian side of lapetus . D. Roberts. Norges geologiske uruierseketse, Postboks 3006. Lade, N-7002 Trondbeim , Norway . Introduction Project 233 has been to prepare a preliminary Earlier in this decade much of the research terrane map' at 1:5 M scale (Roberts et al. effort in the Caledonides of Scandinavia was 1986) for a larger, circum-Atlantic compilation. channelled through the highly successfu l IGCP This map, much simplified, is really one of Project 27 The Caledonide Orogen ' (Gee & palaeo-environments (marginal basins, vol­ Sturt 1985). An important aspect of the collabo­ canic arc comp lexes, overstep sequences , rative work in this project was that of map etc.), and not of terranes in the true sense. comp ilation, in particular the consensus rea­ Another terrane map, in somewhat simplified ched at establishing an overall tectonostrati­ form appeared in Stephens (1988), while simi­ graphy for the orogen (Gee et al. 1985, Rob­ lar broad-scale subdivisions of the orogen are erts & Gee 1985). Since then, many Caledon­ found in Hossack & Cooper (1985) and Barker ian workers have maintained the international & Gayer (1985). connection through the current IGCP Project The aim of this short contribution is to pre­ 233 "Terranes in the Circum-Atlantic Paleozoic sent a revised terrane map of the Scandina­ Orogens'; and the tectonostra tigraphic sub­ vian Caledonides (Plate 1) and to outline brief­ division of the Caledonides in Norway and ly the principal terranes and terrane-comp lexes Sweden into 4 major allochthons, each compri­ (Fig. 1) which can be identified. It is not sing an assemblage of nappe-complexes and the purpose, at this stage, to present detailed thrust-sheets, has indeed paved the way for descr iptions of each terrane ; these must await an assessment of the orogen in terms of geolo­ further Norweg ian-Swedish collaboration gical terranes . within Project 233. The map compilation and Since terranes are, by definition (see be­ terrane synthesis forms the basis of a presen­ low), character ised by an internal homogene ity tation given at an IGCP Project 233 sympos ium of geology and as their boundaries are of a in Nouakchott, Mauritania (Roberts 1987). tecton ic nature, any terrane map of the Scandi­ navian Caledonides will necessarily reflect the basic patterns of tectonostratigraphy. An ini­ The terrane concept: principles tial attempt at terrane division and map comp i­ and definitions lation, at 1:2'/, M scale, prepared towa rds the Recognition of the existence of geological 'ter­ end of IGCP Project 27 (D.R., manus. map ranes' in orogenic belts hinges on the initial 1983), identified some 15 terranes outboard identification of the relevant passive continen­ of the Baltoscandian miogeocline. As yet, the tal margins or miogeoclines. As the affinity only intra-Nordic collaboration within IGCP of these miogeocl inal sequences is known , 94 David Roberts GU- BULL. 413. 1988 TERRA NE M AP ( TERRA NE COMPLEXES ) ' .. ' . .. o 300km LEG E 0 t:2J PERt"lIA • OSL O RI F 1;0:0:01 OLD RED SA oSTO E TERRA ES OF U CERTAI ~ ORIG I - Laurent i an, oce an i c ~ or unknown aff il iation OROGE - I TER AL TERRA ES - oceanic/ eug eoc li nal affil ia ion OROGE - EXTER AL ELEME TS Outermost suspect terranes SERGE Baltoscandia n m iog eoc l inal sediments Platf or m s edim ents BALTOSCA NDIAN CRYSTALLINE BASEME NT Allochthonousl parautochthonous Mainly autochthonous DR- 87 Fig. 1. Simplified map showing the principal terrane-complexes in the Scandinavian Caledonides. Within eash of the hree main terrane-complex zones there are several, separate, distinctive terr anes. More detailed subdivision is shown in Plate 1. NGU· BULL. 413. 1988 The terra ne conceptand the Scandinavian Caledonides 95 Le. they can be linked directly to, and derive nental margin. These constitute composite from, the nearby craton, then their palaeotec­ terranes and may carry a common sedimenta­ tonic setting is not really questioned. Out­ ry overstep sequence (Keppie 1985). Several board of these continental rise prisms, doma­ separate or composite terranes may form ins which constitute parts of what has general­ what has been termed a terrane-complex (Rob­ ly been termed the eugeocline may be viewed erts 1987). with varying degrees of suspicion or uncertain­ Constraints on the time of accretion of conti­ ty as to their original palaeogeographical set­ guous terranes may be recognised in a varie­ ting with respect to the cratonic margin. They ty of factors (Fig. 2): thus constitute suspect terranes. Orogen­ (a) Strata overstepping two or more adjacent parallel and transverse strike-slip displace­ terranes may carry fossils and thus pro­ ments of many hundreds of kilometres may vide a fairly reliable upper limit on terrane have been involved, prior to or coeval with accretion (Fig. 2a). post-metamorphic thrusting; and post-accre­ (b) The age of thrusting of one terrane upon tionary strike-slip and extensional fault move­ another (Fig. 2b) may be determined isoto­ ments have added to the complexity. pically or, less precisely, by the age of This, then, was the essence of the terrane the youngest fauna in either terrane. concept which evolved as an explanation for (c) Plutons or dyke swarms which straddle the complex Mesozoic and early Cenozoic or 'stitch' two or more terranes (Fig. 2c) accretionary history of the North American may be dated isotopically, thus providing Cordillera (Monger et al. 1972, Coney et al. an upper limit for terrane accretion. 1980). There, rock sequences in large-scale (d) Regional metamorphism which affects two domains, blocks or slices which are now juxta­ or more terranes or terrane-complexes posed may differ dramatically in terms of fau­ (Fig. 2d) may also be dated radiometrical­ nal age and provenance, palaeomagnetic re­ ly. This, coupled with other timing eviden­ cord or tectonothermal history, and bear evi­ ce within the terranes themselves, would dence of different ages of docking or accre­ help in dating accretion. tion. Application of the concept, involving sus­ pect and exotic terranes, spread to the Appala­ chian orogen (Keppie 1981, 1985, Williams & Hatcher 1982, Williams 1984), and helped lay the foundations for IGCP Project 233. The Baltoscandian margin and Terranes, as such, are defined primarily on their stratigraphy but also on a variety of featu­ terranes in the Scandinavian Cale­ res which render them distinctive from their donides neighbours. A modern definition is as follows Since terrane boundaries are generally faults (Keppie, in press): «aterrane is an area charac­ of one form or other, Caledonide tectonostra­ terised by an internal continuity of geology (inc­ tigraphy thus provides a ready scenario for luding stratigraphy, fauna, structure, meta­ attempts at terrane discrimination. In the map morphism, igneous petrology, metallogeny, compilation (Plate 1), a threefold grouping of geophysical properties and paleomagnetic re­ terranes has been made (see also Fig. 1). (1) cord) that is bounded by faults, melanges re­ Orogen-external suspect terranes. (2) Orogen­ presenting a trench complex, or cryptic suture internal exotic terranes. (3) Exotic terranes of zones across which neighbouring terranes (1) uncertain origin. may have a distinct geological record not ex­ Units of Baltoscandian miogeocline affilia­ plicable by facies changes (Le. exotic terra­ tion, in part with slices of Precambrian crystal­ nes), or (2) may have a similar geological re­ line basement, do not rank as terranes in the cord (i.e. proximal terranes) that may only be strict sense, and have been grouped together distinguished by the presence of the terrane as 'orogen-external elements'. Many of these boundary representing telescoped oceanic Baltoscandian elements, as well as the terra­ Iithosphere.» nes proper, carry geographical names (Plate Analysis of the accretionary histories of ter­ 1), some of which derive from their original ranes may show that two or more may have designation for nappes or nappe-complexes. amalgamated at some time before final accre­ These names, as used here, are strictly in­ tion on to the miogeoclinal prism of the conti- formal. 96 David Roberts NGU-8ULL.413,1988 Fig. 2. Diagrammatic sketches showing features or criteria which help to provide upper limits on the time of accretion of juxtaposed terranes. (a) An 'overstep' sequence with basal unconformity blankets two disparate terranes which are separated by a major fault. The type of ornament or fold pattern used in this and subsequent sketches is me­ ant simply to portray the different geological histories in the contiguous terranes. (b) One terrane is thrust upon another. Such a situation could also possibly be taken to represent an original. vertical. strike-slip fault which has subsequently been reactivated and transposed into a flat lying thrust. (c) Two terranes have been juxtaposed along a fault surface, and then transected by a major pluton (or plutonic complex or dyke swarm).
Recommended publications
  • From the Early Paleozoic Platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland
    44 by David G. Gee1, Haakon Fossen2, Niels Henriksen3, and Anthony K. Higgins3 From the Early Paleozoic Platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland 1 Department of Earth Sciences, Uppsala University, Villavagen Villavägen 16, Uppsala, SE-752 36, Sweden. E-mail: [email protected] 2 Department of Earth Science, University of Bergen, Allégaten 41, N-5007, Bergen, Norway. E-mail: [email protected] 3 The Geological Survey of Denmark and Greenland, Øster Voldgade 10, Dk 1350 Copenhagen, Denmark. E-mail: [email protected], [email protected] The Caledonide Orogen in the Nordic countries is exposed in Norway, western Sweden, westernmost Fin- Introduction land, on Svalbard and in northeast Greenland. In the The Caledonide Orogen is preserved on both sides of the North mountains of western Scandinavia, the structure is dom- Atlantic Ocean, in the mountains of western Scandinavia and north- inated by E-vergent thrusts with allochthons derived eastern Greenland; it continues northwards from northern Norway, across the Barents Shelf and Svalbard to the edge of the Eurasian from the Baltoscandian platform and margin, from out- Basin (Figure 1). The orogen is notable for its thrust systems, board oceanic (Iapetus) terranes and with the highest E-vergent in Scandinavia and W-vergent in Greenland. The width of the orogen, prior to Cenozoic opening of the North Atlantic, was in thrust sheets having Laurentian affinities. The other the order of at least 700–800 km, the deformation fronts on both side of this bivergent orogen is well exposed in north- sides of the orogen being defined by thrusts that, in the Devonian, eastern Greenland, where W-vergent thrust sheets probably reached substantially further onto the foreland platforms than they do today.
    [Show full text]
  • Tectonostratigraphic Terrane Analysis on Neoproterozoic Times
    Revista Brasileira de Geociências 30(1):078-081, março de 2000 TECTONOSTRATIGRAPHIC TERRANE ANALYSIS ON NEOPROTEROZOIC TIMES: THE CASE STUDY OF ARAXÁ SYNFORM, MINAS GERAIS STATE, BRAZIL: IMPLICATIONS TO THE FINAL COLLAGE OF THE GONDWANALAND. HILDOR JOSÉ SEER1 AND MARCEL AUGUSTE DARDENNE2 ABSTRACT The Araxá Synform is a regional fold with gently WNW plunging. The outcrops of the Araxá, Ibiá and Canastra Groups occur at their limbs. The region is the type locality of these units. These Groups belong to the Brasilia Fold Belt, a Neoproterozoic tectonic unit evolved at the western margin of the São Francisco-Congo Craton. Geological mapping, structural analysis, whole rock geochemistry, mineral chemistry, petrography and geochronology are the main tools to understand the tectonic evolution of these geological units. In this paper we apply tectonostratigraphic terrane analysis to the solution of stratigraphic problems in the Brasília Belt and Gondwanaland collage. Keywords: Brasília Belt, Neoproterozoic, Brasiliano orogeny, Tectonic Evolution, Structural Geology INTRODUCTION All geological information is necessary to The upper thrust sheet (Araxá Group) comprises a dominantly understand the history of an orogenic belt, basically it comprises the metamafic sequence (fine and coarse amphibolites, with rare ultramafic integration of stratigraphic data with structural geology. The rocks) which is transitional to pelitic metasedimentary rocks, both stratigraphic data provide information about paleogeography and ages metamorphosed under amphibolite facies conditions and intruded by of the geological units of an orogenic belt. The structural data describe granitoid rocks. The amphibolites represent gabbroic and basaltic the configuration of these units. To Howell (1993) an orogenic belt is protoliths. The basalts are high FeO tholeiites with REE signatures that essentially a puzzle, composed by a collection of crustal pieces.
    [Show full text]
  • Tectonostratigraphic Terrane Analysis of New Brunswick L
    Document generated on 09/30/2021 12:46 p.m. Atlantic Geology Tectonostratigraphic terrane analysis of New Brunswick L. R. Fyffe and A. Fricker Volume 23, Number 3, December 1987 Article abstract the URI: https://id.erudit.org/iderudit/ageo23_3art01 The contents of a computerized lexicon database are displayed in the form of a range chart that demonstrate the spartial and temporal relationships of See table of contents lithtostratigraphic units to tectonostratigraphic terrans of New Brunsiwck. The chart provides a reference basis from which to derive the accretionary history of these terrance. Publisher(s) The tectonostratigraphlc zonation of Hew Brunswick ia based upon the Atlantic Geoscience Society uniqueness of the pre-Taconlan stratigraphy within each fault-bounded terrane. From northwest to southeast, the following terranes and cover sequences are recognized: Matapedia Cover. Blmtree Terrane, Mlramichi ISSN Terrane, Frederlcton Cover, St. Croix Terrane, Hascarene Terrane, and 0843-5561 (print) Avalonian Terrane. 1718-7885 (digital) Overstepping of the Matapedia Cover Sequence indicates that the Elmtree and Mlramichi terranes were docked with the North American craton by the Late Explore this journal Ordovician to Early Silurian. The presence of a similar early Paleozoic stratigraphy, tectonic style and major Silurian unconformity in the St. Croix Terrane suggests that it had become docked to the Mlramichi Terrane prior to this subduction-related Taconian event. Cite this article Detritus and a similar fauna in the cover rocks of the St. Croix Terrane provide Fyffe, L. R. & Fricker, A. (1987). Tectonostratigraphic terrane analysis of New evidence that it was docked to the Hascarene Terrane by the Late Silurian.
    [Show full text]
  • Tectonic Regimes in the Baltic Shield During the Last 1200 Ma • a Review
    Tectonic regimes in the Baltic Shield during the last 1200 Ma • A review Sven Åke Larsson ' ', Bva-L^na Tuliborq- 1 Department of Geology Chalmers University of Technology/Göteborij U^vjrsivy 2 Terralogica AB November 1993 TECTONIC REGIMES IN THE BALTIC SHIELD DURING THE LAST 1200 Ma - A REVIEW Sven Åke Larsson12, Eva-Lena Tullborg2 1 Department of Geology, Chalmers University of Technology/Göteborg University 2 Terralogica AB November 1993 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32),. 1989 (TR 89-40), 1990 (TR 90-46), 1991 (TR 91-64) and 1992 (TR 92-46) is available through SKB. ) TECTONIC REGIMES IN THE BALTIC SHIELD DURING THE LAST 1200 Ma - A REVIEW by Sven Åke Larson and Eva-Lena Tullborg Department of Geology, Chalmers University of Technology / Göteborg University & Terralogica AB Gråbo, November, 1993 Keywords: Baltic shield, Tectonicregimes. Upper Protero/.oic, Phanerozoic, Mag- matism. Sedimentation. Erosion. Metamorphism, Continental drift. Stress regimes. , ABSTRACT 1 his report is a review about tectonic regimes in the Baltic (Fennoscandian) Shield from the Sveeonorwegian (1.2 Ga ago) to the present. It also covers what is known about palaeostress during this period, which was chosen to include both orogenic and anorogenic events.
    [Show full text]
  • Chapter 1 Introduction and Tectonic Framework
    Chapter 1 Introduction and tectonic framework Andreas Scharf1*, Frank Mattern1, Mohammed Al-Wardi1, Gianluca Frijia2, Daniel Moraetis3, Bernhard Pracejus1, Wilfried Bauer4 and Ivan Callegari4 1Department of Earth Sciences, College of Science, Sultan Qaboos University, PO Box 36, PC 123, Al-Khod, Muscat, Sultanate of Oman 2Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, 44122, Ferrara, Italy 3Department of Applied Physics and Astronomy, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates 4Department of Applied Geosciences, German University of Technology GUtech, PO Box 1816, PC 130, Halban, Sultanate of Oman *Correspondence: [email protected] Abstract: The extraordinary outcrop conditions provide a unique opportunity to study the geology and tectonics of the Oman Mountains, which record a geological history of more than 800 million years. We provide a summary of the geological evolution of the Oman Mountains with the emphasis on the Jabal Akhdar and Saih Hatat domes. This Memoir comprises seven chapters. This first chapter summarizes the former studies and the tectonic framework. This is followed by a comprehensive description of all geological formations/rock units (Scharf et al. 2021a, Chapter 2, this Memoir) including the famous Semail Ophiolite, the fault and fold pattern (Scharf et al. 2021b, Chapter 3, this Memoir) and the overall structure (Scharf et al. 2021c, Chapter 4, this Memoir). Chapter 5 (Scharf et al. 2021d) explains the varied tectonic evolution of the study area, ranging from the Neoproterozoic until present, while Chapter 6 (Scharf et al. 2021e) contains the conclusions and a catalogue of open questions. Finally, Chapter 7 (Scharf et al.
    [Show full text]
  • Caledonian Anatexis of Grenvillian Crust: a U/Pb Study of Albert I Land, NW Svalbard
    NORWEGIAN JOURNAL OF GEOLOGY Caledonian anatexis of Grenvillian crust 173 Caledonian anatexis of Grenvillian crust: a U/Pb study of Albert I Land, NW Svalbard Per Inge Myhre, Fernando Corfu & Arild Andresen Myhre, P.I., Corfu, F. & Andresen, A.: Caledonian anatexis of Grenvillian crust: a U/Pb study of Albert I Land, NW Svalbard. Norwegian Journal of Geology, Vol. 89, pp. 173-191. Trondheim 2008. ISSN 029-196X. Dating by U-Pb ID-TIMS of zircon, titanite and monazite has been carried out on orthogneiss, granite and migmatite from Albert I Land Terrane, Northwest Svalbard, to investigate the origin of this terrane and its role within the North Atlantic Caledonides. Detrital zircons in a migmatized metasedimentary rock of the Smeerenburgfjorden Complex indicate deposition after about 1070 Ma. Zircon and titanite from orthogneiss within the same complex yield an upper intercept age of 967.9 ± 4.7 Ma interpreted to date crystallization of the igneous protolith. Monazite ages of 419.7 ± 0.5 Ma from the orthogneiss are interpreted to date Caledonian reworking. Other migmatite and granite samples of the Smeerenburgfjorden Com- plex record monazite growth during a 6–8 My long period commencing at c. 430 Ma. This period concluded with the intrusion of granitoids with ages of 421.7 ± 0.6 Ma and 418.8 ± 0.7 Ma. The latter is coeval with the Hornemantoppen Batholith emplaced at 418.4 ± 0.8 Ma. The identification of late Grenvillian (Rigolet) magmatic and Caledonian (Scandian) magmatic and metamorphic events, combined with other stratigraphic analogies, supports a link with Svalbard’s Nordaustlandet Terrane as well as with Laurentian terranes in NE Greenland and the Scandinavian Caledonides.
    [Show full text]
  • Lund, Sweden, January 8–10 2014
    31st Nordic Geological Winter Meeting. Lund, Sweden. January 8-10, 2014 31st Nordic Sponsors Hosted by the Geological Society of Sweden Lund, Sweden, January 8–10 2014 Abiskojokk canyon, Abisko Sweden Photo: Mark Johnson, 2012 Main sponsors Table of Contents Welcome ______________________________________________________ 2 Organizing committee __________________________________________ 3 Scientific program committee ___________________________________ 3 Program Overview _____________________________________________ 4 Social Program ________________________________________________ 5 Scientific Program______________________________________________ 6 - Oral presentations __________________________________________ 7 - Posters ___________________________________________________ 22 Abstracts1 ________________________________________________ 34 - Plenary talks ________________________________________________ 35 - HYD-ENV Hydrogeology/Environmental Geology _______________ 37 - ENG-GEO Engineering Geology ______________________________ 46 - ECON-OIL Economic and Petroleum Geology __________________ 50 - LUNDPAL Lundadagarna i Historisk Geologi och Paleontologi ____________________________________________ 64 - PET Petrology ______________________________________________ 77 - STR-TEC Structural Geology/Tectonics ________________________ 104 - MOR-GLA Geomorphology and Glacial Geology ______________ 126 - QUAT Quaternary Geology _________________________________ 148 - GEOBIO Geobiology and Astrobiology _______________________ 156 - GEOP Geophysics
    [Show full text]
  • Geochronology and Geochemistry of Zircon from the Northern Western Gneiss Region: Insights Into the Caledonian Tectonic History of Western Norway
    Lithos 246–247 (2016) 134–148 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Geochronology and geochemistry of zircon from the northern Western Gneiss Region: Insights into the Caledonian tectonic history of western Norway Stacia M. Gordon a,⁎, Donna L. Whitney b, Christian Teyssier b, Haakon Fossen c, Andrew Kylander-Clark d a Department of Geological Sciences, University of Nevada, Reno, NV 89557, USA b Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455, USA c Department of Earth Science and Museum of Natural History, University of Bergen, N-5020 Bergen, Norway d Department of Earth Science, University of California, Santa Barbara, CA 93106, USA article info abstract Article history: The Western Gneiss Region (WGR) of Norway is divided by the Møre-Trøndelag shear zone (MTSZ) into a south- Received 6 September 2015 ern region that contains domains of Caledonian ultrahigh-pressure (UHP) metamorphic rocks (N2.5 GPa) and a Accepted 25 November 2015 northern area of similar Caledonian-aged rocks that record a maximum pressure reported thus far of ~1.5 GPa. Available online 17 December 2015 Although both regions contain similar lithologies (primarily migmatitic quartzofeldspathic gneiss containing mafic lenses) and structural relationship of basement rocks to infolded nappes, this difference in maximum pres- Keywords: sure implies a difference in tectonic history (continental subduction south of the shear zone, none to the north) Western Gneiss Region Zircon and raises questions about the role of the MTSZ in the metamorphic history (including exhumation) of the WGR. Split-stream Previous geochronology results indicated a difference in timing of peak metamorphism (older in north, younger LA-ICPMS in south).
    [Show full text]
  • Lithostratigraphy and Structure of the Dharan–Mulghat Area, Lesser Himalayan Sequence, Eastern Nepal Himalaya
    Journal of Nepal Geological Society,Lithostratigraphy 2016, Vol. 51, pp. and 77-88 structure of the Dharan–Mulghat area, Lesser Himalayan Sequence Lithostratigraphy and structure of the Dharan–Mulghat area, Lesser Himalayan sequence, eastern Nepal Himalaya *L. K. Rai1, K. K. Acharya2 and M. R. Dhital2 1Central Campus of Technology, Tribhuvan University, Dharan, Sunsari, Nepal 2Central Department of Geology, Tribhuvan University, Kirtipur, Kathmandu, Nepal (*E-mail: [email protected]) ABSTRACT The Dharan–Mulghat area of the eastern Nepal can be divided into three tectonic units: the Higher Himalayan Crystallines, the Lesser Himalayan Sequence and the Siwaliks from north to south separated by the Main Central Thrust (MCT) and Main Boundary Thrust (MBT), respectively. The Lesser Himalayan Sequence is divided into two groups separated by Chimra Thrust: the Bhedetar Group and the Dada Bajar Group. The Bhedetar Group includes the Raguwa Formation, the Phalametar Quartzite, the Churibas Formation, the Sangure Quartzite, and the Karkichhap Formation from the bottom to top, respectively; over- thrusted by the Dada Bajar Group consisting: the Ukhudanda Formation, the Mulghat Formation, the Okhre Formation, and the Patigau Formation, from lower to upper sections, respectively along the Chimra Thrust and the Bhorleni Formation as an individual formation overthrusted by Bhedetar Group along the Chhotimorang Thrust. The Main Central Thrust, the Main Boundary Thrust, the Chimra Thrust and the Chhotimorang Thrust are the major faults in Dharan–Mulghat area. The Leutiphedi Anticline and the Malbase Syncline are the major folds in the study area plunging towards east. The trend/plunge of anticline and syncline are 131o/24o and 096o/09o respectively.
    [Show full text]
  • Early Caledonian Tectonothermal Evolution in Outboard Terranes, Central Scandinavian Caledonides: New Constraints from U-Pb Zircon Dates
    Journal of the Geological Society, London, Vol. 150, 1993, pp. 51-56, 4 figs, 1 table. Printed in Northern Ireland Early Caledonian tectonothermal evolution in outboard terranes, central Scandinavian Caledonides: new constraints from U-Pb zircon dates M. B. STEPHENS l,K. KULLERUD 2'3&S.CLAESSON 2 ~Geological Survey of Sweden, Box 670, S-751 28 Uppsala, Sweden 2Museum of Natural History, Laboratory of Isotope Geology, Box 50007, S-104 05 Stockholm, Sweden 3present address: Department of Geology, University of Oslo, Box 1047, N-0316 Oslo 3, Norway Abstract: Early Caledonian deformation in an outboard terrane (Stort]fillet) in the central Scandinavian Caledonides is constrained to the time-period Arenig to Caradoc on the basis of U-Pb zircon age determin- ations. A trondhjemite clast in a conglomerate belonging to a supracrustal sequence that was affected by the early deformational event yields an age of 489_+10 5 Ma. A granite intruded after this event defines an age of 44 J-6~ + 24 Ma. The clast is similar in age to a trondhjemite intrusion in a contiguous terrane (Gjersvik) dated at 483+~Ma and the granite age is in agreement with a Rb-Sr whole-rock isochron of 438 5= 6 Ma determined in a previous study. The three new ages provide further evidence for the separation of igneous events in outboard terranes in the Scandinavian Caledonides into older (Tremadoc to Arenig) and younger (Late Ordovician to Early Silurian) episodes. More critically, they argue against simple correlation of early Caledonian deformational events in outboard terranes with the Late Cambrian to Early Ordovician tectonometamorphic history along the margin of the continent Baltica (the so-called Finnmarkian orogenic phase).
    [Show full text]
  • Devonian Tectonic Deformation in the Norwegian Caledonides and Its Regional Perspectives
    Devonian Tectonic Deformation in the Norwegian Caledonides and Its Regional Perspectives DAVID ROBERTS Roberts, D. 1983: Devonian tectonic deformation in the Norwegian Caledonides and its regional perspectives. Norges geol. Unders. 380, 85-96. Late-Caledonian megascopic folds deforming the Old Red Sandstone sequences of southern Norway are mostly synclines of E-W to NE-SW trend and E to NE plunge. Thrusts along the eastern and southern margins of several ORS areas, and stretching lineations, denote approximate southeastward translations of the sequences from their basinal sites. This contractile movement occurred principally along rejuve nated, syn-depositional, planar or listric-style extension faults. Development of the basins took place during the imposition of a fundamental NW-SE to NNW-SSE crustal extension following the major Scandian, Silurian orogenic phase. This was also influenced by an orogen-parallel sinistral mega-shear from Svalbard through northern Britain to the Appalachians which assisted in producing a transtensional regime in southern Norway. Thus, during ORS basin development and sedimentation a subordinate dextral strike-slip component has acted in combination with the basic extensile field. During late Devonian, probably Frasnian time, this transtensional regime was replaced by a SE-directed compres sion, and partly transpression, so producing the macrofolds, late ductile thrusts and other structures which are traceable far outside the confines of the ORS districts. D. Roberts, Norges geologiske undersokelse, Postboks 3006, N-7001 Trondheim, Norway Introduction The Old Red Sandstone (ORS) basins of southern Norway have received much attention in recent years with emphasis placed on establishing detailed stratigraphies and facies sequences, and interpreting these in terms of palaeo graphy within a framework of syn-depositional tectonism (Bryhni 1964, 1975,1978, Nilsen 1968, Steel 1976, Steel & Gloppen 1980).
    [Show full text]
  • The Scandinavian Caledonides—Scientific Drilling at Mid-Crustal Level in a Palaeozoic Major Collisional Orogen
    Workshop Reports The Scandinavian Caledonides—Scientific Drilling at Mid-Crustal Level in a Palaeozoic Major Collisional Orogen by Henning Lorenz, David Gee, and Christopher Juhlin doi:10.2204/iodp.sd.11.10.2011 Introduction emplacement of allochthons have been demonstrated, E-directed in the Scandes and W-directed in Greenland. The Caledonides of western Scandinavia and eastern Greenland have long been recognized to have been part of a In Scandinavia, major allochthons (Fig. 1) were derived collisional orogen of Alpine-Himalayan dimensions, essen- from Baltica’s outer shelf, dyke-intruded continent-ocean tially the result of the closure of the Iapetus Ocean during transition zone (COT), Iapetus oceanic domains and (upper- the Ordovician, with development of island-arc systems, and most) from the Laurentian margin. On the western side of subsequent underthrusting of continent Laurentia by Baltica the North Atlantic, exposed along the eastern edge of the in the Silurian and Early Devonian during Scandian colli- Greenland ice cap, there are major thrust sheets, all derived sional orogeny. Several hundreds of kilometers of thrust from the Laurentian continental margin and transported at least two hundred kilometers westwards onto the platform. In the Scandinavian and Greenland Caledonides, the major allochthons that were derived from the outer parts of the con- tinent margins have been subject to high-grade metamor- phism and apparently were emplaced hot onto the adjacent platforms. The International Continental Scientific Drilling Program (ICDP) workshop in Sweden provided an opportunity to examine the evidence for Caledonian collisional orogeny in Scandinavia and to discuss its relevance for understanding other orogens, particularly Himalaya-Tibet, and also the sub- duction systems along the margin of the western Pacific.
    [Show full text]