The Early Response to DNA Damage Can Lead to Activation of Alternative Splicing Activity Resulting in CD44 Splice Pattern Changes

Total Page:16

File Type:pdf, Size:1020Kb

The Early Response to DNA Damage Can Lead to Activation of Alternative Splicing Activity Resulting in CD44 Splice Pattern Changes Research Article The Early Response to DNA Damage Can Lead to Activation of Alternative Splicing Activity Resulting in CD44 Splice Pattern Changes Valery Filippov, Maria Filippova, and Penelope J. Duerksen-Hughes Department of Biochemistry and Microbiology, Loma Linda University School of Medicine, Loma Linda, California Abstract in these cells, p53-independent pathways must be engaged. This is Expression of the human papillomavirus 16 E6 oncogene particularly true in cervical carcinoma cases caused by human interferes with several vital cellular processes, including the papillomavirus (HPV) 16 infection, as the viral E6 protein p53-dependent response to DNA damage. To assess the effectively eliminates cellular p53 by accelerating its proteolysis influence of E6 on the early response to DNA damage, we (6). E6-expressing cells, therefore, can function as a model system analyzed gene expression following mitomycin C–induced for discovering and studying p53-independent, DNA damage– genotoxic stress in human E6–expressing U2OS cells triggered apoptotic pathways. (U2OSE64b) as well as in p53-expressing control cells In contrast to the well-established role of transcriptional (U2OSE6AS) by comparative global expression profiling. As regulation, alternative splicing is only now emerging as an expected, genes involved in p53-dependent pathways were important mechanism for regulating gene function. It has been estimated that at least 74% of multi-exon genes are alternatively activated in p53-expressing cells. In the U2OSE64b cells, however, a largely nonoverlapping group of genes was spliced (7), and these isoforms frequently have opposing functions. identified, including two splicing factors of the SR family. This may have a significant effect on a variety of cell processes, Immunoblot analysis revealed increased expression of several including apoptosis (8). SR proteins during the early response to DNA damage, which There is now ample evidence that aberrations of alternative was accompanied by activation of alternative splicing activity. splicing are widespread in tumors (9). Although the relationship Disruption of splicing activity by treatment with small between changes in splicing and tumor progression has not yet been well-defined, condition-dependent splicing alterations in such interfering RNA directed against splicing factor SRp55 FAS, RBM9, CD44, hnRNPA/B, APLP2 MYL6 resulted in the increased viability of p53-deficient cells genes as , and were following DNA damage. To determine whether the transient found in breast cancer cells by using splicing-sensitive microarrays activation of splicing activity was due to E6-mediated (10). Despite growing interest in splicing regulation and the degradation of p53, or was due to some other activity of E6, discovery of a large number of genes involved in pre–RNA splicing, we compared the early response of the p53 wild-type and the mechanisms governing this process are not well-understood (11). It is believed that alternative splicing activity is regulated by p53À/À isogenic HCT116 cell lines, and found that the increase in splicing activity was observed only in the absence the combinatorial actions of a fairly large number of regulatory of p53. Finally, both the U2OSE64b and the p53À/À cells factors, including two families of proteins that generally function in showed altered splicing patterns for the CD44 receptor. an antagonistic manner, heterogeneous ribonucleoproteins and SR Together, these data show that cells lacking p53 can activate (serine/arginine-rich) proteins (12). SR proteins participate in both constitutive and alternative alternative splicing following DNA damage. [Cancer Res 2007;67(16):7621–30] splicing. Although they seem to be functionally redundant in constitutive splicing, a growing body of evidence shows that they have distinctive and not fully overlapping functions in alternative Introduction splicing. Each particular SR protein is able to bind to a specific Genotoxic stresses from chemical, physical, or viral agents splicing enhancer and activate splicing of weak splicing sites, initiate damage response pathways that lead to cell cycle arrest, leading to altered splicing patterns of target genes (12). DNA repair, and apoptosis (1, 2). The mechanisms by which these In this report, we have investigated the early response of the cellular responses are triggered are not fully understood, but it is osteosarcoma U2OSE64b (E6-expressing) and colon carcinoma clear that the p53 tumor repressor is one of the most important HCT116 p53À/À cell lines to DNA damage caused by the genotoxic checkpoint proteins, influencing multiple response pathways to a drug mitomycin C. The results from this study provide strong diversity of stressors (3). evidence that alternative splicing activity can be involved in However, p53 is not indispensable for the induction of apoptosis regulating the stress response in the absence of the classical p53- (4, 5). This has clinical relevance, as more than half of human dependent pathways. tumors lack wild-type p53. Therefore, if apoptosis is to be induced Materials and Methods Cell lines and cell culture. U2OS cells, derived from a human Requests for reprints: Penelope J. Duerksen-Hughes, Department of Biochemistry osteosarcoma, were obtained from the American Type Culture Collection. and Microbiology, 121 Mortensen Hall, Loma Linda University School of Medicine, HCT116 human colorectal cancer cells and p53-null derivatives (13) were Loma Linda, CA 92354. Phone: 909-558-4300, ext. 81361; Fax: 909-558-0177; E-mail: supplied by Dr. B. Vogelstein. They were cultured in McCoy’s 5A medium [email protected]. I2007American Association for Cancer Research. (Invitrogen) supplemented to contain 10% fetal bovine serum (Invitrogen), doi:10.1158/0008-5472.CAN-07-0145 penicillin (100 Ag/mL), and streptomycin (100 Ag/mL; Sigma). Construction www.aacrjournals.org 7621 Cancer Res 2007; 67: (16). August 15, 2007 Downloaded from cancerres.aacrjournals.org on September 25, 2021. © 2007 American Association for Cancer Research. Cancer Research of the pHA-E6S and pHA-E6AS plasmids, which respectively, contain either minigene fused to luciferase (16) as described previously (17) and split into the sense or the antisense versions of epitope-tagged E6 (HA-E6) under the a 96-well plate 24 h later. At 48 h posttransfection, cells were treated with control of the CMV promoter, and establishment of the U2OSE64b and 2 Ag/mL of mitomycin C for the indicated amount of time and harvested in U2OSE6AS cell lines by stable transfection with these plasmids, have been luciferase lysis buffer (Promega). Luciferase activity was quantified using a described previously (14). MicroLumatPlus microplate reader (Berthold Technology). Three indepen- Measurement of mitomycin C cytotoxicity. To measure cell survival dent experiments, were each conducted in triplicate, and significance was following mitomycin C treatment, cells in exponential growth were exposed analyzed by one-way ANOVA. Differences were considered significant at a to mitomycin C (Roche) at the concentrations noted for the individual 0.05 level of confidence. experiments. After incubation for the indicated time, the number of viable Inhibition of SFRS6 gene expression by small interfering RNA. Cells cells was quantified by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo- were transfected with predesigned small interfering RNAs (siRNA) for the lium bromide (MTT) assay as described earlier (14). Three independent human SFRS6 gene from Ambion or from Santa Cruz Biotechnology, or with experiments were each conducted in triplicate and significance was control siRNA using the siRNA transfection kit as recommended by the analyzed by Student’s t test. manufacturer (Santa Cruz Biotechnology). Levels of silencing of the SFRS6 Immunoblot analysis. Proteins were extracted from cells (106) in 100 AL gene were evaluated by RT-PCR and immunoblot analyses as described of Laemmli’s buffer. Lysates were sonicated and protein concentration was above. Twenty-four hours posttransfection, cells were treated with D A determined by the C protein assay (Bio-Rad). Lysates (15 g) were mitomycin C for 24 h, followed by quantification of viable cells by the separated on SDS-polyacrylamide gels and transferred onto Immobilon MTT assay (14). Three independent experiments were done, each was P membranes (Millipore). Membranes were probed with primary antibodies conducted in quadruplicate, and significance was analyzed by one-way directed against p53 (NCL-p53-DO7; Novocastra), poly(ADP-ribose) poly- ANOVA. Differences were considered significant at a 0.05 level of merase-1 (PARP-1; Ab-2; EMD Biosciences), phosphorylated Chk1 (phospho- confidence. Chk1-Ser345; Cell Signaling Technology), h-actin (Sigma), or pan-SR (1H4; American Type Culture Collection). After washing, membranes were incubated with the appropriate horseradish peroxidase–conjugated sec- Results ondary antibodies (Sigma), and bands were detected using the SuperSignal E6 decreases the level of cellular p53, but does not inhibit West Substrate System (Pierce). Densitometry measurements were done cell death following DNA damage. Our laboratory has previously using the ChemImager Imaging System and processed with the AlphaEase shown that in U2OS cells in which E6 expression is regulated by a software package (Alpha Innotech). tetracycline-responsive promoter, increased amounts of E6 led to a Semiquantitative reverse transcriptase-PCR. Reverse transcriptase- dose-dependent decrease in p53 as measured
Recommended publications
  • Cooperativity of Imprinted Genes Inactivated by Acquired Chromosome 20Q Deletions
    Cooperativity of imprinted genes inactivated by acquired chromosome 20q deletions Athar Aziz, … , Anne C. Ferguson-Smith, Anthony R. Green J Clin Invest. 2013;123(5):2169-2182. https://doi.org/10.1172/JCI66113. Research Article Oncology Large regions of recurrent genomic loss are common in cancers; however, with a few well-characterized exceptions, how they contribute to tumor pathogenesis remains largely obscure. Here we identified primate-restricted imprinting of a gene cluster on chromosome 20 in the region commonly deleted in chronic myeloid malignancies. We showed that a single heterozygous 20q deletion consistently resulted in the complete loss of expression of the imprinted genes L3MBTL1 and SGK2, indicative of a pathogenetic role for loss of the active paternally inherited locus. Concomitant loss of both L3MBTL1 and SGK2 dysregulated erythropoiesis and megakaryopoiesis, 2 lineages commonly affected in chronic myeloid malignancies, with distinct consequences in each lineage. We demonstrated that L3MBTL1 and SGK2 collaborated in the transcriptional regulation of MYC by influencing different aspects of chromatin structure. L3MBTL1 is known to regulate nucleosomal compaction, and we here showed that SGK2 inactivated BRG1, a key ATP-dependent helicase within the SWI/SNF complex that regulates nucleosomal positioning. These results demonstrate a link between an imprinted gene cluster and malignancy, reveal a new pathogenetic mechanism associated with acquired regions of genomic loss, and underline the complex molecular and cellular consequences of “simple” cancer-associated chromosome deletions. Find the latest version: https://jci.me/66113/pdf Research article Cooperativity of imprinted genes inactivated by acquired chromosome 20q deletions Athar Aziz,1,2 E. Joanna Baxter,1,2,3 Carol Edwards,4 Clara Yujing Cheong,5 Mitsuteru Ito,4 Anthony Bench,3 Rebecca Kelley,1,2 Yvonne Silber,1,2 Philip A.
    [Show full text]
  • 1 Inventory of Supplemental Information Presented in Relation To
    Inventory of Supplemental Information presented in relation to each of the main figures in the manuscript 1. Figure S1. Related to Figure 1. 2. Figure S2. Related to Figure 2. 3. Figure S3. Related to Figure 3. 4. Figure S4. Related to Figure 4. 5. Figure S5. Related to Figure 5. 6. Figure S6. Related to Figure 6. 7. Figure S7. Related to Figure 7. 8. Table S1. Related to Figures 1 and S1. 9. Table S2. Related to Figures 3, 4, 6 and 7. 10. Table S3. Related to Figure 3. Supplemental Experimental Procedures 1. Patients and samples 2. Cell culture 3. Long term culture-initiating cells (LTC-IC) assay 4. Differentiation of CD34+ cord blood cells 5. Bi-phasic erythroid differentiation assay 6. Clonal assay 7. Mutation and sequencing analysis 8. Bisulphite sequencing and quantitative pyrosequencing 9. Human SNP genotyping 10. Strand-specific cDNA synthesis and PCR 11. Chromatin Immuno-precipitation (ChIP) 12. Immunoprecipitation and western blot 13. Colony genotyping 14. shRNA generation and viral infection 15. Retrovirus generation and transduction 16. Study approval 17. Statistical Methods 18. Primers list Supplementary References (19) 1 Additional SGK2 families 2 3 4 ♂ ♀ ♂ ♀ ♂ ♀ C/G C/C C/C C/G C/C C/G ♀ ♀ ♂ ♀ C/G C/G C/G C/G T T C T G C T A G A T T C T C C T A G A T T C T C C T A G A T T C T C C T A G A T-Cells T-Cells T-Cells T-Cells Additional GDAP1L1 familiy 2 ♂ ♀ G/G A/A ♀ G/A A C A C G G T G Erythroblasts Figure S1 - .
    [Show full text]
  • Expression Analysis of Genes Located Within the Common Deleted Region
    Leukemia Research 84 (2019) 106175 Contents lists available at ScienceDirect Leukemia Research journal homepage: www.elsevier.com/locate/leukres Research paper Expression analysis of genes located within the common deleted region of del(20q) in patients with myelodysplastic syndromes T ⁎ Masayuki Shiseki , Mayuko Ishii, Michiko Okada, Mari Ohwashi, Yan-Hua Wang, Satoko Osanai, Kentaro Yoshinaga, Naoki Mori, Toshiko Motoji, Junji Tanaka Department of Hematology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan ARTICLE INFO ABSTRACT Keywords: Deletion of the long arm of chromosome 20 (del(20q)) is observed in 5–10% of patients with myelodysplastic Deletion 20q syndromes (MDS). We examined the expression of 28 genes within the common deleted region (CDR) of del Common deleted region (20q), which we previously determined by a CGH array using clinical samples, in 48 MDS patients with (n = 28) Myelodysplastic syndromes or without (n = 20) chromosome 20 abnormalities and control subjects (n = 10). The expression level of 8 of 28 genes was significantly reduced in MDS patients with chromosome 20 abnormalities compared to that of control subjects. In addition, the expression of BCAS4, ADA, and YWHAB genes was significantly reduced in MDS pa- tients without chromosome 20 abnormalities, which suggests that these three genes were commonly involved in the molecular pathogenesis of MDS. To evaluate the clinical significance, we analyzed the impact of the ex- pression level of each gene on overall survival (OS). According to the Cox proportional hazard model, multi- variate analysis indicated that reduced BCAS4 expression was associated with inferior OS, but the difference was not significant (HR, 3.77; 95% CI, 0.995-17.17; P = 0.0509).
    [Show full text]
  • Mai Muudatuntuu Ti on Man Mini
    MAIMUUDATUNTUU US009809854B2 TI ON MAN MINI (12 ) United States Patent ( 10 ) Patent No. : US 9 ,809 ,854 B2 Crow et al. (45 ) Date of Patent : Nov . 7 , 2017 Whitehead et al. (2005 ) Variation in tissue - specific gene expression ( 54 ) BIOMARKERS FOR DISEASE ACTIVITY among natural populations. Genome Biology, 6 :R13 . * AND CLINICAL MANIFESTATIONS Villanueva et al. ( 2011 ) Netting Neutrophils Induce Endothelial SYSTEMIC LUPUS ERYTHEMATOSUS Damage , Infiltrate Tissues, and Expose Immunostimulatory Mol ecules in Systemic Lupus Erythematosus . The Journal of Immunol @(71 ) Applicant: NEW YORK SOCIETY FOR THE ogy , 187 : 538 - 552 . * RUPTURED AND CRIPPLED Bijl et al. (2001 ) Fas expression on peripheral blood lymphocytes in MAINTAINING THE HOSPITAL , systemic lupus erythematosus ( SLE ) : relation to lymphocyte acti vation and disease activity . Lupus, 10 :866 - 872 . * New York , NY (US ) Crow et al . (2003 ) Microarray analysis of gene expression in lupus. Arthritis Research and Therapy , 5 :279 - 287 . * @(72 ) Inventors : Mary K . Crow , New York , NY (US ) ; Baechler et al . ( 2003 ) Interferon - inducible gene expression signa Mikhail Olferiev , Mount Kisco , NY ture in peripheral blood cells of patients with severe lupus . PNAS , (US ) 100 ( 5 ) : 2610 - 2615. * GeneCards database entry for IFIT3 ( obtained from < http : / /www . ( 73 ) Assignee : NEW YORK SOCIETY FOR THE genecards. org /cgi - bin / carddisp .pl ? gene = IFIT3 > on May 26 , 2016 , RUPTURED AND CRIPPLED 15 pages ) . * Navarra et al. (2011 ) Efficacy and safety of belimumab in patients MAINTAINING THE HOSPITAL with active systemic lupus erythematosus : a randomised , placebo FOR SPECIAL SURGERY , New controlled , phase 3 trial . The Lancet , 377 :721 - 731. * York , NY (US ) Abramson et al . ( 1983 ) Arthritis Rheum .
    [Show full text]
  • Drosophila and Human Transcriptomic Data Mining Provides Evidence for Therapeutic
    Drosophila and human transcriptomic data mining provides evidence for therapeutic mechanism of pentylenetetrazole in Down syndrome Author Abhay Sharma Institute of Genomics and Integrative Biology Council of Scientific and Industrial Research Delhi University Campus, Mall Road Delhi 110007, India Tel: +91-11-27666156, Fax: +91-11-27662407 Email: [email protected] Nature Precedings : hdl:10101/npre.2010.4330.1 Posted 5 Apr 2010 Running head: Pentylenetetrazole mechanism in Down syndrome 1 Abstract Pentylenetetrazole (PTZ) has recently been found to ameliorate cognitive impairment in rodent models of Down syndrome (DS). The mechanism underlying PTZ’s therapeutic effect is however not clear. Microarray profiling has previously reported differential expression of genes in DS. No mammalian transcriptomic data on PTZ treatment however exists. Nevertheless, a Drosophila model inspired by rodent models of PTZ induced kindling plasticity has recently been described. Microarray profiling has shown PTZ’s downregulatory effect on gene expression in fly heads. In a comparative transcriptomics approach, I have analyzed the available microarray data in order to identify potential mechanism of PTZ action in DS. I find that transcriptomic correlates of chronic PTZ in Drosophila and DS counteract each other. A significant enrichment is observed between PTZ downregulated and DS upregulated genes, and a significant depletion between PTZ downregulated and DS dowwnregulated genes. Further, the common genes in PTZ Nature Precedings : hdl:10101/npre.2010.4330.1 Posted 5 Apr 2010 downregulated and DS upregulated sets show enrichment for MAP kinase pathway. My analysis suggests that downregulation of MAP kinase pathway may mediate therapeutic effect of PTZ in DS. Existing evidence implicating MAP kinase pathway in DS supports this observation.
    [Show full text]
  • Ultraconserved Elements Are Associated with Homeostatic Control of Splicing Regulators by Alternative Splicing and Nonsense-Mediated Decay
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay Julie Z. Ni,1 Leslie Grate,1 John Paul Donohue,1 Christine Preston,2 Naomi Nobida,2 Georgeann O’Brien,2 Lily Shiue,1 Tyson A. Clark,3 John E. Blume,3 and Manuel Ares Jr.1,2,4 1Center for Molecular Biology of RNA and Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA; 2Hughes Undergraduate Research Laboratory, University of California at Santa Cruz, Santa Cruz, California 95064, USA; 3Affymetrix, Inc., Santa Clara, California 95051, USA Many alternative splicing events create RNAs with premature stop codons, suggesting that alternative splicing coupled with nonsense-mediated decay (AS-NMD) may regulate gene expression post-transcriptionally. We tested this idea in mice by blocking NMD and measuring changes in isoform representation using splicing-sensitive microarrays. We found a striking class of highly conserved stop codon-containing exons whose inclusion renders the transcript sensitive to NMD. A genomic search for additional examples identified >50 such exons in genes with a variety of functions. These exons are unusually frequent in genes that encode splicing activators and are unexpectedly enriched in the so-called “ultraconserved” elements in the mammalian lineage. Further analysis show that NMD of mRNAs for splicing activators such as SR proteins is triggered by splicing activation events, whereas NMD of the mRNAs for negatively acting hnRNP proteins is triggered by splicing repression, a polarity consistent with widespread homeostatic control of splicing regulator gene expression.
    [Show full text]
  • 1471-2105-8-217.Pdf
    BMC Bioinformatics BioMed Central Software Open Access GenMAPP 2: new features and resources for pathway analysis Nathan Salomonis1,2, Kristina Hanspers1, Alexander C Zambon1, Karen Vranizan1,3, Steven C Lawlor1, Kam D Dahlquist4, Scott W Doniger5, Josh Stuart6, Bruce R Conklin1,2,7,8 and Alexander R Pico*1 Address: 1Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158 USA, 2Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA, 3Functional Genomics Laboratory, University of California, Berkeley, CA 94720 USA, 4Department of Biology, Loyola Marymount University, 1 LMU Drive, MS 8220, Los Angeles, CA 90045 USA, 5Computational Biology Graduate Program, Washington University School of Medicine, St. Louis, MO 63108 USA, 6Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064 USA, 7Department of Medicine, University of California, San Francisco, CA 94143 USA and 8Department of Molecular and Cellular Pharmacology, University of California, San Francisco, CA 94143 USA Email: Nathan Salomonis - [email protected]; Kristina Hanspers - [email protected]; Alexander C Zambon - [email protected]; Karen Vranizan - [email protected]; Steven C Lawlor - [email protected]; Kam D Dahlquist - [email protected]; Scott W Doniger - [email protected]; Josh Stuart - [email protected]; Bruce R Conklin - [email protected]; Alexander R Pico* - [email protected] * Corresponding author Published: 24 June 2007 Received: 16 November 2006 Accepted: 24 June 2007 BMC Bioinformatics 2007, 8:217 doi:10.1186/1471-2105-8-217 This article is available from: http://www.biomedcentral.com/1471-2105/8/217 © 2007 Salomonis et al; licensee BioMed Central Ltd.
    [Show full text]
  • 1 Title: Ultra-Conserved Elements in the Human Genome Authors And
    4/22/2004 Title: Ultra-conserved elements in the human genome Authors and affiliations: Gill Bejerano*, Michael Pheasant**, Igor Makunin**, Stuart Stephen**, W. James Kent*, John S. Mattick** and David Haussler*** *Department of Biomolecular Engineering and ***Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA **ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia Corresponding authors: Gill Bejerano ([email protected]) and David Haussler ([email protected]) -------------------------------------------------------------------------------------------------------------------- Supporting on-line material: Separate figures, Like Figure 1 but for each individual chromosome are available in postscript and PDF format, at http://www.cse.ucsc.edu/~jill/ultra.html. Table S1. A table listing all 481 ultra conserved elements and their properties can be found at http://www.cse.ucsc.edu/~jill/ultra.html. The elements were extracted from an alignment of NCBI Build 34 of the human genome (July 2003, UCSC hg16), mouse NCBI Build 30 (February 2003, UCSC mm3), and rat Baylor HGSC v3.1 (June 2003, UCSC rn3). This table does not include an additional, probably ultra conserved element (uc.10) overlapping an alternatively spliced exon of FUSIP1, which is not yet placed in the current assembly of human chromosome 1. Nor does the list contain the ultra conserved elements found in ribosomal RNA sequences, as these are not currently present as part of the draft genome sequences. The small subunit 18S rRNA includes 3 ultra conserved regions of sizes 399, 224, 212bp and the large subunit 28S rRNA contains 3 additional regions of sizes 277, 335, 227bp (the later two are one base apart).
    [Show full text]
  • The DNA Sequence and Comparative Analysis of Human Chromosome 20
    articles The DNA sequence and comparative analysis of human chromosome 20 P. Deloukas, L. H. Matthews, J. Ashurst, J. Burton, J. G. R. Gilbert, M. Jones, G. Stavrides, J. P. Almeida, A. K. Babbage, C. L. Bagguley, J. Bailey, K. F. Barlow, K. N. Bates, L. M. Beard, D. M. Beare, O. P. Beasley, C. P. Bird, S. E. Blakey, A. M. Bridgeman, A. J. Brown, D. Buck, W. Burrill, A. P. Butler, C. Carder, N. P. Carter, J. C. Chapman, M. Clamp, G. Clark, L. N. Clark, S. Y. Clark, C. M. Clee, S. Clegg, V. E. Cobley, R. E. Collier, R. Connor, N. R. Corby, A. Coulson, G. J. Coville, R. Deadman, P. Dhami, M. Dunn, A. G. Ellington, J. A. Frankland, A. Fraser, L. French, P. Garner, D. V. Grafham, C. Grif®ths, M. N. D. Grif®ths, R. Gwilliam, R. E. Hall, S. Hammond, J. L. Harley, P. D. Heath, S. Ho, J. L. Holden, P. J. Howden, E. Huckle, A. R. Hunt, S. E. Hunt, K. Jekosch, C. M. Johnson, D. Johnson, M. P. Kay, A. M. Kimberley, A. King, A. Knights, G. K. Laird, S. Lawlor, M. H. Lehvaslaiho, M. Leversha, C. Lloyd, D. M. Lloyd, J. D. Lovell, V. L. Marsh, S. L. Martin, L. J. McConnachie, K. McLay, A. A. McMurray, S. Milne, D. Mistry, M. J. F. Moore, J. C. Mullikin, T. Nickerson, K. Oliver, A. Parker, R. Patel, T. A. V. Pearce, A. I. Peck, B. J. C. T. Phillimore, S. R. Prathalingam, R. W. Plumb, H. Ramsay, C. M.
    [Show full text]
  • Human Social Genomics in the Multi-Ethnic Study of Atherosclerosis
    Getting “Under the Skin”: Human Social Genomics in the Multi-Ethnic Study of Atherosclerosis by Kristen Monét Brown A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Epidemiological Science) in the University of Michigan 2017 Doctoral Committee: Professor Ana V. Diez-Roux, Co-Chair, Drexel University Professor Sharon R. Kardia, Co-Chair Professor Bhramar Mukherjee Assistant Professor Belinda Needham Assistant Professor Jennifer A. Smith © Kristen Monét Brown, 2017 [email protected] ORCID iD: 0000-0002-9955-0568 Dedication I dedicate this dissertation to my grandmother, Gertrude Delores Hampton. Nanny, no one wanted to see me become “Dr. Brown” more than you. I know that you are standing over the bannister of heaven smiling and beaming with pride. I love you more than my words could ever fully express. ii Acknowledgements First, I give honor to God, who is the head of my life. Truly, without Him, none of this would be possible. Countless times throughout this doctoral journey I have relied my favorite scripture, “And we know that all things work together for good, to them that love God, to them who are called according to His purpose (Romans 8:28).” Secondly, I acknowledge my parents, James and Marilyn Brown. From an early age, you two instilled in me the value of education and have been my biggest cheerleaders throughout my entire life. I thank you for your unconditional love, encouragement, sacrifices, and support. I would not be here today without you. I truly thank God that out of the all of the people in the world that He could have chosen to be my parents, that He chose the two of you.
    [Show full text]
  • The Inflammatory and Normal Transcriptome of Mouse Bladder Detrusor and Mucosa
    Thomas Jefferson University Jefferson Digital Commons Department of Pathology, Anatomy, and Cell Department of Pathology, Anatomy, and Cell Biology Faculty Papers Biology January 2006 The inflammatory and normal transcriptome of mouse bladder detrusor and mucosa Marcia R. Saban University of Oklahoma Helen L. Hellmich University of Texas Mary Turner Oklahoma Medical Research Foundation (OMRF) Ngoc-Bich Nguyen University of Oklahoma and University of Texas Follow this and additional works at: https://jdc.jefferson.edu/pacbfp Rajanikanth Vadigepalli Thomas Part ofJeff theerson Medical Univ Cellersity Biology Commons Let us know how access to this document benefits ouy See next page for additional authors Recommended Citation Saban, Marcia R.; Hellmich, Helen L.; Turner, Mary ; Nguyen, Ngoc-Bich; Vadigepalli, Rajanikanth; Dyer, David W.; Hurst, Robert E.; Centola, Michael; and Saban, Ricardo, "The inflammatory and normal transcriptome of mouse bladder detrusor and mucosa" (2006). Department of Pathology, Anatomy, and Cell Biology Faculty Papers. Paper 2. https://jdc.jefferson.edu/pacbfp/2 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Pathology, Anatomy, and Cell Biology Faculty Papers by an authorized administrator of the Jefferson Digital Commons.
    [Show full text]
  • SRSF6 (NM 006275) Human Untagged Clone – SC125351 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for SC125351 SRSF6 (NM_006275) Human Untagged Clone Product data: Product Type: Expression Plasmids Product Name: SRSF6 (NM_006275) Human Untagged Clone Tag: Tag Free Symbol: SRSF6 Synonyms: B52; HEL-S-91; SFRS6; SRP55 Vector: pCMV6-XL5 E. coli Selection: Ampicillin (100 ug/mL) Cell Selection: None Fully Sequenced ORF: >OriGene ORF within SC125351 sequence for NM_006275 edited (data generated by NextGen Sequencing) ATGCCGCGCGTCTACATAGGACGCCTGAGCTACAACGTCCGGGAGAAGGACATCCAGCGC TTTTTCAGTGGCTATGGCCGCCTCCTCGAAGTAGACCTCAAAAATGGGTACGGCTTCGTG GAGTTCGAGGACTCCCGCGACGCCGACGACGCCGTTTACGAGCTGAACGGCAAGGAGCTC TGCGGCGAGCGCGTGATCGTAGAGCACGCCCGGGGCCCGCGTCGCGATCGCGACGGCTAC AGCTACGGAAGCCGCAGTGGTGGAGGTGGATACAGCAGTCGGAGAACATCTGGCAGAGAC AAATACGGACCACCTGTTCGTACAGAATACAGGCTTATTGTAGAAAATCTTTCTAGTCGG TGCAGTTGGCAAGATTTAAAGGATTTTATGCGACAAGCAGGTGAAGTAACCTATGCGGAT GCCCACAAGGAACGAACAAATGAGGGTGTAATTGAGTTTCGCTCCTACTCTGACATGAAG CGTGCTTTGGACAAACTGGATGGCACAGAAATAAATGGCAGAAATATTAGGCTTATTGAA GATAAGCCACGCACAAGCCATAGGCGATCTTACTCTGGAAGCAGATCCAGGTCTCGATCT AGAAGACGGTCACGAAGTAGGAGTCGCAGGAGCAGCCGCAGTAGATCTCGAAGTATCTCA AAAAGTCGCTCCCGTTCCAGGTCGCGGAGCAAAGGTCGATCACGTTCTCGATCAAAAGGC AGGAAATCTAGATCAAAGAGCAAATCTAAGCCCAAGTCTGATCGGGGCTCCCATTCACAT TCTCGAAGCAGATCTAAGGATGAGTATGAGAAATCTCGAAGCAGGTCTCGGTCCCGATCC CCCAAAGAAAATGGAAAGGGTGATATAAAGTCAAAATCCAGATCAAGGAGCCAGTCCCGT TCCAATTCGCCGCTACCTGTTCCACCCTCAAAGGCCCGTTCTGTGTCCCCTCCACCAAAA
    [Show full text]