An Airborne Cycloidal Wind Turbine Mounted Using a Tethered Bal- Loon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lighter-Than-Air Vehicles for Civilian and Military Applications
Lighter-than-Air Vehicles for Civilian and Military Applications From the world leaders in the manufacture of aerostats, airships, air cell structures, gas balloons & tethered balloons Aerostats Parachute Training Balloons Airships Nose Docking and PARACHUTE TRAINING BALLOONS Mooring Mast System The airborne Parachute Training Balloon system (PTB) is used to give preliminary training in static line parachute jumping. For this purpose, an Instructor and a number of trainees are carried to the operational height in a balloon car, the winch is stopped, and when certain conditions are satisfied, the trainees are dispatched and make their parachute descent from the balloon car. GA-22 Airship Fully Autonomous AIRSHIPS An airship or dirigible is a type of aerostat or “lighter-than-air aircraft” that can be steered and propelled through the air using rudders and propellers or other thrust mechanisms. Unlike aerodynamic aircraft such as fixed-wing aircraft and helicopters, which produce lift by moving a wing through the air, aerostatic aircraft, and unlike hot air balloons, stay aloft by filling a large cavity with a AEROSTATS lifting gas. The main types of airship are non rigid (blimps), semi-rigid and rigid. Non rigid Aerostats are a cost effective and efficient way to raise a payload to a required altitude. airships use a pressure level in excess of the surrounding air pressure to retain Also known as a blimp or kite aerostat, aerostats have been in use since the early 19th century their shape during flight. Unlike the rigid design, the non-rigid airship’s gas for a variety of observation purposes. -
Renewable Energy in Small Islands
Renewable Energy on Small Islands Second edition august 2000 Sponsored by: Renewable Energy on Small Islands Second Edition Author: Thomas Lynge Jensen, Forum for Energy and Development (FED) Layout: GrafiCO/Ole Jensen, +45 35 36 29 43 Cover photos: Upper left: A 55 kW wind turbine of the Danish island of Aeroe. Photo provided by Aeroe Energy and Environmental Office. Middle left: Solar water heaters on the Danish island of Aeroe. Photo provided by Aeroe Energy and Environmental Office. Upper right: Photovoltaic installation on Marie Galante Island, Guadeloupe, French West Indies. Photo provided by ADEME Guadeloupe. Middle right: Waiah hydropower plant on Hawaii-island. Photo provided by Energy, Resource & Technology Division, State of Hawaii, USA Lower right: Four 60 kW VERGNET wind turbines on Marie Galante Island, Guadeloupe, French West Indies. Photo provided by ADEME Guadeloupe. Printing: Vesterkopi Printing cover; Green Graphic No. printed: 200 ISBN: 87-90502-03-5 Copyright (c) 2000 by Forum for Energy and Development (FED) Feel free to use the information in the report, but please state the source. Renewable Energy on Small Islands – Second Edition August 2000 Table of Contents Table of Contents Foreword and Acknowledgements by the Author i Introduction iii Executive Summary v 1. The North Atlantic Ocean Azores (Portugal) 1 Canary Island (Spain) 5 Cape Verde 9 Faeroe Islands (Denmark) 11 Madeira (Portugal) 13 Pellworm (Germany) 17 St. Pierre and Miquelon (France) 19 2. The South Atlantic Ocean Ascension Island (UK) 21 St. Helena Island (UK) 23 3. The Baltic Sea Aeroe (Denmark) 25 Gotland (Sweden) 31 Samsoe (Denmark) 35 4. -
Renewable Generation Data for European Energy System Analysis
Renewable Generation Data for European Energy System Analysis Alexander Kies1, Bruno U. Schyska2, Mariia Bilousova1;3, Omar El Sayed1;3, Jakub Jurasz4;5;6, Horst Stoecker1;3;7 1Frankfurt Institute for Advanced Studies, Goethe-University Frankfurt, Ruth-Moufang-Str. 1, 60438 Frankfurt, Germany 2German Aerospace Center (DLR), Institute of Networked Energy Systems, Carl-von-Ossietzky-Straße 15, 26129 Oldenburg, Germany 3Goethe-University, Frankfurt, Germany 4Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland 5Faculty of Management, AGH University, 30-059 Cracow, Poland 6School of Business, Society and Engineering, M¨alardalens H¨ogskola,72113 V¨aster˚as, Sweden 7GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany Abstract In the process of decarbonization, the global energy mix is shifting from fossil fuels to renewables. To study decarbonization pathways, large-scale energy system models are utilized. These models require accurate data on renewable generation to develop their full potential. Using different data can lead to conflicting results and policy advice. In this work, we compare several datasets that are commonly used to study the transition towards highly renewable European power system. We find significant differences between these datasets and cost-difference of about 10% result in the different energy mix. We conclude that much more attention must be paid to the large uncertainties of the input data. Keywords: Energy System Analysis, Renewable Generation Data, Energy arXiv:2101.08741v1 [physics.soc-ph] 21 Jan 2021 Meteorology, MERRA-2, ERA5, renewables.ninja, EMHires Preprint submitted to Journal Name January 22, 2021 1. Introduction Sustainable energy sources are a major solution for the imminent thread of climate change [1, 2]. -
Power and Wind Shear Implications of Large Wind Turbine Scenarios in the US Central Plains
energies Article Power and Wind Shear Implications of Large Wind Turbine Scenarios in the US Central Plains Rebecca J. Barthelmie 1,* , Tristan J. Shepherd 2 , Jeanie A. Aird 1 and Sara C. Pryor 2 1 Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA; [email protected] 2 Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA; [email protected] (T.J.S.); [email protected] (S.C.P.) * Correspondence: [email protected] Received: 13 July 2020; Accepted: 11 August 2020; Published: 18 August 2020 Abstract: Continued growth of wind turbine physical dimensions is examined in terms of the implications for wind speed, power and shear across the rotor plane. High-resolution simulations with the Weather Research and Forecasting model are used to generate statistics of wind speed profiles for scenarios of current and future wind turbines. The nine-month simulations, focused on the eastern Central Plains, show that the power scales broadly as expected with the increase in rotor diameter (D) and wind speeds at hub-height (H). Increasing wind turbine dimensions from current values (approximately H = 100 m, D = 100 m) to those of the new International Energy Agency reference wind turbine (H = 150 m, D = 240 m), the power across the rotor plane increases 7.1 times. The mean domain-wide wind shear exponent (α) decreases from 0.21 (H = 100 m, D = 100 m) to 0.19 for the largest wind turbine scenario considered (H = 168 m, D = 248 m) and the frequency of extreme positive shear (α > 0.2) declines from 48% to 38% of 10-min periods. -
Assessing the Evolution of the Airborne Generation of Thermal Lift in Aerostats 1783 to 1883
Journal of Aviation/Aerospace Education & Research Volume 13 Number 1 JAAER Fall 2003 Article 1 Fall 2003 Assessing the Evolution of the Airborne Generation of Thermal Lift in Aerostats 1783 to 1883 Thomas Forenz Follow this and additional works at: https://commons.erau.edu/jaaer Scholarly Commons Citation Forenz, T. (2003). Assessing the Evolution of the Airborne Generation of Thermal Lift in Aerostats 1783 to 1883. Journal of Aviation/Aerospace Education & Research, 13(1). https://doi.org/10.15394/ jaaer.2003.1559 This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been accepted for inclusion in Journal of Aviation/Aerospace Education & Research by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Forenz: Assessing the Evolution of the Airborne Generation of Thermal Lif Thermal Lift ASSESSING THE EVOLUTION OF THE AIRBORNE GENERATION OF THERMAL LIFT IN AEROSTATS 1783 TO 1883 Thomas Forenz ABSTRACT Lift has been generated thermally in aerostats for 219 years making this the most enduring form of lift generation in lighter-than-air aviation. In the United States over 3000 thermally lifted aerostats, commonly referred to as hot air balloons, were built and flown by an estimated 12,000 licensed balloon pilots in the last decade. The evolution of controlling fire in hot air balloons during the first century of ballooning is the subject of this article. The purpose of this assessment is to separate the development of thermally lifted aerostats from the general history of aerostatics which includes all gas balloons such as hydrogen and helium lifted balloons as well as thermally lifted balloons. -
Manufacturing Techniques of a Hybrid Airship Prototype
UNIVERSIDADE DA BEIRA INTERIOR Engenharia Manufacturing Techniques of a Hybrid Airship Prototype Sara Emília Cruz Claro Dissertação para obtenção do Grau de Mestre em Engenharia Aeronáutica (Ciclo de estudos integrado) Orientador: Prof. Doutor Jorge Miguel Reis Silva, PhD Co-orientador: Prof. Doutor Pedro Vieira Gamboa, PhD Covilhã, outubro de 2015 ii AVISO A presente dissertação foi realizada no âmbito de um projeto de investigação desenvolvido em colaboração entre o Instituto Superior Técnico e a Universidade da Beira Interior e designado genericamente por URBLOG - Dirigível para Logística Urbana. Este projeto produziu novos conceitos aplicáveis a dirigíveis, os quais foram submetidos a processo de proteção de invenção através de um pedido de registo de patente. A equipa de inventores é constituída pelos seguintes elementos: Rosário Macário, Instituto Superior Técnico; Vasco Reis, Instituto Superior Técnico; Jorge Silva, Universidade da Beira Interior; Pedro Gamboa, Universidade da Beira Interior; João Neves, Universidade da Beira Interior. As partes da presente dissertação relevantes para efeitos do processo de proteção de invenção estão devidamente assinaladas através de chamadas de pé de página. As demais partes são da autoria do candidato, as quais foram discutidas e trabalhadas com os orientadores e o grupo de investigadores e inventores supracitados. Assim, o candidato não poderá posteriormente reclamar individualmente a autoria de qualquer das partes. Covilhã e UBI, 1 de Outubro de 2015 _______________________________ (Sara Emília Cruz Claro) iii iv Dedicator I want to dedicate this work to my family who always supported me. To my parents, for all the love, patience and strength that gave me during these five years. To my brother who never stopped believing in me, and has always been my support and my mentor. -
3.8.5.Post0+Ug.Gdd887c5.D20201118
InVEST User’s Guide, Release 3.8.5.post0+ug.gdd887c5.d20201118 InVEST User’s Guide Integrated Valuation of Ecosystem Services and Tradeoffs Version 3.8.5.post0+ug.gdd887c5.d20201118 Editors: Richard Sharp, James Douglass, Stacie Wolny. Contributing Authors: Katie Arkema, Joey Bernhardt, Will Bierbower, Nicholas Chaumont, Douglas Denu, James Douglass, David Fisher, Kathryn Glowinski, Robert Griffin, Gregory Guannel, Anne Guerry, Justin Johnson, Perrine Hamel, Christina Kennedy, Chong-Ki Kim, Martin Lacayo, Eric Lonsdorf, Lisa Mandle, Lauren Rogers, Richard Sharp, Jodie Toft, Gregory Verutes, Adrian L. Vogl, Stacie Wolny, Spencer Wood. Citation: Sharp, R., Douglass, J., Wolny, S., Arkema, K., Bernhardt, J., Bierbower, W., Chaumont, N., Denu, D., Fisher, D., Glowinski, K., Griffin, R., Guannel, G., Guerry, A., Johnson, J., Hamel, P., Kennedy, C., Kim, C.K., Lacayo, M., Lonsdorf, E., Mandle, L., Rogers, L., Toft, J., Verutes, G., Vogl, A. L., and Wood, S. 2020, InVEST 3.8.5.post0+ug.gdd887c5.d20201118 User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund. 1 InVEST User’s Guide, Release 3.8.5.post0+ug.gdd887c5.d20201118 2 CONTENTS 1 Introduction 5 1.1 Data Requirements and Outputs Summary Table............................5 1.2 Why we need tools to map and value ecosystem services........................5 1.2.1 Introduction...........................................5 1.2.2 Who should use InVEST?...................................5 1.2.3 Introduction to InVEST..................................... 10 1.2.4 Using InVEST to Inform Decisions.............................. 12 1.2.5 A work in progress....................................... 15 1.2.6 This guide............................................ 15 1.3 Getting Started............................................. -
Wind Power Prediction Model Based on Publicly Available Data: Sensitivity Analysis on Roughness and Production Trend
WIND POWER PREDICTION MODEL BASED ON PUBLICLY AVAILABLE DATA: SENSITIVITY ANALYSIS ON ROUGHNESS AND PRODUCTION TREND Dissertation in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE WITH A MAJOR IN WIND POWER PROJECT MANAGEMENT Uppsala University Campus Gotland Department of Earth Sciences Gireesh Sakthi [10th December, 2019] WIND POWER PREDICTION MODEL BASED ON PUBLICLY AVAILABLE DATA: SENSITIVITY ANALYSIS ON ROUGHNESS AND PRODUCTION TREND Dissertation in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE WITH A MAJOR IN WIND POWER PROJECT MANAGEMENT Uppsala University Campus Gotland Department of Earth Sciences Approved by Supervisor, Dr. Karl Nilsson Examiner, Dr. Stefan Ivanell 10th December, 2019 II Abstract The wind power prediction plays a vital role in a wind power project both during the planning and operational phase of a project. A time series based wind power prediction model is introduced and the simulations are run for different case studies. The prediction model works based on the input from 1) nearby representative wind measuring station 2) Global average wind speed value from Meteorological Institute Uppsala University mesoscale model (MIUU) 3) Power curve of the wind turbine. The measured wind data is normalized to minimize the variation in the wind speed and multiplied with the MIUU to get a distributed wind speed. The distributed wind speed is then used to interpolate the wind power with the help of the power curve of the wind turbine. The interpolated wind power is then compared with the Actual Production Data (APD) to validate the prediction model. The simulation results show that the model works fairly predicting the Annual Energy Production (AEP) on monthly averages for all sites but the model could not follow the APD trend on all cases. -
I Aeronautical Engineerfrljaer 3 I
k^B* 4% Aeronautical NASA SP-7037 (103) Engineering December 1978 A Continuing SA Bibliography with Indexes National Aeronautics and Space Administration • L- I Aeronautical EngineerfrljAer 3 i. • erjng Aeronautical Engineerjn igineering Aeronautical Engim cal Engineering Aeronautical E nautical Engineering Aeronaut Aeronautical Engineering Aen sring Aeronautical Engineerinc . gineering Aeronautical Engine ;al Engineering Aeronautical E lautical Engineering Aeronaut Aeronautical Engineering Aerc ring Aeronautical Engineering ACCESSION NUMBER RANGES Accession numbers cited in this Supplement fall within the following ranges: STAR(N-10000 Series) N78-30038—N78-32035 IAA (A-10000 Series) A78-46603—A78-50238 This bibliography was prepared by the NASA Scientific and Technical Information Facility operated for the National Aeronautics and Space Administration by Informatics Information Systems Company. NASA SP-7037(103) AERONAUTICAL ENGINEERING A Continuing Bibliography Supplement 103 A selection of annotated references to unclas- sified reports and journal articles that were introduced into the NASA scientific and tech- nical information system and announced in November 1978 m • Scientific and Technical Aerospace Reports (STAR) • International Aerospace Abstracts (IAA) Scientific and Technical Information Branch 1978 National Aeronautics and Space Administration Washington, DC This Supplement is available from the National Technical Information Service (NTIS). Springfield. Virginia 22161. at the price code E02 ($475 domestic. $9.50 foreign) INTRODUCTION Under the terms of an interagency agreement with the Federal Aviation Administration this publication has been prepared by the National Aeronautics and Space Administration for the joint use of both agencies and the scientific and technical community concerned with the field of aeronautical engineering. The first issue of this bibliography was published in September 1970 and the first supplement in January 1971 Since that time, monthly supplements have been issued. -
Applications of Scientific Ballooning Technology to High Altitude Airships
Applications of Scientific Ballooning Technology to High Altitude Airships Michael S. Smith*, Raven Industries, Inc, Sulphur Springs, Texas, USA Edward Lee Rainwater , Raven Industries, Inc, Sulphur Springs, Texas, USA ABSTRACT been undertaken which attempted to solve the general problem by using tethered aerostats at very high In recent years, the potential use of High Altitude altitudes. Most of these programs were thwarted by Airships (HAA) as a platform for surveillance or problems associated with tether dynamics. communications operations has attracted growing interest. Many technical obstacles exist with regard to High Platform the successful launch, flight, and recovery of such systems. In the late 1960’s, Raven Industries was contracted to build a small stratospheric airship as a technology Many decades of technological innovation in the field demonstrator.1 The High Platform II vehicle was of scientific ballooning have resulted in a number of designed for a small payload of five pounds and a technologies that are directly applicable towards the cruising altitude of 67,000 feet. Since it was designed success of the HAA platform. Among these are as a technology demonstrator, the vehicle was advances in materials, design, and launch methods. programmed to track the sun during the flight. The Discussed herein are potential applications of these demonstration flight was considered a success by flying technologies towards the development of a viable High for two hours under power. It also did not carry any Altitude Airship system. batteries, so it could not operate at night. This is quite possibly the only airship ever to fly under power in the HISTORICAL BACKGROUND stratosphere. -
Enhanced Surveillance Capabilities for a Small Tethered Aerostat
AIAA Lighter-Than-Air Systems Technology (LTA) Conference AIAA 2013-1316 25-28 March 2013, Daytona Beach, Florida The 28M™ Tactical Aerostat System: Enhanced Surveillance Capabilities for a Small Tethered Aerostat John A. Krausman1 and Shawn T. Petersen2 TCOM, L.P., Columbia, MD, 21046 A requirement was identified for an economical tactical system to lift 1000 lb of electronics payload in the range of 3,000 to 5,000 ft, using an easily transportable mooring system. TCOM’s range of recent designs identified a need for more height and payload capacity from a system with a small logistical footprint similar to that achieved for TCOM’s smaller systems. As a result, the TCOM 28M™ Tactical Aerostat System was developed to not only fill this need, but also to provide a fully integrated system with enhanced payload capability. As a self-contained, rapidly deployable, unmanned lighter-than-air system, it provides midrange altitude capability while utilizing a mooring system mounted on a base which can be readily transported. The weathervaning mooring system features a mooring tower and uses a safe and proven 3-point concept with closehaul and nose line winches for launch and recovery. The high strength tether contains conductors for power and fiber optics for data. The characteristics of this system are presented along with altitude and payload capability. I. Introduction new tethered aerostat design, known as the 28M™ Tactical Aerostat System, provides a stable platform for A payloads operating in what is referred to as the mid range altitudes. The simple design concept is an outgrowth of the TCOM 15M®, 17M®, and 22M™ aerostats, collectively referred as the Tactical Class, which have been previously described1,2. -
The CLIMIX Model a Tool to Create and Evaluate Spatially-Resolved
Renewable and Sustainable Energy Reviews 42 (2015) 1–15 Contents lists available at ScienceDirect Renewable and Sustainable Energy Reviews journal homepage: www.elsevier.com/locate/rser The CLIMIX model: A tool to create and evaluate spatially-resolved scenarios of photovoltaic and wind power development S. Jerez a,b,n, F. Thais c, I. Tobin a, M. Wild d, A. Colette e, P. Yiou a, R. Vautard a a Laboratoire des Sciences du Climat et de l’Environnement (LSCE), IPSL, CEA-CNRS-UVSQ, 91191 Gif sur Yvette, France b Department of Physics, University of Murcia, 30100 Murcia, Spain c Institut de Technico-Economie des Systèmes Energétiques (I-Tésé), CEA/DEN/DANS, 91191 Gif sur Yvette, France d Institute for Atmospheric and Climate Science, ETH Zurich, 8092 Zurich, Switzerland e Institut National de l’Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, 60550 Verneuil en Halatte, France article info abstract Article history: Renewable energies arise as part of both economic development plans and mitigation strategies aimed Received 16 April 2014 at abating climate change. Contrariwise, most renewable energies are potentially vulnerable to climate Received in revised form change, which could affect in particular solar and wind power. Proper evaluations of this two-way 5 August 2014 climate–renewable energy relationship require detailed information of the geographical location of the Accepted 26 September 2014 renewable energy fleets. However, this information is usually provided as total amounts installed per administrative region, especially with respect to future planned installations. To help overcome this Keywords: limiting issue, the objective of this contribution was to develop the so-called CLIMIX model: a tool that Wind power performs a realistic spatial allocation of given amounts of both photovoltaic (PV) and wind power Solar photovoltaic power installed capacities and evaluates the energy generated under varying climate conditions.