Vector Incrimination and Transmission of Avian Malaria at an Aquarium In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Health Risk Assessment for the Introduction of Eastern Wild Turkeys (Meleagris Gallopavo Silvestris) Into Nova Scotia
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Canadian Cooperative Wildlife Health Centre: Wildlife Damage Management, Internet Center Newsletters & Publications for April 2004 Health risk assessment for the introduction of Eastern wild turkeys (Meleagris gallopavo silvestris) into Nova Scotia A.S. Neimanis F.A. Leighton Follow this and additional works at: https://digitalcommons.unl.edu/icwdmccwhcnews Part of the Environmental Sciences Commons Neimanis, A.S. and Leighton, F.A., "Health risk assessment for the introduction of Eastern wild turkeys (Meleagris gallopavo silvestris) into Nova Scotia" (2004). Canadian Cooperative Wildlife Health Centre: Newsletters & Publications. 48. https://digitalcommons.unl.edu/icwdmccwhcnews/48 This Article is brought to you for free and open access by the Wildlife Damage Management, Internet Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Canadian Cooperative Wildlife Health Centre: Newsletters & Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Health risk assessment for the introduction of Eastern wild turkeys (Meleagris gallopavo silvestris) into Nova Scotia A.S. Neimanis and F.A. Leighton 30 April 2004 Canadian Cooperative Wildlife Health Centre Department of Veterinary Pathology Western College of Veterinary Medicine 52 Campus Dr. University of Saskatchewan Saskatoon, SK Canada S7N 5B4 Tel: 306-966-7281 Fax: 306-966-7439 [email protected] [email protected] 1 SUMMARY This health risk assessment evaluates potential health risks associated with a proposed introduction of wild turkeys to the Annapolis Valley of Nova Scotia. The preferred source for the turkeys would be the Province of Ontario, but alternative sources include the northeastern United States from Minnesota eastward and Tennessee northward. -
Multiyear Survey of Coccidia, Cryptosporidia, Microsporidia, Histomona, and Hematozoa in Wild Quail in the Rolling Plains Ecoregion of Texas and Oklahoma, USA
Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Multiyear Survey of Coccidia, Cryptosporidia, Microsporidia, Histomona, and Hematozoa in Wild Quail in the Rolling Plains Ecoregion of Texas and Oklahoma, USA Lixin Xianga,b, Fengguang Guob, Yonglan Yuc, Lacy S. Parsonb, Lloyd LaCosted, Anna Gibsone, Steve M. Presleye, Markus Petersonf, Thomas M. Craigb, Dale Rollinsd,f, Alan M. Fedynichg & Guan Zhub a College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China b Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4467, USA c College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China d Rolling Plains Quail Research Foundation, San Angelo, Texas 76901, USA e Institute of Environmental & Human Health, Texas Tech University, Lubbock, Texas 79416, USA f Department of Wildlife & Fisheries Sciences, Texas A&M University, College Station, Texas 77843-2258, USA g Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, Texas 78363, USA Keywords ABSTRACT Cryptosporidium; molecular epidemiology; northern bobwhite (Colinus virginianus); pro- We developed nested PCR protocols and performed a multiyear survey on the tozoan parasites; scaled quail (Callipepla prevalence of several protozoan parasites in wild northern bobwhite (Colinus squamata). virginianus) and scaled quail (Callipepla squamata) in the Rolling Plains ecore- gion of Texas and Oklahoma (i.e. fecal pellets, bird intestines and blood Correspondence smears collected between 2010 and 2013). Coccidia, cryptosporidia, and G. Zhu, Department of Veterinary Pathobiol- microsporidia were detected in 46.2%, 11.7%, and 44.0% of the samples ogy, College of Veterinary Medicine & (n = 687), whereas histomona and hematozoa were undetected. -
Epidemiology, Diagnosis and Control of Poultry Parasites
FAO Animal Health Manual No. 4 EPIDEMIOLOGY, DIAGNOSIS AND CONTROL OF POULTRY PARASITES Anders Permin Section for Parasitology Institute of Veterinary Microbiology The Royal Veterinary and Agricultural University Copenhagen, Denmark Jorgen W. Hansen FAO Animal Production and Health Division FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1998 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-27 ISBN 92-5-104215-2 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Information Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. C) FAO 1998 PREFACE Poultry products are one of the most important protein sources for man throughout the world and the poultry industry, particularly the commercial production systems have experienced a continuing growth during the last 20-30 years. The traditional extensive rural scavenging systems have not, however seen the same growth and are faced with serious management, nutritional and disease constraints. These include a number of parasites which are widely distributed in developing countries and contributing significantly to the low productivity of backyard flocks. -
Studies on Blood Parasites of Birds in Coles County, Illinois Edward G
Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1968 Studies on Blood Parasites of Birds in Coles County, Illinois Edward G. Fox Eastern Illinois University This research is a product of the graduate program in Zoology at Eastern Illinois University. Find out more about the program. Recommended Citation Fox, Edward G., "Studies on Blood Parasites of Birds in Coles County, Illinois" (1968). Masters Theses. 4148. https://thekeep.eiu.edu/theses/4148 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. PAPER CERTIFICATE #3 To: Graduate Degree Candidates who have written formal theses. Subject: Permission to reproduce theses. The University Library is receiving a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. Please sign one of the following statements. Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings. I respectfully request Booth Library of Eastern Illinois University not allow my thesis be reproduced because------------- Date Author STUDIES CB BLOOD PARA.SIDS 0, BlRDS Xlf COLES COUIITY, tI,JJJIOXI (TITLE) BY Bdward G. iox B. s. -
Effects of Climate and Land Use on Diversity, Prevalence, and Seasonal Transmission of Avian Hematozoa in American Samoa
Technical Report HCSU-072 EFFEcts OF CLIMATE AND LAND USE ON DIVERSITY, PREVALENCE, AND SEASONAL TRANSMISSION OF AVIAN HEMATOZOA IN AMERICAN SAMOA 1 2,3 4 5 Carter T. Atkinson , Ruth B. Utzurrum , Joshua O. Seamon , Mark A. Schmaedick , Dennis A. LaPointe1, Chloe Apelgren2, Ariel N. Egan2, and William Watcher-Weatherwax2 1 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Kīlauea Field Station, P.O. Box 44, Hawai`i National Park, HI 96718 2 Hawai`i Cooperative Studies Unit, University of Hawai`i at Hilo, P. O. Box 44, Hawai`i National Park, HI 96718 3 U.S. Fish and Wildlife Service, Wildlife and Sport Fish Restoration Program, Honolulu, HI 4 Department of Marine and Wildlife Resources, American Samoa Government, Pago Pago, American Samoa 5 Division of Community and Natural Resources, American Samoa Community College, Pago Pago, American Samoa Hawai`i Cooperative Studies Unit University of Hawai`i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 January 2016 This product was prepared under Cooperative Agreement G15AC00191 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey. This article has been peer reviewed and approved for publication consistent with USGS Fundamental Science Practices (http://pubs.usgs.gov/circ/1367/). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. i TABLE OF CONTENTS List of Tables ...................................................................................................................... -
Redalyc.Morphology and Morphometry of Three Plasmodium
Revista Brasileira de Parasitologia Veterinária ISSN: 0103-846X [email protected] Colégio Brasileiro de Parasitologia Veterinária Brasil Elisei, Carina; Fernandes, Kátia, R.; Forlano, Maria D.; Madureira, Renata C.; Scofield, Alessandra; Yotoko, Karla S. C.; Soares, Cleber O.; Ribeiro Araújo, Flábio; Massard, Carlos L. Morphology and morphometry of three Plasmodium juxtanucleare (Apicomplexa: Plasmodiidae) isolates Revista Brasileira de Parasitologia Veterinária, vol. 16, núm. 3, julio-septiembre, 2007, pp. 139-144 Colégio Brasileiro de Parasitologia Veterinária Jaboticabal, Brasil Available in: http://www.redalyc.org/articulo.oa?id=397841463005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative MORPHOLOGY AND MORPHOMETRY OF THREE Plasmodium juxtanucleare (APICOMPLEXA: PLASMODIIDAE) ISOLATES* CARINA ELISEI1; KÁTIA, R. FERNANDES2; MARIA D. FORLANO3; RENATA C. MADUREIRA2; ALESSANDRA SCOFIELD4; KARLA S. C. YOTOKO5; CLEBER O. SOARES1; FLÁBIO RIBEIRO ARAÚJO1; CARLOS L. MASSARD6 ABSTRACT:- ELISEI C.; FERNANDES, K.R.; FORLANO, M.D.; MADUREIRA, R.C.; SCOFIELD, A.; YOTOKO, K.C.; SOARES C.O.; ARAÚJO, F.R.; MASSARD C.L. Morphology and morphometry of three Plasmodium juxtanucleare (Apicomplexa: Plasmodiidae) isolates. [Morfologia e morfometria de três isolados de Plasmodium juxtanucleare (Apicomplexa: Plasmodiidae)]. Revista Brasileira de Parasitologia Veterinária, v. 16, n. 3, p. 139-144, 2007. Laboratório de Biologia Molecular Sanidade Animal, Embrapa Gado de Corte, Campo Grande, MS, Brasil. E-mail: [email protected] In this work, three isolates of Plasmodium juxtanucleare have been analyzed based on morphological, morphometric and parasitic parameters. -
Molecular Characterization of Plasmodium Juxtanucleare in Thai Native Fowls Based on Partial Cytochrome C Oxidase Subunit I Gene
pISSN 2466-1384 eISSN 2466-1392 Korean J Vet Res (2019) 59(2):69~74 https://doi.org/10.14405/kjvr.2019.59.2.69 ORIGINAL ARTICLE Molecular characterization of Plasmodium juxtanucleare in Thai native fowls based on partial cytochrome C oxidase subunit I gene Tawatchai Pohuang1,2, Sucheeva Junnu1,2,* 1Department of Veterinary Medicine, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand 2Research Group for Animal Health Technology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand Abstract: Avian malaria is one of the most important general blood parasites of poultry in Southeast Asia. Plasmodium (P.) juxtanucleare causes avian malaria in wild and domestic fowl. This study aimed to identify and characterize the Plasmodium species infecting in Thai native fowl. Blood samples were collected for microscopic examination, followed by detection of the Plasmodium cox I gene by using PCR. Five of the 10 sampled fowl had the desired 588 base pair amplicons. Sequence analysis of the five amplicons indicated that the nucleotide and amino acid sequences were homologous to each other and were closely related (100% identity) to a P. juxtanucleare strain isolated in Japan (AB250415). Furthermore, the phylogenetic tree of the cox I gene showed that the P. juxtanucleare in this study were grouped together and clustered with the Japan strain. The presence of P. juxtanucleare described in this study is the first report of P. juxtanucleare in the Thai native fowl of Thailand. Keywords: fowl, cytochrome C oxidase subunit I, Plasmodium juxtanucleare Introduction *Corresponding author Avian malaria, caused by Plasmodium spp., is an important blood parasite Sucheeva Junnu disease of poultry because it results in poor meat quality and egg production Department of Veterinary Medicine, [1]. -
Highly Rearranged Mitochondrial Genome in Nycteria Parasites (Haemosporidia) from Bats
Highly rearranged mitochondrial genome in Nycteria parasites (Haemosporidia) from bats Gregory Karadjiana,1,2, Alexandre Hassaninb,1, Benjamin Saintpierrec, Guy-Crispin Gembu Tungalunad, Frederic Arieye, Francisco J. Ayalaf,3, Irene Landaua, and Linda Duvala,3 aUnité Molécules de Communication et Adaptation des Microorganismes (UMR 7245), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS, CP52, 75005 Paris, France; bInstitut de Systématique, Evolution, Biodiversité (UMR 7205), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS, Université Pierre et Marie Curie, CP51, 75005 Paris, France; cUnité de Génétique et Génomique des Insectes Vecteurs (CNRS URA3012), Département de Parasites et Insectes Vecteurs, Institut Pasteur, 75015 Paris, France; dFaculté des Sciences, Université de Kisangani, BP 2012 Kisangani, Democratic Republic of Congo; eLaboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes, Inserm U1016, CNRS UMR 8104, Cochin Institute, 75014 Paris, France; and fDepartment of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697 Contributed by Francisco J. Ayala, July 6, 2016 (sent for review March 18, 2016; reviewed by Sargis Aghayan and Georges Snounou) Haemosporidia parasites have mostly and abundantly been de- and this lack of knowledge limits the understanding of the scribed using mitochondrial genes, and in particular cytochrome evolutionary history of Haemosporidia, in particular their b (cytb). Failure to amplify the mitochondrial cytb gene of Nycteria basal diversification. parasites isolated from Nycteridae bats has been recently reported. Nycteria parasites have been primarily described, based on Bats are hosts to a diverse and profuse array of Haemosporidia traditional taxonomy, in African insectivorous bats of two fami- parasites that remain largely unstudied. -
Highly Rearranged Mitochondrial Genome in Nycteria Parasites (Haemosporidia) from Bats
Highly rearranged mitochondrial genome in Nycteria parasites (Haemosporidia) from bats Gregory Karadjiana,1,2, Alexandre Hassaninb,1, Benjamin Saintpierrec, Guy-Crispin Gembu Tungalunad, Frederic Arieye, Francisco J. Ayalaf,3, Irene Landaua, and Linda Duvala,3 aUnité Molécules de Communication et Adaptation des Microorganismes (UMR 7245), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS, CP52, 75005 Paris, France; bInstitut de Systématique, Evolution, Biodiversité (UMR 7205), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS, Université Pierre et Marie Curie, CP51, 75005 Paris, France; cUnité de Génétique et Génomique des Insectes Vecteurs (CNRS URA3012), Département de Parasites et Insectes Vecteurs, Institut Pasteur, 75015 Paris, France; dFaculté des Sciences, Université de Kisangani, BP 2012 Kisangani, Democratic Republic of Congo; eLaboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes, Inserm U1016, CNRS UMR 8104, Cochin Institute, 75014 Paris, France; and fDepartment of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697 Contributed by Francisco J. Ayala, July 6, 2016 (sent for review March 18, 2016; reviewed by Sargis Aghayan and Georges Snounou) Haemosporidia parasites have mostly and abundantly been de- and this lack of knowledge limits the understanding of the scribed using mitochondrial genes, and in particular cytochrome evolutionary history of Haemosporidia, in particular their b (cytb). Failure to amplify the mitochondrial cytb gene of Nycteria basal diversification. parasites isolated from Nycteridae bats has been recently reported. Nycteria parasites have been primarily described, based on Bats are hosts to a diverse and profuse array of Haemosporidia traditional taxonomy, in African insectivorous bats of two fami- parasites that remain largely unstudied. -
The Phylogenetics of Leucocytozoon Caulleryi Infecting Broiler Chickens in Endemic Areas in Indonesia
Veterinary World, EISSN: 2231-0916 RESEARCH ARTICLE Available at www.veterinaryworld.org/Vol.10/November-2017/7.pdf Open Access The phylogenetics of Leucocytozoon caulleryi infecting broiler chickens in endemic areas in Indonesia Endang Suprihati1 and Wiwik Misaco Yuniarti2 1. Department of Parasitology, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Mulyorejo, Kampus C Unair, Surabaya, 60115, Indonesia; 2. Department of Clinical Science, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Mulyorejo, Kampus C Unair, Surabaya, 60115, Indonesia. Corresponding author: Wiwik Misaco Yuniarti, e-mail: [email protected] Co‑author: ES: [email protected] Received: 13-06-2017, Accepted: 13-10-2017, Published online: 11-11-2017 doi: 10.14202/vetworld. 2017.1324-1328 How to cite this article: Suprihati E, Yuniarti WM (2017) The phylogenetics of Leucocytozoon caulleryi infecting broiler chickens in endemic areas in Indonesia, Veterinary World, 10(11): 1324-1328. Abstract Aim: The objective of this research was to determine the species and strains of Leucocytozoon caulleryi and study the phylogenetics of L. caulleryi of broiler chickens in endemic areas in Indonesia. Materials and Methods: Blood samples were collected from broiler chickens originated from endemic area in Indonesia, i.e., Pasuruan, Lamongan, Blitar, Lumajang, Boyolali, Purwokerto, and Banjarmasin in 2017. Collected blood was used for microscopic examination, sequencing using BLAST method to identify the nucleotide structure of cytochrome b (cyt b) gene that determines the species, and the phylogenetics analysis of L. caulleryi that infected broiler chickens in endemic areas in Indonesia, using Mega 5 software. Results: The results showed that Plasmodium sp. and L. caulleryi were infected broiler chickens in endemic areas in Indonesia. -
Chickens Treated with a Nitric Oxide Inhibitor
Macchi et al. Veterinary Research 2013, 44:8 http://www.veterinaryresearch.org/content/44/1/8 VETERINARY RESEARCH RESEARCH Open Access Chickens treated with a nitric oxide inhibitor became more resistant to Plasmodium gallinaceum infection due to reduced anemia, thrombocytopenia and inflammation Barbarella Matos de Macchi1,2†, Farlen José Bebber Miranda1†, Fernanda Silva de Souza1, Eulógio Carlos Queiroz de Carvalho3, Antônio Peixoto Albernaz4, José Luiz Martins do Nascimento2† and Renato Augusto DaMatta1*† Abstract Malaria is a serious infectious disease caused by parasites of the Plasmodium genus that affect different vertebrate hosts. Severe malaria leads to host death and involves different pathophysiological phenomena such as anemia, thrombocytopenia and inflammation. Nitric oxide (NO) is an important effector molecule in this disease, but little is known about its role in avian malaria models. Plasmodium gallinaceum- infected chickens were treated with aminoguanidine (AG), an inhibitor of inducible nitric oxide synthase, to observe the role of NO in the pathogenesis of this avian model. AG increased the survival of chickens, but also induced higher parasitemia. Treated chickens demonstrated reduced anemia and thrombocytopenia. Moreover, erythrocytes at different stages of maturation, heterophils, monocytes and thrombocytes were infected by Plasmodium gallinaceum and animals presented a generalized leucopenia. Activated leukocytes and thrombocytes with elongated double nuclei were observed in chickens with higher parasitemia; however, -
(Apicomplexa: Plasmodiidae) Isolates*
MORPHOLOGY AND MORPHOMETRY OF THREE Plasmodium juxtanucleare (APICOMPLEXA: PLASMODIIDAE) ISOLATES* CARINA ELISEI1; KÁTIA, R. FERNANDES2; MARIA D. FORLANO3; RENATA C. MADUREIRA2; ALESSANDRA SCOFIELD4; KARLA S. C. YOTOKO5; CLEBER O. SOARES1; FLÁBIO RIBEIRO ARAÚJO1; CARLOS L. MASSARD6 ABSTRACT:- ELISEI C.; FERNANDES, K.R.; FORLANO, M.D.; MADUREIRA, R.C.; SCOFIELD, A.; YOTOKO, K.C.; SOARES C.O.; ARAÚJO, F.R.; MASSARD C.L. Morphology and morphometry of three Plasmodium juxtanucleare (Apicomplexa: Plasmodiidae) isolates. [Morfologia e morfometria de três isolados de Plasmodium juxtanucleare (Apicomplexa: Plasmodiidae)]. Revista Brasileira de Parasitologia Veterinária, v. 16, n. 3, p. 139-144, 2007. Laboratório de Biologia Molecular Sanidade Animal, Embrapa Gado de Corte, Campo Grande, MS, Brasil. E-mail: [email protected] In this work, three isolates of Plasmodium juxtanucleare have been analyzed based on morphological, morphometric and parasitic parameters. Each isolate was sampled from naturally infected adult chicken (Gallus gallus) from rural areas of three Brazilian municipalities: Seropédica (22° 48’ S; 43° 41’ W), in the state of Rio de Janeiro; Cruzeiro (22° 33’ S; 44° 57’ W), in the state of São Paulo; and Santa Bárbara do Tugúrio (21° 15’ S; 43° 27’ W), in the state of Minas Gerais. The blood samples taken from each infected chicken were inoculated in three groups of ten young chicken (21 days old). Blood smears of the experimentally infected chicken were sampled every two days until the 69th day in order to evaluate the parasitemia. For the morphological-descriptive and morphometric analyses, we measured 30 individuals from each of the intraerythocytic states, measures of the major (MD) and minor diameters (md), the estimation of morphometric index (Mi=md/MD) and size (T=pab, a= md/2; b=MD/2).