Prevalence and Pathology of Haemoprotozoan Infection in Chickens A.R

Total Page:16

File Type:pdf, Size:1020Kb

Prevalence and Pathology of Haemoprotozoan Infection in Chickens A.R J. Bangladesh Agri!. Univ. 6(1): 79-85, 2008 ISSN 1810-3030 Prevalence and pathology of haemoprotozoan infection in chickens A.R. Dey, N. Begum, Anisuzzaman and D. Chakraborty Department of Parasitology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh Abstract samples Preva!ence and pathology of haemoprotozoan parasites in chickens were studied by collecting from randomly selected seventy five chickens from different areas of Mymensingh district, during July to December, 2007. In this study, 38 (50.66%) chickens were infected with haemoprotozoa of which 33.33% with Plasmodium sp., 12% with Leucocytozoon caulleryi and 5.33% with Leucocytozoan sabrazesi. The prevalence of haemoprotozoa was relatively higher in female birds (52%) than in male (48%), which was not statistically significant (P>0.05). The calculated odds ratio showed that females were only 1.17 times more susceptible to haemoprotozoan infection than male. However, age of the chickens influenced significantly (P<0.05) the prevalence of haemoprotozoa. Prevalence of haemoprotozoa was relatively higher in adult (>1 year) chickens (59.52%) than the young (<1year) chickens 39.39%. Adults birds were 2.26 times more susceptible to haemoprotozoan infection than young birds. Grossly the affected organs were apparently normal. However, in case of Leucocytozoon sp. Infection, infiltration of reactive cells and edematous fluid were found in interstitial space along with haemorrhages were detected in the alveoli of lung. Few muscle fibers showed large body similar to the schizont of Leucocytozoan sp. Comma shaped gamate of haemoprotozoa were seen in between the cord of hepatocytes in liver. Keywords: Plasmodium sp, Leucocytozoon caulleryi, Leucocytozoon sabrazesi, Pathology, Chickens Introduction Haemoprotozoa, protozoan parasites dwelling in the blood, are one of the important emerging threat in chickens. Although these parasitic problems have not yet been addressed and focused properly in Bangladesh. But many recent studies have been conducted on avian blood parasites in different countries of the world focusing their impact (Bensch et al., 2004; Hellgren et al., 2004; Ricklefs et al., 2005). In one survey 13.6% of backyard chickens in South Carolina were infected with Leucocytozoon caulleryi (Noblet et al., 1976). Haemoproteus (4.8%), Plasmodium (0.6%), Trypanosoma (2.0%) and Leucocytozoon (0.3%) were also reported from northwestern Costa Rica (Valkiunas et al., 2004). In many cases, mortality have been reported in domestic chicken (Garnham, 1966; Bennett et al., 1993 and Valkiunas, 2005). Leucocytozoon caulleryi is especially virulent, infected chickens frequently show severe sign of anorexia, ataxia, anaemia and dyspnea. Infected chicken may die because of haemorrhage which occurs as a result of rupture of megaloschizonts that may develop in all organs and tissues (Garnham, 1966 and Morii, 1992). The Bangkok hemorrhagic disease described by Campbell (1954) in Thailand which was probably due to L. • caulleryi. Plasmodium gallinaceum are most pathogenic for domestic fowl and may cause 90% mortality (Kemp, 1978). The exoerythrocytic stages of Plasmodium gallinaceum may block capillaries in the brain resulting death due to central nervous system dysfunction (Springer, 1997). Splenomegaly, anemia and nephritis have been reported in Plasmodium gallinaceum infection (Melhorn and Heydorn, 1978; Soni and Cox; 1975). Some haemoprotozoan infection has been reported in Bangladesh (Rahman et al. 1982) but detailed study has not yet been performed. In view of the above, the present research work was undertaken to study the prevalence and pathology of haemoprotozoa in chickens in Bangladesh. 80 Prevalence and Pathology of haemoprotozoan infection in chickens Materials and Methods Seventy five chickens were randomly collected from local markets and/or directly from farmer's house of different villages of Mymensingh district, from the period from July to December, 2007.After collection, age, sex, breed and body weight of chickens were recorded. Birds were examined carefully by parting of feathers against their natural direction and simultaneous close inspection to detect clinical signs, if any. Blood samples were collected by puncturing wing vein with the help of a sharp needle. The thin smear film was made immediately after the collection of blood. The smears were then air dried, fixed with absolute acetone free methyl alcohol, stained with Giemsa's stain and air dried (Cable, 1957). The slides were examined under microscope using high power objectives (40X and 100X) for the detection of 'blood protozoa. Identification of haemoprotozoa was based on the morphology as described by Levine (1985), Springer (1997) and Soulsby (1982). After ante- mortem examinations, affected birds were slaughtered and allowed to bleed completely and then routine postmortem examination was performed following the methods described by Fowler (1990). After the opening of thoracic and abdominal cavities, the lung, heart, liver, spleen, kidnies and ovary were examined carefully for the detection of pathological changes if any. Then lungs, liver, kidney and heart muscle were collected and fixed in 10% buffered neutral formalin for histopathological studies. Formalin fixed tissue samples were processed, embedded in wax, blocked, sectioned and stained with Haematoxylin and Eosin stains as per standard method (Luna, 1968). To compare the prevalence of haemoprotozoa in different sex group of chickens paired sample T-test was used (Mostafa, 1989). To determine the level of susceptibility of male and female chickens adds ratio/was calculated accroding to the formulae given by Schesselman (1982). Results and Discussion Prevalence of parasites in chickens: In this study, 38 (50.66%) chickens were affected with haemoprotozoa. A total of 3 species of haemoprotozoa were identified. Among the identified haemoprotozoa, prevalence of Plasmodium sp. was significantly (P<0.05) higher 33.33%, followed by that of Leucocytozoan caulleryi (12%) and Leucocytozoon sabrazesi (5.33%) (Table1). Similar studies were also conducted by Permin et al., (2002) who reported that 32% chickens were infected with haemoprotozoa whereas prevalence of Aegyptinella pullorum was 13% Leucocytozoon sabrazesi 4%, Plasmodium gallinaceum 14% and Trypanosoma sp. 5% in Zimbabwe. In Ghana Poulsen et al., (2000) found that 35% chickens were infected with haemoprotozoa such as: Aegyptianella pullorum (9%) and Plasmodium juxtanucleare (27%). According to Guo0ing et aL, (1998), the diseases were prevalent in Guangdong, Shandong and Fujian in China at the rate of 10.3%, 12.6% and 24.5 respectively in chickens These variation among the -present and previous studies may be due to the differences in climatic condition of the research area, availability of intermediate host, breeds of chicken, management system and methods of study. In this research work, only backyard chickens were included. Management system of the backyard chickens is relatively poor than any other system. Backyard chickens are easily and frequently affected by various arthropods like flies and mosquitoes, many of which act as vector of haemoprotozoa (Levine, 1967). The prevalence of male bird was 48% while in female 52% which was not statistically significant. This is almost similar to the finding of Poulsen et aL, (2000) who reported that there was no significant association between chicken sex and prevalence. The calculated odds ratio showed. that female chickens were 1.17 times more susceptible than the male chicken (Table 2). This result could not be compared due to paucity of relevant literatures. The exact cause of the higher haemoprotozoan infection in female chickens can not be explained. But in general, higher level of prolactine and progesterone suppress the immune system of the Dey et aL 81 individual and make the individual more susceptible to any infection (Lloyd, 1983). It was also revealed that the prevalence young birds ware 39.39% while in adult 59.52% the calculated odds ratio showed that adult were 2.26 times more susceptible than young birds (Table 2). Similar findings were reported by Guo0ing et al., (1998) who reported that in immune agar diffusion test, the positive detection rate of adult birds (10.9%) was much higher than that of young birds (2.8%). In this study, both L. caulleryi and L. sabrazesi were found in lymphocytes and Plasmodium sp. in RBC. In Plasmodium sp. infection, the detected gametocytes within the erytherocyte in Giemsa's stain, were round or irregular in shape with violet color pigmented granules which was present in cytoplasm. The host cell nucleus was displaced towards the peripheri due to the pressure of gametocyte. This description was almost similar to the description of Plasmodium sp. Oiven by Levine (1967) (Fig. 1). In L. caulleryi infection, the gametocyte which was identified within the lymphocyte, was round. The average size was measure 12 to 16p by 14 to 16 p. The nucleus of the host cell formed a narrow dark band extending about one third of the way around the parasite. The description was in the conformity with the descriptions of Leucocytozoon caulleryi given by Levine (1985) (Fig. 2). In L. sabrazesi infection, the appearance of haemoprotozoa which was identified from the peripheral blood of chicken were spindle shaped with long cytoplasmic horns extending beyond the parasites and measuring about 67 by 6,um. The host cell nucleus forms a narrow band along one side of the parasite. The mature gamonts were elongated and about
Recommended publications
  • Health Risk Assessment for the Introduction of Eastern Wild Turkeys (Meleagris Gallopavo Silvestris) Into Nova Scotia
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Canadian Cooperative Wildlife Health Centre: Wildlife Damage Management, Internet Center Newsletters & Publications for April 2004 Health risk assessment for the introduction of Eastern wild turkeys (Meleagris gallopavo silvestris) into Nova Scotia A.S. Neimanis F.A. Leighton Follow this and additional works at: https://digitalcommons.unl.edu/icwdmccwhcnews Part of the Environmental Sciences Commons Neimanis, A.S. and Leighton, F.A., "Health risk assessment for the introduction of Eastern wild turkeys (Meleagris gallopavo silvestris) into Nova Scotia" (2004). Canadian Cooperative Wildlife Health Centre: Newsletters & Publications. 48. https://digitalcommons.unl.edu/icwdmccwhcnews/48 This Article is brought to you for free and open access by the Wildlife Damage Management, Internet Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Canadian Cooperative Wildlife Health Centre: Newsletters & Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Health risk assessment for the introduction of Eastern wild turkeys (Meleagris gallopavo silvestris) into Nova Scotia A.S. Neimanis and F.A. Leighton 30 April 2004 Canadian Cooperative Wildlife Health Centre Department of Veterinary Pathology Western College of Veterinary Medicine 52 Campus Dr. University of Saskatchewan Saskatoon, SK Canada S7N 5B4 Tel: 306-966-7281 Fax: 306-966-7439 [email protected] [email protected] 1 SUMMARY This health risk assessment evaluates potential health risks associated with a proposed introduction of wild turkeys to the Annapolis Valley of Nova Scotia. The preferred source for the turkeys would be the Province of Ontario, but alternative sources include the northeastern United States from Minnesota eastward and Tennessee northward.
    [Show full text]
  • Multiyear Survey of Coccidia, Cryptosporidia, Microsporidia, Histomona, and Hematozoa in Wild Quail in the Rolling Plains Ecoregion of Texas and Oklahoma, USA
    Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Multiyear Survey of Coccidia, Cryptosporidia, Microsporidia, Histomona, and Hematozoa in Wild Quail in the Rolling Plains Ecoregion of Texas and Oklahoma, USA Lixin Xianga,b, Fengguang Guob, Yonglan Yuc, Lacy S. Parsonb, Lloyd LaCosted, Anna Gibsone, Steve M. Presleye, Markus Petersonf, Thomas M. Craigb, Dale Rollinsd,f, Alan M. Fedynichg & Guan Zhub a College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China b Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4467, USA c College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China d Rolling Plains Quail Research Foundation, San Angelo, Texas 76901, USA e Institute of Environmental & Human Health, Texas Tech University, Lubbock, Texas 79416, USA f Department of Wildlife & Fisheries Sciences, Texas A&M University, College Station, Texas 77843-2258, USA g Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, Texas 78363, USA Keywords ABSTRACT Cryptosporidium; molecular epidemiology; northern bobwhite (Colinus virginianus); pro- We developed nested PCR protocols and performed a multiyear survey on the tozoan parasites; scaled quail (Callipepla prevalence of several protozoan parasites in wild northern bobwhite (Colinus squamata). virginianus) and scaled quail (Callipepla squamata) in the Rolling Plains ecore- gion of Texas and Oklahoma (i.e. fecal pellets, bird intestines and blood Correspondence smears collected between 2010 and 2013). Coccidia, cryptosporidia, and G. Zhu, Department of Veterinary Pathobiol- microsporidia were detected in 46.2%, 11.7%, and 44.0% of the samples ogy, College of Veterinary Medicine & (n = 687), whereas histomona and hematozoa were undetected.
    [Show full text]
  • Black-Flies and Leucocytozoon Spp. As Causes of Mortality in Juvenile Great Horned Owls in the Yukon, Canada
    Black-flies and Leucocytozoon spp. as Causes of Mortality in Juvenile Great Horned Owls in the Yukon, Canada D. Bruce Hunter1, Christoph Rohner2, and Doug C. Currie3 ABSTRACT.—Black fly feeding and infection with the blood parasite Leucocytozoon spp. caused mortality in juvenile Great Horned Owls (Bubo virginianus) in the Yukon, Canada during 1989-1990. The mortality occurred during a year of food shortage corresponding with the crash in snowshoe hare (Lepus americanus) populations. We postulate that the occurrence of disease was mediated by reduced food availability. Rohner (1994) evaluated the numerical re- black flies identified from Alaska, USA and the sponse of Great Horned Owls (Bubo virginianus) Yukon Territory, Canada, 36 percent are orni- to the snowshoe hare (Lepus americanus) cycle thophilic, 39 percent mammalophilic and 25 from 1988 to 1993 in the Kluane Lake area of percent autogenous (Currie 1997). Numerous southwestern Yukon, Canada. The survival of female black flies were obtained from the car- juvenile owls was very high during 1989 and casses of the juvenile owls, but only 45 of these 1990, both years of abundant hare populations. were sufficiently well preserved for identifica- Survival decreased in 1991, the first year of the tion. They belonged to four taxa as follows: snowshoe hare population decline (Rohner and Helodon (Distosimulium) pleuralis (Malloch), 1; Hunter 1996). Monitoring of nest sites Helodon (Parahelodon) decemarticulatus combined with tracking of individuals by radio- (Twinn), 3; Simulium (Eusimulium) aureum Fries telemetry provided us with carcasses of 28 ju- complex, 3; and Simulium (Eusimulium) venile owls found dead during 1990 and 1991 canonicolum (Dyar and Shannon) complex, 38 (Rohner and Doyle 1992).
    [Show full text]
  • A New Species of Sarcocystis in the Brain of Two Exotic Birds1
    © Masson, Paris, 1979 Annales de Parasitologie (Paris) 1979, t. 54, n° 4, pp. 393-400 A new species of Sarcocystis in the brain of two exotic birds by P. C. C. GARNHAM, A. J. DUGGAN and R. E. SINDEN * Imperial College Field Station, Ashurst Lodge, Ascot, Berkshire and Wellcome Museum of Medical Science, 183 Euston Road, London N.W.1., England. Summary. Sarcocystis kirmsei sp. nov. is described from the brain of two tropical birds, from Thailand and Panama. Its distinction from Frenkelia is considered in some detail. Résumé. Une espèce nouvelle de Sarcocystis dans le cerveau de deux Oiseaux exotiques. Sarcocystis kirmsei est décrit du cerveau de deux Oiseaux tropicaux de Thaïlande et de Panama. Les critères de distinction entre cette espèce et le genre Frenkelia sont discutés en détail. In 1968, Kirmse (pers. comm.) found a curious parasite in sections of the brain of an unidentified bird which he had been given in Panama. He sent unstained sections to one of us (PCCG) and on examination the parasite was thought to belong to the Toxoplasmatea, either to a species of Sarcocystis or of Frenkelia. A brief description of the infection was made by Tadros (1970) in her thesis for the Ph. D. (London). The slenderness of the cystozoites resembled those of Frenkelia, but the prominent spines on the cyst wall were more like those of Sarcocystis. The distri­ bution of the cystozoites within the cyst is characteristic in that the central portion is practically empty while the outer part consists of numerous pockets of organisms, closely packed together.
    [Show full text]
  • Some Remarks on the Genus Leucocytozoon
    63 SOME REMAKES ON THE GENUS LEUCOCYTOZOON. BY C. M. WENYON, B.SC, M.B., B.S. Protozoologist to the London School of Tropical Medicine. NOTE. A reply to the criticisms contained in Dr Wenyon's paper will be published by Miss Porter in the next number of " Parasitology". A GOOD deal of doubt still exists in many quarters as to the exact meaning of the term Leucocytozoon applied to certain Haematozoa. The term Leucocytozoaire was first used by Danilewsky in writing of certain parasites he had found in the blood of birds. In a later publication he uses the term Leucocytozoon for the same parasites though he does not employ it as a true generic title. In this latter sense it was first employed by Ziemann who named the parasite of an owl Leucocytozoon danilewskyi, thus establishing this parasite the type species of the new genus Leucocytozoon. It is perhaps hardly necessary to mention that Danilewsky and Ziemann both used this name because they considered the parasite in question to inhabit a leucocyte of the bird's blood. There has arisen some doubt as to the exact nature of this host-cell. Some authorities consider it to be a very much altered red blood corpuscle, some perhaps more correctly an immature red blood corpuscle, while others adhere to the original view of Danilewsky as to its leucocytic nature. It must be clearly borne in mind that the nature of the host-cell does not in any way affect the generic name Leucocytozoon. If it could be conclusively proved that the host-cell is in every case a red blood corpuscle the name Leucocytozoon would still remain as the generic title though it would have ceased to be descriptive.
    [Show full text]
  • Epidemiology, Diagnosis and Control of Poultry Parasites
    FAO Animal Health Manual No. 4 EPIDEMIOLOGY, DIAGNOSIS AND CONTROL OF POULTRY PARASITES Anders Permin Section for Parasitology Institute of Veterinary Microbiology The Royal Veterinary and Agricultural University Copenhagen, Denmark Jorgen W. Hansen FAO Animal Production and Health Division FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1998 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-27 ISBN 92-5-104215-2 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Information Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. C) FAO 1998 PREFACE Poultry products are one of the most important protein sources for man throughout the world and the poultry industry, particularly the commercial production systems have experienced a continuing growth during the last 20-30 years. The traditional extensive rural scavenging systems have not, however seen the same growth and are faced with serious management, nutritional and disease constraints. These include a number of parasites which are widely distributed in developing countries and contributing significantly to the low productivity of backyard flocks.
    [Show full text]
  • Studies on Blood Parasites of Birds in Coles County, Illinois Edward G
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1968 Studies on Blood Parasites of Birds in Coles County, Illinois Edward G. Fox Eastern Illinois University This research is a product of the graduate program in Zoology at Eastern Illinois University. Find out more about the program. Recommended Citation Fox, Edward G., "Studies on Blood Parasites of Birds in Coles County, Illinois" (1968). Masters Theses. 4148. https://thekeep.eiu.edu/theses/4148 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. PAPER CERTIFICATE #3 To: Graduate Degree Candidates who have written formal theses. Subject: Permission to reproduce theses. The University Library is receiving a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. Please sign one of the following statements. Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings. I respectfully request Booth Library of Eastern Illinois University not allow my thesis be reproduced because------------- Date Author STUDIES CB BLOOD PARA.SIDS 0, BlRDS Xlf COLES COUIITY, tI,JJJIOXI (TITLE) BY Bdward G. iox B. s.
    [Show full text]
  • List of the Pathogens Intended to Be Controlled Under Section 18 B.E
    (Unofficial Translation) NOTIFICATION OF THE MINISTRY OF PUBLIC HEALTH RE: LIST OF THE PATHOGENS INTENDED TO BE CONTROLLED UNDER SECTION 18 B.E. 2561 (2018) By virtue of the provision pursuant to Section 5 paragraph one, Section 6 (1) and Section 18 of Pathogens and Animal Toxins Act, B.E. 2558 (2015), the Minister of Public Health, with the advice of the Pathogens and Animal Toxins Committee, has therefore issued this notification as follows: Clause 1 This notification is called “Notification of the Ministry of Public Health Re: list of the pathogens intended to be controlled under Section 18, B.E. 2561 (2018).” Clause 2 This Notification shall come into force as from the following date of its publication in the Government Gazette. Clause 3 The Notification of Ministry of Public Health Re: list of the pathogens intended to be controlled under Section 18, B.E. 2560 (2017) shall be cancelled. Clause 4 Define the pathogens codes and such codes shall have the following sequences: (1) English alphabets that used for indicating the type of pathogens are as follows: B stands for Bacteria F stands for fungus V stands for Virus P stands for Parasites T stands for Biological substances that are not Prion R stands for Prion (2) Pathogen risk group (3) Number indicating the sequence of each type of pathogens Clause 5 Pathogens intended to be controlled under Section 18, shall proceed as follows: (1) In the case of being the pathogens that are utilized and subjected to other law, such law shall be complied. (2) Apart from (1), the law on pathogens and animal toxin shall be complied.
    [Show full text]
  • Effects of Climate and Land Use on Diversity, Prevalence, and Seasonal Transmission of Avian Hematozoa in American Samoa
    Technical Report HCSU-072 EFFEcts OF CLIMATE AND LAND USE ON DIVERSITY, PREVALENCE, AND SEASONAL TRANSMISSION OF AVIAN HEMATOZOA IN AMERICAN SAMOA 1 2,3 4 5 Carter T. Atkinson , Ruth B. Utzurrum , Joshua O. Seamon , Mark A. Schmaedick , Dennis A. LaPointe1, Chloe Apelgren2, Ariel N. Egan2, and William Watcher-Weatherwax2 1 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Kīlauea Field Station, P.O. Box 44, Hawai`i National Park, HI 96718 2 Hawai`i Cooperative Studies Unit, University of Hawai`i at Hilo, P. O. Box 44, Hawai`i National Park, HI 96718 3 U.S. Fish and Wildlife Service, Wildlife and Sport Fish Restoration Program, Honolulu, HI 4 Department of Marine and Wildlife Resources, American Samoa Government, Pago Pago, American Samoa 5 Division of Community and Natural Resources, American Samoa Community College, Pago Pago, American Samoa Hawai`i Cooperative Studies Unit University of Hawai`i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 January 2016 This product was prepared under Cooperative Agreement G15AC00191 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey. This article has been peer reviewed and approved for publication consistent with USGS Fundamental Science Practices (http://pubs.usgs.gov/circ/1367/). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. i TABLE OF CONTENTS List of Tables ......................................................................................................................
    [Show full text]
  • University of Exeter an Epidemiological Study Of
    University of Exeter An epidemiological study of haemosporidian infections in blue tits (Cyanistes caeruleus) and great tits (Parus major) along an elevation gradient Impact of avian haemosporidian disease in a changing world Volume 1 Submitted by Jessica Lewis to the University of Exeter as a thesis for the degree of Masters by Research in Biological Sciences in November 2016. This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Contents Glossary of Terms……………………………………………………………………….6-7 Preface Instruction…………………………………………………………………………8 Chapter 1 “Impact of avian haemosporidian disease in a changing world”……………….……………..9 Abstract………………………………………………………………………………….…... 9 Introduction………………………………………………………………………………....10 Diversity of avian haemosporidian parasites………………………………………….... 12 Current knowledge of distribution patterns……………………………………………... 14 Life cycle of avian haemosporidian parasites…………………………………..………. 19 Parasite-vector associations…………………………………………………………….. 21 Stages of Infection……………………………………………………………………..…. 23 Fitness costs associated with avian haemosporidian infection……………………… 25 Environmental and climate change effects…………………………………………….. 34 Assessing climate change impacts on avian haemosporidian
    [Show full text]
  • An Investigation of Leucocytozoon in the Endangered Yellow-Eyed Penguin (Megadyptes Antipodes)
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. An investigation of Leucocytozoon in the endangered yellow-eyed penguin (Megadyptes antipodes) A thesis presented in partial fulfilment of the requirements for the degree of Master of Veterinary Science at Massey University, Turitea, Palmerston North, New Zealand Andrew Gordon Hill 2008 Abstract Yellow-eyed penguins have suffered major population declines and periodic mass mortality without an established cause. On Stewart Island a high incidence of regional chick mortality was associated with infection by a novel Leucocytozoon sp. The prevalence, structure and molecular characteristics of this leucocytozoon sp. were examined in the 2006-07 breeding season. In 2006-07, 100% of chicks (n=32) on the Anglem coast of Stewart Island died prior to fledging. Neonates showed poor growth and died acutely at approximately 10 days old. Clinical signs in older chicks up to 108 days included anaemia, loss of body condition, subcutaneous ecchymotic haemorrhages and sudden death. Infected adults on Stewart Island showed no clinical signs and were in good body condition, suggesting adequate food availability and a potential reservoir source of ongoing infections. A polymerase chain reaction (PCR) survey of blood samples from the South Island, Stewart and Codfish Island found Leucocytozoon infection exclusively on Stewart Island. The prevalence of Leucocytozoon infection in yellow-eyed penguin populations from each island ranged from 0-2.8% (South Island), to 0-21.25% (Codfish Island) and 51.6-97.9% (Stewart Island).
    [Show full text]
  • Redalyc.Morphology and Morphometry of Three Plasmodium
    Revista Brasileira de Parasitologia Veterinária ISSN: 0103-846X [email protected] Colégio Brasileiro de Parasitologia Veterinária Brasil Elisei, Carina; Fernandes, Kátia, R.; Forlano, Maria D.; Madureira, Renata C.; Scofield, Alessandra; Yotoko, Karla S. C.; Soares, Cleber O.; Ribeiro Araújo, Flábio; Massard, Carlos L. Morphology and morphometry of three Plasmodium juxtanucleare (Apicomplexa: Plasmodiidae) isolates Revista Brasileira de Parasitologia Veterinária, vol. 16, núm. 3, julio-septiembre, 2007, pp. 139-144 Colégio Brasileiro de Parasitologia Veterinária Jaboticabal, Brasil Available in: http://www.redalyc.org/articulo.oa?id=397841463005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative MORPHOLOGY AND MORPHOMETRY OF THREE Plasmodium juxtanucleare (APICOMPLEXA: PLASMODIIDAE) ISOLATES* CARINA ELISEI1; KÁTIA, R. FERNANDES2; MARIA D. FORLANO3; RENATA C. MADUREIRA2; ALESSANDRA SCOFIELD4; KARLA S. C. YOTOKO5; CLEBER O. SOARES1; FLÁBIO RIBEIRO ARAÚJO1; CARLOS L. MASSARD6 ABSTRACT:- ELISEI C.; FERNANDES, K.R.; FORLANO, M.D.; MADUREIRA, R.C.; SCOFIELD, A.; YOTOKO, K.C.; SOARES C.O.; ARAÚJO, F.R.; MASSARD C.L. Morphology and morphometry of three Plasmodium juxtanucleare (Apicomplexa: Plasmodiidae) isolates. [Morfologia e morfometria de três isolados de Plasmodium juxtanucleare (Apicomplexa: Plasmodiidae)]. Revista Brasileira de Parasitologia Veterinária, v. 16, n. 3, p. 139-144, 2007. Laboratório de Biologia Molecular Sanidade Animal, Embrapa Gado de Corte, Campo Grande, MS, Brasil. E-mail: [email protected] In this work, three isolates of Plasmodium juxtanucleare have been analyzed based on morphological, morphometric and parasitic parameters.
    [Show full text]