The Status of the Smallmouth Bass Recreational Fishery in Lake Nipissing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Indiana Glaciers.PM6
How the Ice Age Shaped Indiana Jerry Wilson Published by Wilstar Media, www.wilstar.com Indianapolis, Indiana 1 Previiously published as The Topography of Indiana: Ice Age Legacy, © 1988 by Jerry Wilson. Second Edition Copyright © 2008 by Jerry Wilson ALL RIGHTS RESERVED 2 For Aaron and Shana and In Memory of Donna 3 Introduction During the time that I have been a science teacher I have tried to enlist in my students the desire to understand and the ability to reason. Logical reasoning is the surest way to overcome the unknown. The best aid to reasoning effectively is having the knowledge and an understanding of the things that have previ- ously been determined or discovered by others. Having an understanding of the reasons things are the way they are and how they got that way can help an individual to utilize his or her resources more effectively. I want my students to realize that changes that have taken place on the earth in the past have had an effect on them. Why are some towns in Indiana subject to flooding, whereas others are not? Why are cemeteries built on old beach fronts in Northwest Indiana? Why would it be easier to dig a basement in Valparaiso than in Bloomington? These things are a direct result of the glaciers that advanced southward over Indiana during the last Ice Age. The history of the land upon which we live is fascinating. Why are there large granite boulders nested in some of the fields of northern Indiana since Indiana has no granite bedrock? They are known as glacial erratics, or dropstones, and were formed in Canada or the upper Midwest hundreds of millions of years ago. -
Post-Glacial Lake Nipissing Waterworn Assemblages from the Southeastern Huron Basin Area
39 Post-Glacial Lake Nipissing Waterworn Assemblages from the Southeastern Huron Basin Area Chris J. Ellis and D. Brian Deller Artifacts from eight locations in the Thedford embay- of the area is the modern Lake Huron shore which ment area have been modified by the post-glacial waters is lined by a series of well-developed sand dunes of the Lake Nipissing phase prior to about 4000 to 4500 formed on a baymouth bar of the Nipissing phase years ago. The location of these sites relative to other (Cooper 1979:35). Partially because of the encom- inferred pre-Nipissing strandlines in the region and de- tailed external artifact comparisons provide new' infor- passing baymouth bar, drainage of the area is poor mation on the age and sequence of early preceramic and prior to modern alterations designed to make occupations in the lower Great Lakes. the area suitable for market gardening, the area was predominantly low and marshy and contained a Introduction small lake (Smith Lake). The major drainage through the area today is the Ausable River and its While the general trend in the lower Great Lakes tributaries such as Parkhill Creek (Fig. 2). throughout much of the earlier part of the post- The sequence of pro- and post-glacial lake level glacial sequence was for water levels to be much changes throughout the Great Lakes is a complex lower than modern lake levels, the Nipissing trans- one and the southern Huron basin is no exception. gression of circa 5000 BP was an exception. At By about 12,500 years ago, the Warren series of that time, water levels rose to a height above the pro-glacial lakes had formed between the Wyoming modern Lakes Huron-Michigan levels and inun- Moraine south of the study area and the retreating dated a number of sites ranging from Paleo-Indian ice-sheet (Fig. -
Table of Contents. Letter of Transmittal. Officers 1910
TWELFTH REPORT OFFICERS 1910-1911. OF President, F. G. NOVY, Ann Arbor. THE MICHIGAN ACADEMY OF SCIENCE Secretary-Treasurer, GEO. D. SHAFER, East Lansing. Librarian, A. G. RUTHVEN, Ann Arbor. CONTAINING AN ACCOUNT OF THE ANNUAL MEETING VICE-PRESIDENTS. HELD AT Agriculture, CHARLES E. MARSHALL, East Lansing. Geography and Geology, W. H. SHERZER, Ypsilanti. ANN ARBOR, MARCH 31, APRIL 1 AND 2, 1910. Zoology, A. S. PEARSE, Ann Arbor. Botany, C. H. KAUFFMAN, Ann Arbor. PREPARED UNDER THE DIRECTION OF THE Sanitary and Medical Science, GUY KIEFER, Detroit. COUNCIL Economics, H. S. SMALLEY, Ann Arbor. BY PAST-PRESIDENTS. GEO. D. SHAFER DR. W. J. BEAL, East Lansing. Professor W. H. SHERZER, Ypsilanti. BRYANT WALKER, ESQ. Detroit. BY AUTHORITY Professor V. M. SPALDING, Tucson, Arizona. LANSING, MICHIGAN DR. HENRY B. BAKER, Holland. WYNKOOP HALLENBECK CRAWFORD CO., STATE PRINTERS Professor JACOB REIGHARD, Ann Arbor. 1910 Professor CHARLES E. BARR, Albion. Professor V. C. VAUGHAN, Ann Arbor. Professor F. C. NEWCOMBE, Ann Arbor. TABLE OF CONTENTS. DR. A. C. LANE, Tuft's College, Mass. Professor W. B. BARROWS, East Lansing. DR. J. B. POLLOCK, Ann Arbor. Letter of Transmittal .......................................................... 1 Professor M. H. W. JEFFERSON, Ypsilanti. DR. CHARLES E. MARSHALL, East Lansing. Officers for 1910-1911. ..................................................... 1 Professor FRANK LEVERETT, Ann Arbor. Life of William Smith Sayer. .............................................. 1 COUNCIL. Life of Charles Fay Wheeler.............................................. 2 The Council is composed of the above named officers Papers published in this report: and all Resident Past-Presidents. President's Address—Outline of the History of the Great Lakes, Frank Leverett.......................................... 3 On the Glacial Origin of the Huronian Rocks of WILLIAM SMITH SAYER. -
FINAL GEOLOGIC REPORT Emerged
although the conditions of extreme chaos anticipated were not encountered. Geological exploration has established the solidarity of bedrock underlying the Straits of Mackinac and its adequacy to support the comparatively modest loads that will be imposed by the structure. D. B. STEINMAN, CONSULTING ENGINEER MACKINAC BRIDGE Some 300-400 million years ago in early to mid- Devonian time, the land mass in the area of the Straits FINAL GEOLOGIC REPORT emerged. This pseudo-uplift, due to the retreat of the Devonian sea, quickened ground water movement and Jack C. Rosenau thereby, leaching of the salt beds of the Salina Resident Geologist Formation of the Silurian Period. As a result of the April 20, 1956 leaching, two important geological formations came into being: (1) the brine water worked its way into the Michigan Basin and deposited the upper salt beds of the Introduction Detroit River Formation, and (2) the solution of large quantities of rock salt left great voids or cavernous areas The Straits of Mackinac is a 70-mile connecting link with an overlying rock mass of shales, limestones, between Lakes Michigan and Huron; its width at the site dolomites, cherts, sandy shales and gypsum or of the Mackinac Bridge is 4 miles and its depth is known anhydrite. These deposits are the Salina (Pointe Aux to be at least 290 feet below lake level (578.5’ USLS, Chenes) and Bass Island (St. Ignace) Formations of the MLWD). The greatest depth to rock is more than 350 Silurian age and the Garden Island, Bois Blanc and feet and is located about mid-stream. -
Geology of Michigan and the Great Lakes
35133_Geo_Michigan_Cover.qxd 11/13/07 10:26 AM Page 1 “The Geology of Michigan and the Great Lakes” is written to augment any introductory earth science, environmental geology, geologic, or geographic course offering, and is designed to introduce students in Michigan and the Great Lakes to important regional geologic concepts and events. Although Michigan’s geologic past spans the Precambrian through the Holocene, much of the rock record, Pennsylvanian through Pliocene, is miss- ing. Glacial events during the Pleistocene removed these rocks. However, these same glacial events left behind a rich legacy of surficial deposits, various landscape features, lakes, and rivers. Michigan is one of the most scenic states in the nation, providing numerous recre- ational opportunities to inhabitants and visitors alike. Geology of the region has also played an important, and often controlling, role in the pattern of settlement and ongoing economic development of the state. Vital resources such as iron ore, copper, gypsum, salt, oil, and gas have greatly contributed to Michigan’s growth and industrial might. Ample supplies of high-quality water support a vibrant population and strong industrial base throughout the Great Lakes region. These water supplies are now becoming increasingly important in light of modern economic growth and population demands. This text introduces the student to the geology of Michigan and the Great Lakes region. It begins with the Precambrian basement terrains as they relate to plate tectonic events. It describes Paleozoic clastic and carbonate rocks, restricted basin salts, and Niagaran pinnacle reefs. Quaternary glacial events and the development of today’s modern landscapes are also discussed. -
LAKES of the HURON BASIN: THEIR RECORD of RUNOFF from the LAURENTIDE ICE Sheetq[
Quaterna~ ScienceReviews, Vol. 13, pp. 891-922, 1994. t Pergamon Copyright © 1995 Elsevier Science Ltd. Printed in Great Britain. All rights reserved. 0277-3791/94 $26.00 0277-3791 (94)00126-X LAKES OF THE HURON BASIN: THEIR RECORD OF RUNOFF FROM THE LAURENTIDE ICE SHEETq[ C.F. MICHAEL LEWIS,* THEODORE C. MOORE, JR,t~: DAVID K. REA, DAVID L. DETTMAN,$ ALISON M. SMITH§ and LARRY A. MAYERII *Geological Survey of Canada, Box 1006, Dartmouth, N.S., Canada B2 Y 4A2 tCenter for Great Lakes and Aquatic Sciences, University of Michigan, Ann Arbor, MI 48109, U.S.A. ::Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109, U.S.A. §Department of Geology, Kent State University, Kent, 0H44242, U.S.A. IIDepartment of Geomatics and Survey Engineering, University of New Brunswick, Fredericton, N.B., Canada E3B 5A3 Abstract--The 189'000 km2 Hur°n basin is central in the catchment area °f the present Q S R Lanrentian Great Lakes that now drain via the St. Lawrence River to the North Atlantic Ocean. During deglaciation from 21-7.5 ka BP, and owing to the interactions of ice margin positions, crustal rebound and regional topography, this basin was much more widely connected hydrologi- cally, draining by various routes to the Gulf of Mexico and Atlantic Ocean, and receiving over- ~ flows from lakes impounded north and west of the Great Lakes-Hudson Bay drainage divide. /~ Early ice-marginal lakes formed by impoundment between the Laurentide Ice Sheet and the southern margin of the basin during recessions to interstadial positions at 15.5 and 13.2 ka BE In ~ ~i each of these recessions, lake drainage was initially southward to the Mississippi River and Gulf of ~ Mexico. -
A Multi-Proxy Reconstruction of Environmental Change in the Vicinity of the North Bay Outlet of Pro-Glacial Lake Algonquin
Rabett, RJ, et al. 2019. A Multi-Proxy Reconstruction of Environmental Change in the Vicinity of the North Bay Outlet of Pro-Glacial Lake Algonquin. Open Quaternary, 5: 12, pp. 1–27. DOI: https://doi.org/10.5334/oq.54 RESEARCH PAPER A Multi-Proxy Reconstruction of Environmental Change in the Vicinity of the North Bay Outlet of Pro-Glacial Lake Algonquin Ryan J. Rabett*, Alexander J. E. Pryor†, David J. Simpson*, Lucy R. Farr‡, Sean Pyne-O’Donnell*, Maarten Blaauw*, Simon Crowhurst§, Riley P. M. Mulligan‖, Christopher O. Hunt¶, Rhiannon Stevens**, Marta Fiacconi¶, David Beresford-Jones‡ and Paul F. Karrow†† We present a multi-proxy study of environmental conditions during and after the recessional phases of pro-glacial Lake Algonquin in the vicinity of the North Bay outlet, Great Lakes Basin. Data presented comes from a new sedimentary profile obtained from the Balsam Creek kettle lakec . 34 km north-east of the city of North Bay. This site lies close to the north-east margin of the maximum extent of the post-Algonquin lake sequence, which drained through the Ottawa-Mattawa valley system. Our data are presented against a Bayesian age-depth model, supporting and extending regional understanding of vegetation succession in this part of north-east Ontario. The core profile provides a minimum age for the formation of the glacial outwash delta in which the kettle is set, as well as tentative timing for the Payette (post-Algonquin) lake phase. We highlight two discrete intervals during the Early Holocene, with modelled mean ages of: 8475–8040 cal. BP (332–316 cm) and 7645 cal. -
Importance of Archaeology Re Species at Risk American Eel. Draft 3 2007 10 21
Allen Importance of Archaeology re Species at Risk: Eel Focus 1 The Importance of Archaeology in Understanding Species at Risk: The American eel as a Case in Point The Ontario Archaeological Society 2007 Symposium Either Side of Contact Kingston, Ontario November 3, 2007 William Arthur Allen (P1: Title Page: Ancestor Reflection, Algonquin Park ) Good morning: - Before I begin let me acknowledge the leadership and foresight of Chris Andersen whose early and continuing work with traditional Aboriginal use of eels continues to inspire and to provide positive influence on the archaeological community in Ontario. Thanks for a job well done, Chris. - I dedicate my own presentation today to Tessouat, that shrewd Algonquin Chief who, at the time of European contact 400 years ago, controlled the flow of trade on the Ottawa River from his base on Allumette Island where a stone weir complex allowed harvest of the most significant numbers of American eels now known in archaeological context in Eastern Canada (C&C 2003 etc,; DCB, http://www.biographi.ca) (P2:Stone Weir). I have a story. The purpose of the story is to show some opportunities for archaeology in light of Ontario’s new Endangered Species Act. The American eel (Anguilla rostrata in Latin or Pimizi in Anishinaabemowin) is the species of choice to illustrate this opportunity. (Appendix 1; McGregor 2004:99; Baraga 1878:85; Baraga 1880:83). The story flows from my background as a researcher of fish weir structures and adjacent sites, as a SCUBA diver (P3: Allen & Turtle) , as a policy analyst who studies the impact of dams on the migratory movements of the eel and as a person who works extensively with Aboriginal people. -
Open Dunes Community Abstract
Open dunes Community Abstract State Distribution Photo by Dennis A. Albert. Global and state rank: G3/S5 dunes, generally reducing the amount of upland conifer dominance. Many exotic plants are introduced as a result Common names: Great Lakes beachgrass dune. Other of residential development (Leege 1997, Comer and Albert communities of the dunes include Great Lakes dune pine 1991, 1993). These exotics are a major source of forest, Great Lakes pine barrens, Great Lakes juniper dune degradation, disrupting normal dune migration, causing shrubland. dune stabilization, and often replacing native plant species. Range: Open dunes are biologically distinct geological Landscape context: Great Lakes dunes are relatively features associated with the Laurentian Great Lakes and young, as the Great Lakes were occupied by ice until other large inland lakes, as well as the shorelines of many approximately 16,000 years ago. The dune sands are oceans and seas. Those along the Laurentian Great Lakes derived from glacial sediments, including lacustrine and are distinguished from other coastal dunes by a distinctive outwash sands and sandy tills (Dorr and Eschman 1970). Great Lakes flora and fauna, although some plant species Most of our larger dune complexes are associated with the are shared with dunes of the Pacific Northwest Lake Nipissing stage of the Great Lakes, when water (Wiedemann 1984). Great Lakes open dunes occur in levels were 25 to 30 feet higher than present day lake Illinois, Indiana, Michigan, New York, Pennsylvania, levels (Dorr and Eschman 1970). These higher lake levels Wisconsin, and in the Canadian province of Ontario. resulted in greater amounts of coastal erosion and dune Small, isolated dune areas also occur on the shores of Lake formation. -
Dialogue with the Elders
Dbaajmoowin: Dialogue with the Elders William Arthur Allen, Heritage One, 9 First Avenue, Box 85, Burk’s Falls, ON P0A 1CO Canada; [email protected] I have a story. It is about relationship, shared experience, the role of story, and the importance of traditional language in dialogue, Dbaajmoowin, with Native American elders. My story features the Algonquin Dome, the region of Ontario between the Ottawa River and Georgian Bay of Lake Huron, land which was occupied in pre-European contact times by Algonquian-speaking people. Just two hours drive south of the Algonquin Dome, over eight million people live in Ontario’s Golden Horseshoe, a metropolitan area centered on the city of Toronto. Fully one-quarter of Canada’s total population lives in the Golden Horseshoe. This demographic has required rethinking the protection plan for significant portions of the Algonquin Dome. At the beginning of the 17th century the Great Lakes region was unknown to Euro- peans. As the century proceeded the French moved further inland, almost always with native guides. The main canoe route westward toward Lake Superior from Montreal was up the Ottawa River, through Lake Nipissing and down the river that came to be known as the French River. That section of the route forms the northern boundary of the Algonquin Dome. The dome, shaped like a huge turtle shell in the middle of central Ontario, has short rivers running to the north and long rivers running eastwardly to the Ottawa. Several short rivers flow southward across “The Land Between” rock barrens and limestone alvars and on to Lake Ontario. -
Township of Nipissing Community Profile
COMMUNITY PROFILE 2008 (Revised August, 2011) 45 BEATTY STREET NIPISSING ONTARIO P0H 1W0 Phone 705-724-2144 Fax 705-724-5385 Email: [email protected] Web Site: www.nipissingtownship.com Township of Nipissing Table of Contents Message From the Mayor and Council ........................................................................................ 1 From the Office of the Mayor .................................................................................................... 1 From Dave Yemm, Operations Superintendent ........................................................................ 2 From Jeff Peppin, Chief Building Official .................................................................................. 2 Distance From Centres and Location Map ................................................................................. 3 A Brief History of the Township of Nipissing ............................................................................. 4 The Township of Nipissing Community Profile .......................................................................... 5 Staff ................................................................................................................................................. 5 Planning Assist./CEMC/EDO .................................................................................................... 6 Transportation ............................................................................................................................... 7 Bus ........................................................................................................................................... -
UNIVERSITY of TORONTO STUDIES PUBLICATIONS of the ONTARIO FISHERIES RESEARCH LABORATORY No
UNIVERSITY OF TORONTO STUDIES PUBLICATIONS OF THE ONTARIO FISHERIES RESEARCH LABORATORY No. 10 GLACIAL AND POST-GLACIAL LAKES IN ONTARIO BY A. P. COLEMAN TORONTO THE UNIVERSITY LIBRARY 1922 LIST OF ILLUSTRATIONS PAGE 1. SECTION ACROSS THE PALAEOZOIC BOUNDARY - 7 2. ESCARPMENT AT HAMILTON 7 3. MAP OF THE LAURENTIAN RIVER 11 4. MAP OF LAKE ALGONQUIN - 21 5. MAP OF NIPISSING GREAT LAKES - 35 6. NIPISSING BEACHES AT BRULE 37 7. MAP OF LAKE OJIBWAY - 41 8. MAP OF LAKE IROQUOIS 46 9. IROQUOIS SHORE, SCARBOROUGH 47 10. IROQUOIS GRAVEL BAR, EAST TORONTO - 48 11. MAP OF ADMIRALTY LAKE 50 12. MAP OF MAXIMUM MARINE INVASION 53 13. DUTCH CHURCH IN 1900- 67 14. DUTCH CHURCH IN 1915 - 67 15. MAP OF SHORE AND ISLAND AT TORONTO 68 , GLACIAL A D POST-GLACIALLAKES IN a TARIO Introduction The following paper has been prepared in collaboration with the Department of Biology of the University of Toronto, members of the staff of which are now engaged on a plan of investigation of the economic fishery problems of Ontario waters. Present conditions relating to the existence and dis- tribution of the fishes and other aquatic organisms obviously depend upon the succession of physical changes which have taken place during the past, but in the case of the Great Lakes and related waters the transition is especially import- ant, not only because of the enormous area affected but also because the most significant changes took place in the period immediately preceding the present one, and, centering in the northern continental region, involved great extremes of both temperature and physical modification of the land surface.