Agilent 89441A Vector Signal Analyzer Dc to 2.65 Ghz Data Sheet

Total Page:16

File Type:pdf, Size:1020Kb

Agilent 89441A Vector Signal Analyzer Dc to 2.65 Ghz Data Sheet Agilent 89441A Vector Signal Analyzer dc to 2.65 GHz Data Sheet Definitions Introduction Analog demodulation mode = Measurements with AM, Specifications describe warranted performance PM, and FM demodulation capabilities. over the temperature range of 0° to 45°C (except where noted) and include a 30-minute warm-up Baseband = dc to 10 MHz measurements. from ambient conditions, automatic calibrations enabled, auto-zero on, time domain calibration off, Baseband time = Time-domain measurements selected and anti-alias filter in, unless noted otherwise. by setting start frequency to exactly 0 Hz or choos- Supplemental characteristics identified as “typical” ing full span in 0 to 10 MHz measurements. or “characteristic” provide useful information by giving non-warranted performance parameters. dBc = dB relative to input signal level. Typical performance is applicable from 20° to 30°C. When enabled, automatic calibrations are periodi- dBfs = dB relative to full scale amplitude range cally performed to compensate for the effects of setting. Full scale is approximately 2 dB below temperature and time sensitivities. During the cali- ADC overload. bration, no signals > 0 dBm should be connected to the front panel inputs. FS or fs = Full scale; synonymous with amplitude range or input range. Feature summary RBW = Resolution bandwidth. Frequency dc to 2.650 GHz RF = 2 MHz to 2.65 GHz measurements. 51 to 3201 points Center frequency signal-tracking Scalar mode = Measurements with only frequency- Instrument modes domain analysis available. Frequency spans up to Scalar (frequency-domain only) 2648 MHz. Vector (amplitude and phase information in frequency and time domain and also SNR = Signal to noise ratio. time gating) Analog demodulation (AM/FM/PM) Vector mode = Measurements with frequency- and Sweep types time-domain capabilities. Frequency spans up to Continuous Manual 10 MHz in baseband, and 7 MHz for RF analysis Single (8 MHz with Option 89441A-AYH). Zoom time = Time-domain measurements selected by setting frequency parameters using center fre- quency and span values. Agilent 89441A technical data – feature summary Triggering Markers Free run External Marker search: Peak, next peak, next peak right, Input channel External arm next peak, left, minimum IF channel Programmable polarity Marker to: Center frequency, reference level, start Internal source and level frequency, stop frequency GPIB Pre and post delay Offset markers Trigger holdoff Couple markers between traces Marker functions: Peak track, frequency counter, band Averaging power (frequency, time, or demodulation Video Peak hold results), peak/average statistics Video exponential Simultaneous display of Time instantaneous and Time exponential average spectrum Memory and data-storage Disk devices Source types Nonvolatile RAM disk (100 Kbyte) CW Periodic chirp Volatile RAM disk (up to 20 Mbyte) Random noise Arbitrary (up to 8192 points) 90 mm (3.5-inch) 1.44 Mbyte flexible disk (LIF or MS-DOS® formats) Input External GPIB disk One channel Disk format and file delete, rename, and copy Second 10 MHz input channel (optional) Nonvolatile clock with time/date Auto-ranging (baseband only) Save/recall of: Trace data, instrument states, trace Overload indicators math functions, Instrument BASIC program, 50/75/1M Ω BNC (dc to 10 MHz) time-capture buffers 50 Ω Type-N, 75 Ω with minimum-loss pad (2 MHz to 2650 MHz) Online help Hard copy output Resolution/window shapes GPIB/HPGL plotters 1-3-10 bandwidth steps GPIB/RS-232/parallel printers Arbitrary RBW Plot to file Windows: Flat-top (high amplitude accuracy), Time stamp Gaussian-top (high dynamic range), Hanning Single-plot spooling (high frequency resolution), Uniform Detectors: normal, positive peak, sample Interfaces Measurement data GPIB (IEEE 488.1 and 488.2) Spectrum Time capture External reference in/out PSD Frequency response, External PC-style keyboard Main time coherence, cross Active probe power Gate time spectrum, and cross RS-232 (one port) Math function correlation (with second Centronics Data register 10 MHz input channel) LAN and second GPIB Auto correlation Instantaneous spectrum Standard data format utilities Data format Log magnitude Imaginary part Linear magnitude Group delay Optional features Phase (wrap or unwrap) Log/linear x-axis Second 10 MHz input channel (Option 89441A-AY7) Real part Extend time capture to 1 MSample (Option 89441A-AY9) Trace math Internal RF source (Option 89441A-AY8) Instrument BASIC (Option 89441A-1C2) Display Vector modulation analysis (Option 89441A-AYA) Digital video modulation analysis (Option 1, 2, or 4 grids 89441A-AYH) 1 to 4 traces displayed (single or overlay) Waterfall and spectrogram (Option 89441A-AYB) Auto-scaling Advanced LAN support (Option 89441A-UG7) Color (user definable) 3GPP W-CDMA analysis, includes code domain User trace title and information power (Option 89441A-080) Graticule on/off W-CDMA code domain power for exper. sys. Data label blanking (Option 89441A-B73) X-axis scaling ARIB 1.0-1.2 W-CDMA analysis (Option 89441A-B79) Instrument/Measurement state displays Enhanced data rates for GSM evol. (EDGE) External monitor (Option 89441A-B7A) 2 Agilent 89441A technical data – RF RF specifications apply with the receiver mode set Stability (spectral purity) (with standard high- to “RF section (2–2650 MHz).” precision frequency reference or equivalent with ≥ 5 dBm level) Frequency Phase noise (absolute and residual): Frequency tuning F ≤ 200 MHz Frequency range 2 MHz to 2650 MHz in 100 Hz offset < –103 dBc/Hz Frequency span 1 kHz offset < –112 dBc/Hz Scalar mode 1 Hz to 2648 MHz ≥ 10 kHz offset < –116 dBc/Hz Vector mode 1 Hz to 7 MHz (8 MHz with Option 89441A-AYH) 200 MHz ≤ F ≤ 1 GHz Center frequency tuning in 100 Hz offset < –96 dBc/Hz resolution 0.001 Hz 1 kHz offset < –104 dBc/Hz Number of frequency ≥ 10 kHz offset < –116 dBc/Hz points/span 51 to 3201 1 GHz ≤ F ≤ 2650 MHz Signal track (when enabled) keeps the largest in 100 Hz offset < –87 dBc/Hz measured signal at the center frequency. 1 kHz offset < –97 dBc/Hz Frequency accuracy (with standard high-precision ≥ 10 kHz offset < –116 dBc/Hz frequency reference) Frequency accuracy is the sum of initial accuracy, LO spurious sidebands aging, and temperature drift. Offset > 1 kHz < –75 dBc Offset ≤ 1 kHz Initial accuracy ±0.1 ppm f ≤ 2 GHz < –70 dBc Aging ±0.015 ppm/month in f > 2 GHz < –68 dBc Temperature drift ±0.005 ppm (0° to 55°C) in Frequency counter The frequency counter operates in scalar or vector mode. Frequency counter accuracy: Total accuracy is the sum of the frequency counter’s basic accuracy and the instrument’s frequency accuracy. Conditions/exceptions: Signal-to-noise ratio within resolution bandwidth, 20 dB minimum 1 Marker within ⁄2 resolution bandwidth of peak Unspecified for uniform window and resolution bandwidth < 5 Hz Spectral purity at 1 GHz Frequency counter basic accuracy 3 Agilent 89441A technical data – RF Resolution bandwidth Amplitude Range 312.5 µHz to 3 MHz in 1, 3, 10 Input range –50 dBm to +25 dBm sequence or arbitrary user-definable (5 dB steps) bandwidth Maximum safe input power Note: In scalar mode, the minimum resolution Average continuous +25 dBm (300 mW) bandwidth is 312.5 µHz and the maximum resolu- power tion bandwidth is a function of span. In vector DC voltage 25 V mode, the minimum resolution bandwidth is a function of span and the number of frequency A/D overload level > 1.5 dB above range points, and the maximum resolution bandwidth (typical) is a function of span only. Input port Passband Sideband Input channels 1 Window Selectivity1 flatness level VSWR Flat-top 2.45:1 + 0, –0.01 dB –95 dBc Range ≥ – 20 dBm 1.6:1 (12.7 dB return loss) Range ≤ –25 dBm 1.8:1 (11 dB return loss) Gaussian-top 4.0:1 + 0, –0.68 dB –125 dBc Impedance 50 Ω (75 Ω with minimum- Hanning 9.1:1 + 0, –1.5 dB –32 dBc loss pad Option Uniform 716:1 + 0, –4 dB –13 dBc 89441A-1D7) 1. Shape factor or ratio of –60 dB to –3 dB bandwidths. Connector Type-N Amplitude accuracy Accuracy specifications apply with flat-top window selected. Amplitude accuracy is the sum of absolute full-scale accuracy and amplitude linearity. Absolute full-scale accuracy (with signal level equal to range) 20° – 30°C 0° – 55°C ≥ –25 dBm range ±1 dB ±2 dB (0.5 dB typical) ≤ –30 dBm range ±1.5 dB ±3 dB (0.5 dB typical) Amplitude linearity 0 to –30 dBfs < 0.10 dB –30 to –50 dBfs < 0.15 dB –50 to –70 dBfs < 0.20 dB In vector mode, relative level accuracy within a single span is the sum of vector mode frequency response and amplitude linearity. Vector mode frequency response ±0.4 dB (relative to the center frequency) 4 Agilent 89441A technical data – RF Dynamic range Phase (vector mode) Dynamic range indicates the amplitude range that Phase specifications apply with flat-top window is free of erroneous signals within the measure- selected. ment bandwidth. Deviation from linear phase (relative to best Harmonic distortion (with a single full scale signal fit line with peak signal level within 6 dB of at the input) full scale): ±5 deg ≥ –25 dBm range < –75 dBc ≤ –30 dBm range < –54 dBc Time (vector mode) Time-sample resolution = 1/(k*span(Hz)) [second]; Third-order intermodulation < –75 dBc where k = 1.28 for zoom time. distortion (with two input tones at 6 dB below full scale and ≥ 10 MHz) Main time length = (number of frequency points – 1) ÷ span (Hz) [second]; for resolution bandwidth General spurious (with input signal level equal to in arbitrary and auto-coupled mode. range and input frequency ≤ 2650 MHz) For spans ≤ 1.5 MHz and for < –75
Recommended publications
  • Spectrum Management Technical Handbook
    NTIA TN 89-2 SPECTRUM MANAGEMENT TECHNICAL HANDBOOK TECHNICAL NOTE SERIES NTIA TECHNICAL NOTE 89-2 SPECTRUM MANAGEMENT TECHNICAL HANDBOOK l U.S. DEPARTMENT OF COMMERCE Robert A. Mosbacher, Secretary Alfred C. Sikes, Assistant Secretary for Communications and Information JULY 1989 ACKNOWLEDGEMENT NT IA acknowledges the efforts of Mark Schellhammer in the completion of Phase I of this handbook (Sections 1-3). Other portions will be added as resources are available. ABSTRACT This handbook is a compilation of the procedures, definitions, relationships and conversions essential to electromagnetic compatibility analysis. It is intended as a reference for NTIA engineers. KEY WORDS CONVERSION FACTORS COUPLING EQUATIONS DEFINITIONS ·TECHNICAL RELATIONSHIPS iii TABLE OF CONTENTS Subsection Page SECTION 1 TECHNICAL TERMS:DEFINITIONS AND NOTATION TERMS AND DEFINITIONS . .. .. 1-1 GLOSSARY OF STANDARD NOTATION . .. 1-13 SECTION 2 TECHNICAL RELATIONSHIPS AND CONVERSION FACTORS INTRODUCTION . .. .. .. 2-1 TRANSMISSION LOSS FOR RADIO LINKS . �. .. .. 2-1 Propagation Loss . .. .. .. 2-1 Transmission Loss ........................................ 2-2 Free-Space Basic Transmission Loss .......................... 2-2 Basic Transmission Loss .................................... 2-2 Loss Relative to Free-Space .................................. 2-2 System Loss . .. 2-3 ; Total Loss . .. .. 2-3 ANTENNA CHARACTERISTICS . .. 2-3 Antenna Directivity ........................................ 2-3 Antenna Gain and Efficiency .................................. 2-3 I
    [Show full text]
  • Model HR-ADC1 Analog to Digital Audio Converter
    HALF-RACK SERIES Model HR-ADC1 Analog to Digital Audio Converter • Broadcast Quality Analog to Digital Audio Conversion • Peak Metering with Selectable Hold or Peak Store Modes • Inputs: Balanced and Unbalanced Stereo Audio • Operation Up to 24 bits, 192 kHz • Output: AES/EBU, Coaxial S/PDIF, AES-3ID • Selectable Internally Generated Sample Rate and Bit Depth • External Sync Inputs: AES/EBU, Coaxial S/PDIF, AES-3ID • Front-Panel External Sync Enable Selector and Indicator • Adjustable Audio Input Gain Trim • Sample Rate, Bit Depth, External Sync Lock Indicators • Peak or Average Ballistic Metering with Selectable 0 dB Reference • Transformer Isolated AES/EBU Output The HR-ADC1 is an RDL HALF-RACK product, featuring an all metal chassis and the advanced circuitry for which RDL products are known. HALF-RACKs may be operated free-standing using the included feet or may be conveniently rack mounted using available rack-mount adapters. APPLICATION: The HR-ADC1 is a broadcast quality A/D converter that provides exceptional audio accuracy and clarity with any audio source or style. Superior analog performance fine tuned through audiophile listening practices produces very low distortion (0.0006%), exceedingly low noise (-135 dB) and remarkably flat frequency response (+/- 0.05 dB). This performance is coupled with unparalleled metering flexibility and programmability with average mastering level monitoring and peak value storage. With external sync capability plus front-panel settings up to 24 bits and up to 192 kHz sample rate, the HR-ADC1 is the single instrument needed for A/D conversion in demanding applications. The HR-ADC1 accepts balanced +4 dBu or unbalanced -10 dBV stereo audio through rear-panel XLR or RCA jacks or through a detachable terminal block.
    [Show full text]
  • Audio Engineering Society Convention Paper
    Audio Engineering Society Convention Paper Presented at the 128th Convention 2010 May 22–25 London, UK The papers at this Convention have been selected on the basis of a submitted abstract and extended precis that have been peer reviewed by at least two qualified anonymous reviewers. This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the Journal of the Audio Engineering Society. Loudness Normalization In The Age Of Portable Media Players Martin Wolters1, Harald Mundt1, and Jeffrey Riedmiller2 1 Dolby Germany GmbH, Nuremberg, Germany [email protected], [email protected] 2 Dolby Laboratories Inc., San Francisco, CA, USA [email protected] ABSTRACT In recent years, the increasing popularity of portable media devices among consumers has created new and unique audio challenges for content creators, distributors as well as device manufacturers. Many of the latest devices are capable of supporting a broad range of content types and media formats including those often associated with high quality (wider dynamic-range) experiences such as HDTV, Blu-ray or DVD. However, portable media devices are generally challenged in terms of maintaining consistent loudness and intelligibility across varying media and content types on either their internal speaker(s) and/or headphone outputs.
    [Show full text]
  • Glossary Compiled with Use of Collier, C
    Glossary Compiled with use of Collier, C. (Ed.): Applications of Weather Radar Systems, 2nd Ed., John Wiley, Chichester 1996 Rinehard, R.E.: Radar of Meteorologists, 3rd Ed. Rinehart Publishing, Grand Forks, ND 1997 DoC/NOAA: Fed. Met. Handbook No. 11, Doppler Radar Meteorological Observations, Part A-D, DoC, Washington D.C. 1990-1992 ACU Antenna Control Unit. AID converter ADC. Analog-to-digitl;tl converter. The electronic device which converts the radar receiver analog (voltage) signal into a number (or count or quanta). ADAS ARPS Data Analysis System, where ARPS is Advanced Regional Prediction System. Aliasing The process by which frequencies too high to be analyzed with the given sampling interval appear at a frequency less than the Nyquist frequency. Analog Class of devices in which the output varies continuously as a function of the input. Analysis field Best estimate of the state of the atmosphere at a given time, used as the initial conditions for integrating an NWP model forward in time. Anomalous propagation AP. Anaprop, nonstandard atmospheric temperature or moisture gradients will cause all or part of the radar beam to propagate along a nonnormal path. If the beam is refracted downward (superrefraction) sufficiently, it will illuminate the ground and return signals to the radar from distances further than is normally associated with ground targets. 282 Glossary Antenna A transducer between electromagnetic waves radiated through space and electromagnetic waves contained by a transmission line. Antenna gain The measure of effectiveness of a directional antenna as compared to an isotropic radiator, maximum value is called antenna gain by convention.
    [Show full text]
  • Rockbox User Manual
    The Rockbox Manual for Sansa Fuze+ rockbox.org October 1, 2013 2 Rockbox http://www.rockbox.org/ Open Source Jukebox Firmware Rockbox and this manual is the collaborative effort of the Rockbox team and its contributors. See the appendix for a complete list of contributors. c 2003-2013 The Rockbox Team and its contributors, c 2004 Christi Alice Scarborough, c 2003 José Maria Garcia-Valdecasas Bernal & Peter Schlenker. Version unknown-131001. Built using pdfLATEX. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sec- tions, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation License”. The Rockbox manual (version unknown-131001) Sansa Fuze+ Contents 3 Contents 1. Introduction 11 1.1. Welcome..................................... 11 1.2. Getting more help............................... 11 1.3. Naming conventions and marks........................ 12 2. Installation 13 2.1. Before Starting................................. 13 2.2. Installing Rockbox............................... 13 2.2.1. Automated Installation........................ 14 2.2.2. Manual Installation.......................... 15 2.2.3. Bootloader installation from Windows................ 16 2.2.4. Bootloader installation from Mac OS X and Linux......... 17 2.2.5. Finishing the install.......................... 17 2.2.6. Enabling Speech Support (optional)................. 17 2.3. Running Rockbox................................ 18 2.4. Updating Rockbox............................... 18 2.5. Uninstalling Rockbox............................. 18 2.5.1. Automatic Uninstallation....................... 18 2.5.2. Manual Uninstallation......................... 18 2.6. Troubleshooting................................. 18 3. Quick Start 20 3.1.
    [Show full text]
  • Le Décibel ( Db ) Est Un Sous-Multiple Du Bel, Correspondant À 1 Dixième De Bel
    Emploi du Décibel, unité relative ou unité absolue Le décibel ( dB ) est un sous-multiple du bel, correspondant à 1 dixième de bel. Nommé en l’honneur de l'inventeur Alexandre Graham Bell, le bel est unité de mesure logarithmique du rapport entre deux puissances, connue pour exprimer la puissance du son. Grandeur sans dimension en dehors du système international, le bel n'est pas l'unité la plus fréquente. Le décibel est plus couramment employé. Équivalent à 1/10 de bel, le décibel comme le bel, peut être utilisé dans les domaines de l’acoustique, de la physique, de l’électronique et est largement répandue dans l’ensemble des champs de l’ingénierie (fiabilité, inférence bayésienne, etc.). Cette unité est particulièrement pertinente dans les domaines où la perception humaine est mise en jeu, car la loi de Weber-Fechner stipule que la sensation ressentie varie comme le logarithme de l’excitation. où S est la sensation perçue, I l'intensité de la stimulation et k une constante. Histoire des bels et décibels Le bel (symbole B) est utilisé dans les télécommunications, l’électronique, l’acoustique ainsi que les mathématiques. Inventé par des ingénieurs des Laboratoires Bell pour mesurer l’atténuation du signal audio sur une distance d’un mile (1,6 km), longueur standard d’un câble de téléphone, il était appelé unité de « transmission » à l’origine, ou TU (Transmission unit ), mais fut renommé en 1923 ou 1924 en l’honneur du fondateur du laboratoire et pionnier des télécoms, Alexander Graham Bell . Définition, usage en unité relative Si on appelle X le rapport de deux puissances P1 et P0, la valeur de X en bel (B) s’écrit : On peut également exprimer X dans un sous multiple du bel, le décibel (dB) un décibel étant égal à un dixième de bel.: Si le rapport entre les deux puissances est de : 102 = 100, cela correspond à 2 bels ou 20 dB.
    [Show full text]
  • A 449 MHZ MODULAR WIND PROFILER RADAR SYSTEM by BRADLEY JAMES LINDSETH B.S., Washington University in St
    A 449 MHZ MODULAR WIND PROFILER RADAR SYSTEM by BRADLEY JAMES LINDSETH B.S., Washington University in St. Louis, 2002 M.S., Washington University in St. Louis, 2005 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Electrical, Computer, and Energy Engineering 2012 This thesis entitled: A 449 MHz Modular Wind Profiler Radar System written by Bradley James Lindseth has been approved for the Department of Electrical, Computer, and Energy Engineering Prof. Zoya Popović Dr. William O.J. Brown Date The final copy of this thesis has been examined by the signatories, and we Find that both the content and the form meet acceptable presentation standards Of scholarly work in the above mentioned discipline. Lindseth, Bradley James (Ph.D., Electrical Engineering) A 449 MHz Modular Wind Profiler Radar System Thesis directed by Professor Zoya Popović and Dr. William O.J. Brown This thesis presents the design of a 449 MHz radar for wind profiling, with a focus on modularity, antenna sidelobe reduction, and solid-state transmitter design. It is one of the first wind profiler radars to use low-cost LDMOS power amplifiers combined with spaced antennas. The system is portable and designed for 2-3 month deployments. The transmitter power amplifier consists of multiple 1-kW peak power modules which feed 54 antenna elements arranged in a hexagonal array, scalable directly to 126 elements. The power amplifier is operated in pulsed mode with a 10% duty cycle at 63% drain efficiency.
    [Show full text]
  • Sox Examples
    Signal Analysis Young Won Lim 2/17/18 Copyright (c) 2016 – 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Please send corrections (or suggestions) to [email protected]. This document was produced by using LibreOffice. Young Won Lim 2/17/18 Based on Signal Processing with Free Software : Practical Experiments F. Auger Audio Signal Young Won Lim Analysis (1A) 3 2/17/18 Sox Examples Audio Signal Young Won Lim Analysis (1A) 4 2/17/18 soxi soxi s1.mp3 soxi s1.mp3 > s1_info.txt Input File Channels Sample Rate Precision Duration File Siz Bit Rate Sample Encoding Audio Signal Young Won Lim Analysis (1A) 5 2/17/18 Generating signals using sox sox -n s1.mp3 synth 3.5 sine 440 sox -n s2.wav synth 90000s sine 660:1000 sox -n s3.mp3 synth 1:20 triangle 440 sox -n s4.mp3 synth 1:20 trapezium 440 sox -V4 -n s5.mp3 synth 6 square 440 0 0 40 sox -n s6.mp3 synth 5 noise Audio Signal Young Won Lim Analysis (1A) 6 2/17/18 stat Sox s1.mp3 -n stat Sox s1.mp3 -n stat > s1_info_stat.txt Samples read Length (seconds) Scaled by Maximum amplitude Minimum amplitude Midline amplitude Mean norm Mean amplitude RMS amplitude Maximum delta Minimum delta Mean delta RMS delta Rough frequency Volume adjustment Audio Signal Young Won
    [Show full text]
  • MT-230 One Technology Way • P
    Mini Tutorial MT-230 One Technology Way • P. O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com Because this headroom of the converter is continuously being Noise Considerations in High constrained, maintaining a very low noise spectral density of Speed Converter Signal Chains −150 dBFS/Hz and lower is challenging with each new design. This is why it is paramount that the designer recognize the by Rob Reeder Analog Devices, Inc. importance of the surrounding noise contributions within the entire signal chain solution. Admittedly, there are many noise principles. This tutorial IN THIS MINI TUTORIAL addresses two of these principles: noise bandwidth and the The most common outside noise sources and how they addition of noise sources. influence the total dynamic system performance of a high NOISE BANDWIDTH speed signal chain are described as well as some analog and Noise bandwidth is not the same as the typical −3 dB band- digital tricks that can be employed to further increase the width of an amplifier or filter cutoff point. The shape for noise signal-to-noise ratio (SNR) in your next design. takes on a different form (rectangular) which specifies the total integration of the bandwidth. This means making a slight INTRODUCTION adjustment in the noise calculation when considering the noise Designing in high speed analog signal chains can be challenging bandwidth contribution. with so many noise sources to consider. Whether the frequen- For a first-order system, for example a first-order low-pass cies are high speed (>10 MHz) or low speed, the converter filter, the noise bandwidth is 57% larger.
    [Show full text]
  • NORTHERN ENGINEER a Publication of the School of Engineering
    THE NORTHERN ENGINEER a publication of the school of engineering ""-·, • •• 4/ltlll .. Volume 23, Number 2 & 3 u NIVERSilY OF ALASKA FAIRBANKS .. Summer/Fall 1991 ADVISORY BOARD e are a reflection of our times. For THE NOKTHERN W ENGINEER, the University of Alaska, the State of Alaska, the Robert Boswell Lake & Boswell United States ofAmerica, and even the world as a whole, this is a time Fairbanks, AK of transition. The University of Alaska Fairbanks, of which THE AndrieChen NOKTHERN ENGINEER is a part, is undergoing a reorganization with Exxon Production the intent being to create a more streamlined, stronger entity, better Research Company Houston, TX able to meet the needs of our many constituencies. Mark Fryer Fryer/Pressley How will these changes affect THE NOKTHERN ENGINEER? Engineering, Inc. Anchorage, AK Well, one change has already occurred, Cynthia M. Owen left the Wilbur Haas University ofAlaska Fairbanks, effective June 30, 1992. This is the last Michigan Technological University issue that Mrs. Owen collaborated on--editing, proofing, Houghton, MI brainstorming. She contributed greatly to the quality of this publication Lee Leonard and will be sorely missed. U.S. Department of Energy Washington, DC The next part of this change will be the need for us to address the problems of THE NOKTHERN ENGINEER. We have been facing a Ed Link U.S.CRREL decline in paid subscribers, dijficulty in obtaining publishable technical Hanover,NH material and severe budgetary constraints. For all of these reasons, MikeMetz THE NORTHERN ENGINEER will temporarily suspend publication, Yukon Pacific Corporation effective the Winter 1991/Spring 1992 issue.
    [Show full text]
  • 3510 33 P Department of Commerce
    This document is scheduled to be published in the Federal Register on 08/15/2017 and available online at https://federalregister.gov/d/2017-16904, and on FDsys.gov Billing Code: 3510 33 P DEPARTMENT OF COMMERCE Bureau of Industry and Security 15 CFR Parts 740, 772, and 774 [Docket No. 170309249-7249-01] RIN 0694-AH35 Wassenaar Arrangement 2016 Plenary Agreements Implementation AGENCY: Bureau of Industry and Security, Commerce. ACTION: Final rule. SUMMARY: The Bureau of Industry and Security (BIS) maintains, as part of its Export Administration Regulations (EAR), the Commerce Control List (CCL), which identifies certain items subject to Department of Commerce jurisdiction. This final rule revises the CCL, as well as corresponding parts of the EAR, to implement changes made to the Wassenaar Arrangement 1 List of Dual-Use Goods and Technologies (WA List) maintained and agreed to by governments participating in the Wassenaar Arrangement on Export Controls for Conventional Arms and Dual-Use Goods and Technologies (Wassenaar Arrangement, or WA) at the December 2016 WA Plenary meeting. The Wassenaar Arrangement advocates implementation of effective export controls on strategic items with the objective of improving regional and international security and stability. This rule harmonizes the CCL with the agreements reached at the 2016 Plenary meeting by revising Export Control Classification Numbers (ECCNs) controlled for national security reasons in each category of the CCL, as well as making other associated changes to the EAR. DATES: This rule is effective [INSERT DATE OF PUBLICATION IN THE FEDERAL REGISTER], except that: 1. the effective date for amendatory instruction 30 (ECCN 4A003 in Supplement No.
    [Show full text]
  • Variable Capacitors in RF Circuits
    Source: Secrets of RF Circuit Design 1 CHAPTER Introduction to RF electronics Radio-frequency (RF) electronics differ from other electronics because the higher frequencies make some circuit operation a little hard to understand. Stray capacitance and stray inductance afflict these circuits. Stray capacitance is the capacitance that exists between conductors of the circuit, between conductors or components and ground, or between components. Stray inductance is the normal in- ductance of the conductors that connect components, as well as internal component inductances. These stray parameters are not usually important at dc and low ac frequencies, but as the frequency increases, they become a much larger proportion of the total. In some older very high frequency (VHF) TV tuners and VHF communi- cations receiver front ends, the stray capacitances were sufficiently large to tune the circuits, so no actual discrete tuning capacitors were needed. Also, skin effect exists at RF. The term skin effect refers to the fact that ac flows only on the outside portion of the conductor, while dc flows through the entire con- ductor. As frequency increases, skin effect produces a smaller zone of conduction and a correspondingly higher value of ac resistance compared with dc resistance. Another problem with RF circuits is that the signals find it easier to radiate both from the circuit and within the circuit. Thus, coupling effects between elements of the circuit, between the circuit and its environment, and from the environment to the circuit become a lot more critical at RF. Interference and other strange effects are found at RF that are missing in dc circuits and are negligible in most low- frequency ac circuits.
    [Show full text]