Maintaining Audio Quality in the Broadcast/Netcast Facility

Total Page:16

File Type:pdf, Size:1020Kb

Maintaining Audio Quality in the Broadcast/Netcast Facility Maintaining Audio Quality in the Broadcast and Netcast Facility 2019 Edition Robert Orban Greg Ogonowski Orban®, Optimod®, and Opticodec® are registered trademarks. All trademarks are property of their respective companies. © Copyright 1982-2019 Robert Orban and Greg Ogonowski. Rorb Inc., Belmont CA 94002 USA Modulation Index LLC, 1249 S. Diamond Bar Blvd Suite 314, Diamond Bar, CA 91765-4122 USA Phone: +1 909 860 6760; E-Mail: [email protected]; Site: https://www.indexcom.com Table of Contents TABLE OF CONTENTS ............................................................................................................ 3 MAINTAINING AUDIO QUALITY IN THE BROADCAST/NETCAST FACILITY ..................................... 1 Authors’ Note ....................................................................................................................... 1 Preface ......................................................................................................................... 1 Introduction ................................................................................................................ 2 The “Digital Divide” ................................................................................................... 3 Audio Processing: The Final Polish ............................................................................ 3 PART 1: RECORDING MEDIA ................................................................................................. 5 Compact Disc ............................................................................................................... 5 CD-R and CD-RW, DVD±R, DVD±RW, DVD-A, HD DVD, Blu-ray .............................. 7 HDCD .................................................................................................................................... 8 Digital Tape ................................................................................................................. 9 Hard Disk Systems ..................................................................................................... 10 Flash RAM ................................................................................................................. 10 Program Associated Data (PAD) or Metadata ........................................................ 11 Data Compression ..................................................................................................... 12 Lossless Compression ......................................................................................................... 12 Lossy Compression ............................................................................................................. 13 MPEG1 — Layer 2/3 ............................................................................................................ 15 AAC/HE-AAC ....................................................................................................................... 15 Members of the HE-AAC Codec Family............................................................................. 16 Independent quality evaluations of AAC/HE-AAC ........................................................... 19 Spectral Band Replication .................................................................................................. 19 Parametric Stereo .............................................................................................................. 21 MPEG Surround .................................................................................................................. 21 Using Data Compression for Contribution ....................................................................... 22 Pitfalls When Using Dolby AC3 as a Contribution Codec ................................................ 23 PART 2: SYSTEM CONSIDERATIONS ...................................................................................... 23 Analog Interconnection ........................................................................................... 23 Grounding .......................................................................................................................... 24 AES3 and SP/DIF Digital Interconnection ................................................................ 24 Digital Audio Clock ............................................................................................................ 25 Sample Rate Conversion in Digital Audio Distribution .................................................... 27 Audio over IP ............................................................................................................ 28 MADI.......................................................................................................................... 29 Headroom and Metering ......................................................................................... 30 Peak Normalization in Audio Editing Programs .............................................................. 30 Headroom .......................................................................................................................... 31 Measuring and Controlling Loudness ..................................................................... 35 BS.1770 Loudness Meter .................................................................................................... 35 EBU R128 ............................................................................................................................ 36 ATSC A/85 ........................................................................................................................... 37 Orban Loudness Meter ...................................................................................................... 37 Jones & Torick (CBS Technology Center) Meter ............................................................... 38 Loudness Balance between Speech and Music ................................................................. 38 Replay Gain ........................................................................................................................ 39 Electronic Quality ..................................................................................................... 40 Quality in Digital Chains .......................................................................................... 42 There are several pervasive myths regarding digital audio: ............................................ 45 And finally, some truisms regarding loudness and quality: ............................................. 48 The Nielsen Audio® PPM (Portable People Meter) ............................................... 48 PART 3: CONFIGURING AND USING THE PRODUCTION STUDIO ................................................. 50 Monitor Loudspeakers ............................................................................................. 50 Choosing Monitor Loudspeakers ....................................................................................... 50 Loudspeaker Location and Room Acoustics ...................................................................... 51 Loudspeaker Equalization ................................................................................................. 52 Other Production Equipment .................................................................................. 54 Production Practices ................................................................................................. 55 Quality Control in Transfers to Playout Systems .................................................... 58 Program Material Quality and Authenticity ..................................................................... 58 Vinyl .................................................................................................................................... 61 Mechanics of Transfer ........................................................................................................ 61 Analog Connections ........................................................................................................... 63 Analog Operating Levels ................................................................................................... 63 0 dBFS+ (True-Peak Overloads) .......................................................................................... 63 Figure 2: Sinewave at 0.25 fs sampled at 45 degree points, showing +3 dBFSTP true peak level ............................................................................................................................ 64 Screening Sources for Technical Problems ........................................................................ 65 Sony/BMG Rootkit Malware .............................................................................................. 66 Mono Compatibility ........................................................................................................... 66 Stereo Enhancement .......................................................................................................... 68 Pre-Processing Files in Playout Systems ............................................................................. 69 Restoration Software ............................................................................................... 69 Editing in the Spectral Domain ......................................................................................... 71 Figure 3: Editing the Spectral Domain .............................................................................. 71 De-Clipping
Recommended publications
  • DVB DASH Webinar 13 June 2018 DVB DASH: an Overview Simon Waller (Samsung) DVB Codecs and DVB DASH Chris Poole (BBC) DVB DASH in the Wild Martin Schmalohr (IRT)
    DVB DASH webinar 13 June 2018 DVB DASH: An overview Simon Waller (Samsung) DVB codecs and DVB DASH Chris Poole (BBC) DVB DASH in the wild Martin Schmalohr (IRT) 1 DVB DASH: An overview • Quick ABR refresher • Why DVB DASH? • What does DVB DASH include? • Relationship with HbbTV • Where next? 2 ABR refresher and DASH nomenclature Bitrate 1 Representation … Segment Segment Segment … MPD AdaptationSet Bitrate 2 Representation Encoder … Segment Segment Segment … Bitrate 3 Representation … Segment Segment Segment … 3 MPEG DASH vs DVB DASH • MPEG DASH is a large complicated specification • DVB has defined a profile of MPEG DASH to help make services and players interoperable – This profile includes constraints, requirements, limitations, additions (e.g. A/V codec profiles) etc 4 What does DVB DASH cover 5 MPD and content constraints • Profiles to identify features for players (DVB 2014 URN and the new DVB 2017 URN) – New 2017 profile required for some of the latest features • MPD construction – Required elements and attributes – Maximum number of some elements • Segment construction – E.g. Min and max segment durations • Live vs On Demand 6 Profiled A/V codecs • Video codecs: – AVC – HEVC • Audio codecs: – AC-3, AC-4 parts 1 and 2 – AAC (including HE-AAC, HE-AACv2 and AAC-LC) – MPEG-H – MPEG Surround – DTS, DTS-HD, DTS-LBR 7 Subtitles • DVB DASH defines the carriage of XML based subtitles, as per EBU-TT-D • Downloadable fonts are supported – Particularly useful for non-Latin based languages 8 Content protection • DVB does not specify a DRM but does reference MPEG Common Encryption which defines how content is encrypted and how license metadata can be carried.
    [Show full text]
  • Music Production Tools SSL Console Grade Technology for Studios of All Sizes
    www.solidstatelogic.comwww.solidstatelogic.com Music Production Tools SSL console grade technology for studios of all sizes. www.solidstatelogic.comwww.solidstatelogic.com SSL Hybrid Studio Technology Solid State Logic has been leading the way developing technology for creative audio professionals for nearly 40 years. The company philosophy has always been the same. Find ways to give engineers and producers tools to help them work their magic; to help them make music sound great and to work as quickly and creatively as possible. SSL has always been about ‘making the product disappear’, about not being a barrier to the creative process. We succeed because the way our products sound helps engineers get the results they are after quickly and easily and because we are obsessed with ergonomics and workflow. Today SSL’s Music Production Tools lead the way in delivering hybrid production systems that combine the very best of analogue & digital audio technology with hands on control over the DAW environment. Our products provide the superior sound of high grade analogue & digital hardware and harness the flexibility of the software world with the accelerated workflow of hardware control. Each engineer has their own very personal creative approach. Different types of music and different projects present different technical challenges and demand different workflow. SSL’s products offer a range of options and approaches that let producers work the way they want to. With nearly four decades and countless hit recordings behind us we are extremely proud of the fact that SSL technology is still at the heart of professional audio production… still finding new ways to do things… still setting standards for others to aspire to.
    [Show full text]
  • Designing with Dante and AES67 / SMPTE ST 2110
    Designing with Dante and AES67 / SMPTE ST 2110 AES-NY, AVoIP Pavillion October 16-19, 2019 Patrick Killianey Audinate, Senior Technical Training Manager [email protected] Audinate 1 Objectives: Design Principles (and Why We Recommend Them) Clarify Common Misunderstandings About Dante (and PTPv2). Highlights of the Dante update with SMPTE ST 2110 support. Audinate 2 Prerequisites: Dante Domain Manager is a key part to Audinate’s ST 2110 solution. If you are not familiar with this product, watch this video to learn its role and core functions. In Depth Tour of Dante Domain Manager https://youtu.be/xCY3JNpCu_k Audinate 3 History: Audio Networks SoLutions and Open Standards Audinate 4 History: 10Mbit 1996 (1) CD-ROM (44) 3¼” Floppy Disks https://en.wikipedia.org/wiki/Microsoft_Office_97 Audinate 5 History: Network Innovation 10Mbit 100Mbit 1996 1998 2001 Star, 32x32 Daisy Chain, 64x64 5⅓msec ⅙msec QoS PTP Quality of Service Precision Time Protocol (Prioritization of Time Sensitive Data) (Network Synchronization) ZeroConfig IGMP Snooping Automatic Peer-to-Peer Configuration Internet Group Management Protocol (No need for Static or DHCP config) (Reduces Impact of Multicast Distribution) Audinate 6 History: Network Innovation 10Mbit 100Mbit ≥1Gbit 1996 1998 2001 2006 2013 2015 Star, 32x32 Daisy Chain, 64x64 Star 5⅓msec ⅙msec 512x512 @ ¼msec Best Practices for Audio Networks AES AESTD1003V1 - June 6, 2009 http://www.aes.org/technical/documents/AESTD1003V1.pdf “Audio networking systems are characterized In practice, there are several issues for by the transport of uncompressed audio in compatibility between formats that should PCM format, which in principle could be be addressed and solved with specific reformatted as requested.
    [Show full text]
  • Pyloudnorm: a Simple Yet Flexible Loudness Meter in Python
    pyloudnorm: A simple yet flexible loudness meter in Python Christian J. Steinmetz 1 Joshua D. Reiss 1 Abstract dardize, simplify, and improve upon previous approaches, the ITU-R BS.1770 recommendation was proposed (ITU-R The ITU-R BS.1770 recommendation for measur- BS.1770-4), and has now seen widespread adoption (Lund, ing the perceived loudness of audio signals has 2011; 2012). The proposed metering algorithm was later seen widespread adoption in broadcasting, and included in the EBU R 128 recommendation, which dictates due to its simplicity, this algorithm has now found loudness for broadcast material (EBU R 128). applications across audio signal processing. Here we describe pyloudnorm, a Python package that The ITU-R BS.1770 recommendation proposes a straight- enables the measurement of integrated loudness forward algorithm consisting of frequency-weighting fil- following the recommendation. While a number ters and gated energy measurements. The algorithm has of implementations are available, ours provides been shown to correlate well with the perceived loudness an easy to install package, a simple interface, and of broadband content, is computationally efficient, and rela- the ability to adjust the algorithm parameters, a tively easy to implement. For all these reasons it has now feature that other implementations neglect. We seen widespread adoption in the broadcast industry, and with discuss a set of modifications that we incorporate the rise of online streaming platforms, interest in content based upon recent literature that aim to improve normalization has sustained (Katz, 2015; Grimm, 2019). the robustness of the loudness measurement. Fi- While this recommendation has been found to correlate nally, we perform an evaluation comparing the ac- well with broadband content, further listening studies have curacy and runtime of pyloudnorm with six other discovered that this is not always the case, especially for nar- implementations, identifying issues with several rowband content (Cabrera et al., 2008; Pestana et al., 2013; of theses implementations.
    [Show full text]
  • Model HR-ADC1 Analog to Digital Audio Converter
    HALF-RACK SERIES Model HR-ADC1 Analog to Digital Audio Converter • Broadcast Quality Analog to Digital Audio Conversion • Peak Metering with Selectable Hold or Peak Store Modes • Inputs: Balanced and Unbalanced Stereo Audio • Operation Up to 24 bits, 192 kHz • Output: AES/EBU, Coaxial S/PDIF, AES-3ID • Selectable Internally Generated Sample Rate and Bit Depth • External Sync Inputs: AES/EBU, Coaxial S/PDIF, AES-3ID • Front-Panel External Sync Enable Selector and Indicator • Adjustable Audio Input Gain Trim • Sample Rate, Bit Depth, External Sync Lock Indicators • Peak or Average Ballistic Metering with Selectable 0 dB Reference • Transformer Isolated AES/EBU Output The HR-ADC1 is an RDL HALF-RACK product, featuring an all metal chassis and the advanced circuitry for which RDL products are known. HALF-RACKs may be operated free-standing using the included feet or may be conveniently rack mounted using available rack-mount adapters. APPLICATION: The HR-ADC1 is a broadcast quality A/D converter that provides exceptional audio accuracy and clarity with any audio source or style. Superior analog performance fine tuned through audiophile listening practices produces very low distortion (0.0006%), exceedingly low noise (-135 dB) and remarkably flat frequency response (+/- 0.05 dB). This performance is coupled with unparalleled metering flexibility and programmability with average mastering level monitoring and peak value storage. With external sync capability plus front-panel settings up to 24 bits and up to 192 kHz sample rate, the HR-ADC1 is the single instrument needed for A/D conversion in demanding applications. The HR-ADC1 accepts balanced +4 dBu or unbalanced -10 dBV stereo audio through rear-panel XLR or RCA jacks or through a detachable terminal block.
    [Show full text]
  • Universal Audio 4-710D User Guide
    Model 4-710d Four-Channel Tone-Blending Mic Preamplifier Universal Audio Part Number 65-00051 Revision A Universal Audio, Inc. Customer Service & Tech Support: +1-877-MY-UAUDIO Business, Sales & Marketing: +1-866-UAD-1176 www.uaudio.com Notices This manual provides general information, preparation for use, installation and operating instructions for the Universal Audio Model 4-710d. Disclaimer The information contained in this manual is subject to change without notice. Universal Audio, Inc. makes no warranties of any kind with regard to this manual, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Universal Audio, Inc. shall not be liable for errors contained herein or direct, indirect, special, incidental, or consequential damages in connection with the furnishing, performance, or use of this material. Copyright © 2011 Universal Audio, Inc. All rights reserved. This manual and any associated software, artwork, product designs, and design concepts are subject to copyright protection. No part of this document may be reproduced, in any form, without prior written permission of Universal Audio, Inc. Trademarks 4-710d, 710, Twin-Finity, 4110, 8110, SOLO/110, SOLO/610, 2-610, LA-610, LA-2A, 2-LA2, LA-3A, 6176, 1176LN, 2-1176, 2192, DCS Remote Preamp, UAD and the Universal Audio, Inc. logo are trademarks of Universal Audio, Inc. Other company and product names mentioned herein are trademarks of their respective companies FCC Compliance This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) the device must accept any interference received, including interference that may cause undesired operation.
    [Show full text]
  • Audio Engineering Society Convention Paper
    Audio Engineering Society Convention Paper Presented at the 128th Convention 2010 May 22–25 London, UK The papers at this Convention have been selected on the basis of a submitted abstract and extended precis that have been peer reviewed by at least two qualified anonymous reviewers. This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the Journal of the Audio Engineering Society. Loudness Normalization In The Age Of Portable Media Players Martin Wolters1, Harald Mundt1, and Jeffrey Riedmiller2 1 Dolby Germany GmbH, Nuremberg, Germany [email protected], [email protected] 2 Dolby Laboratories Inc., San Francisco, CA, USA [email protected] ABSTRACT In recent years, the increasing popularity of portable media devices among consumers has created new and unique audio challenges for content creators, distributors as well as device manufacturers. Many of the latest devices are capable of supporting a broad range of content types and media formats including those often associated with high quality (wider dynamic-range) experiences such as HDTV, Blu-ray or DVD. However, portable media devices are generally challenged in terms of maintaining consistent loudness and intelligibility across varying media and content types on either their internal speaker(s) and/or headphone outputs.
    [Show full text]
  • Overview of Technologies for Immersive Visual Experiences: Capture, Processing, Compression, Standardization and Display
    Overview of technologies for immersive visual experiences: capture, processing, compression, standardization and display Marek Domański Poznań University of Technology Chair of Multimedia Telecommunications and Microelectronics Poznań, Poland 1 Immersive visual experiences • Arbitrary direction of viewing System : 3DoF • Arbitrary location of viewer - virtual navigation - free-viewpoint television • Both System : 6DoF Virtual viewer 2 Immersive video content Computer-generated Natural content Multiple camera around a scene also depth cameras, light-field cameras Camera(s) located in a center of a scene 360-degree cameras Mixed e.g.: wearable cameras 3 Video capture Common technical problems • Synchronization of cameras Camera hardware needs to enable synchronization Shutter release error < Exposition interval • Frame rate High frame rate needed – Head Mounted Devices 4 Common task for immersive video capture: Calibration Camera parameter estimation: • Intrinsic – the parameters of individual cameras – remain unchanged by camera motion • Extrinsic – related to camera locations in real word – do change by camera motion (even slight !) Out of scope of standardization • Improved methods developed 5 Depth estimation • By video analysis – from at least 2 video sequences – Computationally heavy – Huge progress recently • By depth cameras – diverse products – Infrared illuminate of the scene – Limited resolution mostly Out of scope of standardization 6 MPEG Test video sequences • Large collection of video sequences with depth information
    [Show full text]
  • Emerging Technology Trends Report Dante Q-LAN EBU N/ACIP
    Emerging Technology Trends Report AES Technical Committee on Network Audio Systems November 2011 Editor, Tim Shuttleworth; [email protected] This document is a compilation of contributions from numerous members of the Technical Committee on Networked Audio Systems. The committee has identified the following important topics related to emerging audio networking technologies. Technologies which have emerged since the last published Emerging Trends Report from the committee in 2007 are included. To provide structure to the report items are discussed in order of their maturity; commercialized technologies implemented in products available for purchase being discussed first and embryonic concepts in early development come up last. Other categorizations referred to in this document are consumer market orientation versus professional market focus, as well as media transport methods versus command and control protocols. Dante Dante is a media networking solution developed by Audinate. In addition to providing basic synchronization and transport protocols Dante provides simple plug and play operation, PC sound card interfacing via software or hardware, glitch free redundancy, support for AVB and support for routed IP networks. The first Dante product arrived in 2008 via a firmware upgrade for the Dolby Lake Processor and since then many professional audio and broadcast manufacturers have adopted Dante. From the beginning Dante implementations have been fully IP based, using the IEEE 1588-2002 standard for synchronization, UDP/IP for audio transport and are designed to exploit standard gigabit Ethernet switches and VoIP-style QoS technology (e.g. Diffserv). Dante is evolving with new networking standards. Audinate has produced versions of Dante that use the new Ethernet Audio Video Bridging (AVB) protocols, including IEEE 802.1AS for synchronization and RTP transport protocols.
    [Show full text]
  • Transition to Digital Digital Handbook
    TRANSITION TO DIGITAL DIGITAL HANDBOOK Audio's video issues tion within one audio sample, the channels of audio over a fiber-optic in- There can be advantages to locking preambles present a unique sequence terface. This has since been superseded the audio and video clocks, such as for (which violate the Biphase Markby AES 10 (or MADI, Multichannel editing, especially when the audio and Code) but nonetheless are DC -freeAudio Digital Interface), which sup- video programs are related. Althoughand provide clock recovery. ports serial digital transmission of 28, digital audio equipment may provide 56, or 64 channels over coaxial cable or an analog video input, it is usually bet- Like AES3, but not fiber-optic lines, with sampling rates ter to synchronize both the audio and A consumer version of AES3 -of up to 96kHz and resolution of up to the video to a single higher -frequencycalled S/PDIF, for Sony/Philips Digi-24 bits per channel. The link to the IT source, such as a 10MHz master refer-tal Interface Format (more formallyworld has also been established with ence. This is because the former solu- known as IEC 958 type II, part of IEC- AES47, which specifies a method for tion requires a synchronization circuit60958) - is also widely used. Essen- packing AES3 streams over Asynchro- that will introduce some jitter into thetially identical to AES3 at the protocol nous Transfer Mode (ATM) networks. signal, especially because the video it- level, the interface uses consumer - It's also worth mentioning Musical self may already have some jitter. To ac- friendly RCA jacks and coaxial cable.Instrument Digital Interface (MIDI) for broadcast operations.
    [Show full text]
  • The End of the Loudness War?
    The End Of The Loudness War? By Hugh Robjohns As the nails are being hammered firmly into the coffin of competitive loudness processing, we consider the implications for those who make, mix and master music. In a surprising announcement made at last Autumn's AES convention in New York, the well-known American mastering engineer Bob Katz declared in a press release that "The loudness wars are over.” That's quite a provocative statement — but while the reality is probably not quite as straightforward as Katz would have us believe (especially outside the USA), there are good grounds to think he may be proved right over the next few years. In essence, the idea is that if all music is played back at the same perceived volume, there's no longer an incentive for mix or mastering engineers to compete in these 'loudness wars'. Katz's declaration of victory is rooted in the recent adoption by the audio and broadcast industries of a new standard measure of loudness and, more recently still, the inclusion of automatic loudness-normalisation facilities in both broadcast and consumer playback systems. In this article, I'll explain what the new standards entail, and explore what the practical implications of all this will be for the way artists, mixing and mastering engineers — from bedroom producers publishing their tracks online to full-time music-industry and broadcast professionals — create and shape music in the years to come. Some new technologies are involved and some new terminology too, so I'll also explore those elements, as well as suggesting ways of moving forward in the brave new world of loudness normalisation.
    [Show full text]
  • The Book of Audacity
    THE BOOK OF AUDACITY Record, Edit, Mix, and Master with the Free Audio Editor by Carla Schroder San Francisco THE BOOK OF AUDACITY. Copyright © 2011 by Carla Schroder. All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and the publisher. 15 14 13 12 11 1 2 3 4 5 6 7 8 9 ISBN-10: 1-59327-270-7 ISBN-13: 978-1-59327-270-8 Publisher: William Pollock Production Editor: Serena Yang Cover and Interior Design: Octopod Studios Developmental Editor: Tyler Ortman Technical Reviewer: Alvin Goats Copyeditor: Kim Wimpsett Compositor: Serena Yang Proofreader: Paula L. Fleming Indexer: Nancy Guenther For information on book distributors or translations, please contact No Starch Press, Inc. directly: No Starch Press, Inc. 38 Ringold Street, San Francisco, CA 94103 phone: 415.863.9900; fax: 415.863.9950; [email protected]; www.nostarch.com Library of Congress Cataloging-in-Publication Data Schroder, Carla. The book of Audacity : record, edit, mix, and master with the free audio editor / by Carla Schroder. p. cm. Includes bibliographical references. ISBN-13: 978-1-59327-270-8 ISBN-10: 1-59327-270-7 1. Audacity (Computer file) 2. Digital audio editors. I. Title. ML74.4.A84S37 2010 781.3’4536-dc22 2010037594 No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and company names mentioned herein may be the trademarks of their respective owners.
    [Show full text]