3510 33 P Department of Commerce
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spectrum Management Technical Handbook
NTIA TN 89-2 SPECTRUM MANAGEMENT TECHNICAL HANDBOOK TECHNICAL NOTE SERIES NTIA TECHNICAL NOTE 89-2 SPECTRUM MANAGEMENT TECHNICAL HANDBOOK l U.S. DEPARTMENT OF COMMERCE Robert A. Mosbacher, Secretary Alfred C. Sikes, Assistant Secretary for Communications and Information JULY 1989 ACKNOWLEDGEMENT NT IA acknowledges the efforts of Mark Schellhammer in the completion of Phase I of this handbook (Sections 1-3). Other portions will be added as resources are available. ABSTRACT This handbook is a compilation of the procedures, definitions, relationships and conversions essential to electromagnetic compatibility analysis. It is intended as a reference for NTIA engineers. KEY WORDS CONVERSION FACTORS COUPLING EQUATIONS DEFINITIONS ·TECHNICAL RELATIONSHIPS iii TABLE OF CONTENTS Subsection Page SECTION 1 TECHNICAL TERMS:DEFINITIONS AND NOTATION TERMS AND DEFINITIONS . .. .. 1-1 GLOSSARY OF STANDARD NOTATION . .. 1-13 SECTION 2 TECHNICAL RELATIONSHIPS AND CONVERSION FACTORS INTRODUCTION . .. .. .. 2-1 TRANSMISSION LOSS FOR RADIO LINKS . �. .. .. 2-1 Propagation Loss . .. .. .. 2-1 Transmission Loss ........................................ 2-2 Free-Space Basic Transmission Loss .......................... 2-2 Basic Transmission Loss .................................... 2-2 Loss Relative to Free-Space .................................. 2-2 System Loss . .. 2-3 ; Total Loss . .. .. 2-3 ANTENNA CHARACTERISTICS . .. 2-3 Antenna Directivity ........................................ 2-3 Antenna Gain and Efficiency .................................. 2-3 I -
NORTHERN ENGINEER a Publication of the School of Engineering
THE NORTHERN ENGINEER a publication of the school of engineering ""-·, • •• 4/ltlll .. Volume 23, Number 2 & 3 u NIVERSilY OF ALASKA FAIRBANKS .. Summer/Fall 1991 ADVISORY BOARD e are a reflection of our times. For THE NOKTHERN W ENGINEER, the University of Alaska, the State of Alaska, the Robert Boswell Lake & Boswell United States ofAmerica, and even the world as a whole, this is a time Fairbanks, AK of transition. The University of Alaska Fairbanks, of which THE AndrieChen NOKTHERN ENGINEER is a part, is undergoing a reorganization with Exxon Production the intent being to create a more streamlined, stronger entity, better Research Company Houston, TX able to meet the needs of our many constituencies. Mark Fryer Fryer/Pressley How will these changes affect THE NOKTHERN ENGINEER? Engineering, Inc. Anchorage, AK Well, one change has already occurred, Cynthia M. Owen left the Wilbur Haas University ofAlaska Fairbanks, effective June 30, 1992. This is the last Michigan Technological University issue that Mrs. Owen collaborated on--editing, proofing, Houghton, MI brainstorming. She contributed greatly to the quality of this publication Lee Leonard and will be sorely missed. U.S. Department of Energy Washington, DC The next part of this change will be the need for us to address the problems of THE NOKTHERN ENGINEER. We have been facing a Ed Link U.S.CRREL decline in paid subscribers, dijficulty in obtaining publishable technical Hanover,NH material and severe budgetary constraints. For all of these reasons, MikeMetz THE NORTHERN ENGINEER will temporarily suspend publication, Yukon Pacific Corporation effective the Winter 1991/Spring 1992 issue. -
Biasing Techniques for Linear Power Amplifiers Anh Pham
Biasing Techniques for Linear Power Amplifiers by Anh Pham Bachelor of Science in Electrical Engineering and Economics California Institute of Technology, June 2000 Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Engineering and Computer Science Master of Engineering in Electrical 8ARKER at the &UASCHUSMrSWi#DTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUL 3 12002 May 2002 LIBRARIES @ Massachusetts Institute of Technology 2002. All right reserved. Author Department of Electrical Engineering and Computer Science May 2002 Certified by _ Charles G. Sodini Professor of Electrical Engineering and Computer Science Thesis Supervisor Accepted by Arthuf-rESmith, Ph.D. Chairman, Committee on Graduate Students Department of Electrical Engineering and Computer Science 2 Biasing Techniques for Linear Power Amplifiers by Anh Pham Submitted to the Department of electrical Engineering and Computer Science on May 10, 2002 in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science Abstract Power amplifiers with conventional fixed biasing attain their best efficiency when operate at the maximum output power. For lower output level, these amplifiers are very inefficient. This is the major shortcoming in recent wireless applications with an adaptive power design; where the desired output power is a function of the bit-error rate, channel characteristics, modulation schemes, etc. Such applications require the power amplifier to have an optimum performance not only at the peak output level, but also across the adaptive power range. An adaptive biasing topology is proposed and implemented in the design of a power amplifier intended for use in the WiGLAN (Wireless Gigabits per second Local Area Network) project. -
The Db Concept
Chapter | six The dB Concept CHAPTER OUTLINE dBdPower Ratio..................................................................................................................... 40 dBdAmplitude Ratio.............................................................................................................. 40 From dB to Power or Amplitude Ratio............................................................................ 41 Conversion Table ....................................................................................................................... 41 Reference Values ...................................................................................................................... 41 Other Relative Units ................................................................................................................43 Weighted Measurements....................................................................................................... 44 Addition of dB........................................................................................................................... 44 Nomogram (Addition)..........................................................................................................................44 Subtraction of dB......................................................................................................................45 Nomogram (Subtraction) ...................................................................................................................46 When sound levels have to -
Agilent 89441A Vector Signal Analyzer Dc to 2.65 Ghz Data Sheet
Agilent 89441A Vector Signal Analyzer dc to 2.65 GHz Data Sheet Definitions Introduction Analog demodulation mode = Measurements with AM, Specifications describe warranted performance PM, and FM demodulation capabilities. over the temperature range of 0° to 45°C (except where noted) and include a 30-minute warm-up Baseband = dc to 10 MHz measurements. from ambient conditions, automatic calibrations enabled, auto-zero on, time domain calibration off, Baseband time = Time-domain measurements selected and anti-alias filter in, unless noted otherwise. by setting start frequency to exactly 0 Hz or choos- Supplemental characteristics identified as “typical” ing full span in 0 to 10 MHz measurements. or “characteristic” provide useful information by giving non-warranted performance parameters. dBc = dB relative to input signal level. Typical performance is applicable from 20° to 30°C. When enabled, automatic calibrations are periodi- dBfs = dB relative to full scale amplitude range cally performed to compensate for the effects of setting. Full scale is approximately 2 dB below temperature and time sensitivities. During the cali- ADC overload. bration, no signals > 0 dBm should be connected to the front panel inputs. FS or fs = Full scale; synonymous with amplitude range or input range. Feature summary RBW = Resolution bandwidth. Frequency dc to 2.650 GHz RF = 2 MHz to 2.65 GHz measurements. 51 to 3201 points Center frequency signal-tracking Scalar mode = Measurements with only frequency- Instrument modes domain analysis available. Frequency spans up to Scalar (frequency-domain only) 2648 MHz. Vector (amplitude and phase information in frequency and time domain and also SNR = Signal to noise ratio. -
Virtual Instrumentation Performs Dbrnc Noise Measurements
MEASUREMENTS Telephony Virtual Instrumentation Performs dBrnC Noise Measurements by Craig Rupp, Senior Electrical System involved the use of SCXI™-1120, coupled One common specification found in Engineer, Alliance Technologies Group with data acquisition. For the complex telephony applications is dBrnC – the dBrnC measurement, purchasing an amount of noise measured through this The Challenge: Performing expensive audio analyzer with excess C-message-weighted filter relative to a dBrnC noise measurements on functionality was unnecessary. reference noise level of 1 picoWatt. A several power supply test stations. simple approach to performing the dBrnC The Solution: Synthesizing the measurement is to purchase a filter digitally using the LabVIEW After reviewing the client’s test commercially available audio analyzer. ™ Advanced Analysis Toolkit, SCXI signal requirements, we found that the This audio analyzer performs the dBrnC conditioning, and data acquisition. most cost-effective solution for measurement but also includes functions unnecessary for PCP’s application. Introduction measuring the voltage regulation, Because PCP only required one function Power Conversion Products (PCP), a efficiency, and power factor involves from this instrument, that measurement leading manufacturer of high-power the use of SCXI-1120, coupled with had a high price tag. switchmode rectifiers for the data acquisition. Having unused channels and jumper- telecommunications industry, hired selectable gains, the SCXI-1120 and Alliance Technologies Group (ATG), a Because the human ear is not equally MIO DAQ board provided a method for National Instruments Alliance Program sensitive to all voice frequencies and obtaining an amplified, isolated, digital member, to develop an automated test because telephone handsets do not have a representation of the signal. -
53742 Federal Register / Vol
53742 Federal Register / Vol. 83, No. 206 / Wednesday, October 24, 2018 / Rules and Regulations DEPARTMENT OF COMMERCE Categories 7 & 9: Michael Rithmire ECCN change to maintain NP 202–482–6105 or Michael Tu 202–482– controls: 2B206. Bureau of Industry and Security 6462. Category 9x515 (Satellites): Michael Category 0—Nuclear Materials, 15 CFR Parts 740, 742, 744, 772, and Tu 202–482–6462. Facilities, and Equipment [and 774 Category ‘‘600 Series’’ (Munitions Miscellaneous Items] Items): Christopher Williams at 202– [Docket No. 170831854–7854–01] 0A617 Miscellaneous ‘‘Equipment’’, 482–6023 or Heather Moore at 202–482– Materials, and Related Commodities RIN 0694–AH44 4786. ECCN 0A617, paragraph y.3, SUPPLEMENTARY INFORMATION: Wassenaar Arrangement 2017 Plenary containers for shipping or packing Agreements Implementation Background defense articles or items controlled by The Wassenaar Arrangement ‘‘600 series’’ ECCNs, is amended by AGENCY: Bureau of Industry and narrowing the scope to International Security, Commerce. (Wassenaar or WA) (http:// www.wassenaar.org/) on Export Organization for Standardization (ISO) ACTION: Final rule. Controls for Conventional Arms and intermodal containers or demountable vehicle bodies (i.e., swap bodies), but SUMMARY: The Bureau of Industry and Dual-Use Goods and Technologies is a also expands the scope beyond Security (BIS) maintains, as part of its group of 42 like-minded states ‘‘specially designed’’ by adding ‘‘or Export Administration Regulations committed to promoting responsibility modified’’. As the term ‘modified’ is in (EAR), the Commerce Control List and transparency in the global arms (CCL), which identifies certain items trade, and preventing destabilizing single quotes, BIS is also adding the subject to Department of Commerce accumulations of arms. -
Audio Metering
Audio Metering Measurements, Standards and Practice This page intentionally left blank Audio Metering Measurements, Standards and Practice Eddy B. Brixen AMSTERDAM l BOSTON l HEIDELBERG l LONDON l NEW YORK l OXFORD PARIS l SAN DIEGO l SAN FRANCISCO l SINGAPORE l SYDNEY l TOKYO Focal Press is an Imprint of Elsevier Focal Press is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA First published 2011 Copyright Ó 2011 Eddy B. Brixen. Published by Elsevier Inc. All Rights Reserved. The right of Eddy B. Brixen to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988 No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. -
The Following Are Some of the Questions Raised During Our Classes and My Answers to Them
The following are some of the questions raised during our classes and my answers to them. Don’t trust my answers all the times. You are welcome to question, challenge and discuss about them. Question #1: What is the real meaning of the k-factor? When is it positive, negative and infinite? My answer: The k-factor is a measurement of the effective earth radius when the normally-non-straight radio line-of-sight path is considered. In other words, the k-factor measures how the earth curvature you “see” when you “fly” like radio waves along the radio path and consider yourself flying in a straight line. That is, the k-factor gives us the relative curvature of the real earth in reference to the radio path if it is considered as a straight line. To compute the k-factor, the original system is redrawn in such a way that the radio path becomes straight. Correspondingly, the curvature of the earth will be changed. The changed earth is then considered as the effective earth. The ratio of the radius r of the effective earth to the radius of the real earth ro is then considered as the k factor. If the centre of the effective earth is on the same side of the real earth, the k is positive; otherwise it is negative. The following figures illustrate the concept: Terminology: transmission level point (TLP): In a telecommunications system, a test point, i.e., a point where a signal may be inserted or measured, and for which the nominal power of a test signal is specified. -
J Pole - 4 Supper J Pole - 5 Slim Jim Antenna 1 1\4 - 6 Collener - 7 Discone - 8 Marconi Vertical Antenna - 9 Bazooka Antenna -10
. Antenna . Wave length ( ) 5% . 0.66 (velocity factor) RG-58 300 000 Km/s . = C , = F : = 120 Impedance ) . ( . ( ) 50 . , ( ) . 50 ( ) . 50 VSWR and Reflected Power SWR VSWR VSWR . ( ) 2:1 ( Voltage Standing Wave Ratio ) VSWR ) 1.5:1 1.5:1 VSWR 100 Watt ( 1:1 4 Watt 96 Watt . 4.2 Band Width . SWR , , , . 121 . : 150 MHz . 825 MHz 450 MHz : Band Width ( 150 – 156MHz ) ( ) . 3.9% BW = 100 X Fh – Fl Fc BW = 100 X 156 150 = 3.9 % 153 Decibel ( ) . 122 A . B . ( gain ) B A ( loss ) B A ( Isotropic ) dBi -1 . dBd -2 . 2.14 dBi = 0 dBd dBq -3 . , dBc -4 . ( side band peak power) dBm -5 . 50 v dB v -6 0dB v 50 1 v . dB(old) -7 0 dB 500 6mv 600 mv1 VU . 123 dBm dBw -8 - 30dBw = 0 0dBw = +30dBm . 1 . 0.775 V VRMS dBu -9 1 V dBv -10 , Milivolt dBmv -11 0dBmv 1mv 75 1mv . ( snow ) (Sound Pressure Level) dB(spl) -12 20 micropascals . 1 µPa . ( ) (Sound Intensity level) dB(sil) -13 ) / 10^ -12 . ( (Sound Power Level) dBswl -14 . 10^ -12 dB(C) / dB(B) / dB(A) -15 . 20 µPa dB(spl) dB(C). / 1 = 1 dBj -16 . 0dBj =0dBw/Hz ( Noise Density ) 1 µv / m dBµ -17 . ( / 1 ) . 1 femtowatt dBf -18 124 . 1Kilowatt dBk -19 0dBfs , dBfs -20 . Digital system 1 ( overload ) dBo -21 . analog system dBfs 1 bandwidth dB-Hz -22 . 20dB-Hz = 100Hz , Link budget calculation ( isometric circular ) dBic -23 . ( reference noise ) dBrn -24 Directivity and Gain . , 100 , 100 . , G = x D G = = D = 125 Gain measurement ( ) . -
The Telephone Network
TheThe TelephoneTelephone NetworkNetwork An Engineering Approach Ref: Digital Telephony (John Bellamy) and Fundamentals of Telecommunications (R. L. Freeman) Introduction to Telecommunications Network Engineering (Second Edition), (Anttalainen, Tarmo) IntroductoryIntroductory ConceptsConcepts Telecommunication means “communications at a distance” Tele in Greek means at a distance Electrical communications by wire, radio, or light (fiber optics) Traditionally two distinct disciplines: Switching: selects and directs communication signals to a specific user or a group of users Transmission: delivers the signals in some way from source to the far-end user with an acceptable signal quality EE4367 Telecom. Switching & Transmission Prof. Murat Torlak SimpleSimple TransmissionTransmission SystemSystem Source Transmission Medium Destination The source may be a simple telephone microphone, keyboard The destination may be a simple telephone speaker, monitor EE4367 Telecom. Switching & Transmission Prof. Murat Torlak TransmissionTransmission MediaMedia It can be a seen as a single electrical medium Source Medium Destination Or, as a cascade of electrical media Source Medium Medium Medium Destination Networks show a gain or loss. To understand these gains or loss, a good knowledge of the decibel and related measurement units is needed. EE4367 Telecom. Switching & Transmission Prof. Murat Torlak dBdB inin CommunicationsCommunications The db (decibel) is a relative unit of measurement commonly used in communications for providing a reference for input and output levels. Power gain or loss. Decibels are used to specify measured and calculated values in audio systems, microwave system gain calculations, satellite system link-budget analysis, antenna power gain, light-budget calculations and in many other communication system measurements In each case the dB value is calculated with respect to a standard or specified reference. -
The Decibel, Application Note No. 7
Application Note No. 7 ABCD 1996 Reeve Engineers E The DeciBel 1. Introduction This application note covers the logarithmic unit of signal ratio most commonly used in telephony, the deciBel (dB). Another related application note covers the application of the dB in using Transmission Level Points.1 A sound increase from one power level to another heard by the human ear leaves an impression of increased loudness that is approximately proportional to the logarithm of the ratio of the two powers. The original unit given to this phenomenon was the “Bel.” However, it was not convenient to use and is not seen in practical problems. This gave rise to the “deciBel,” which is Bel/10. A change in power level of 1 dB is barely perceptible to the human ear, while a change of 2 dB is noticeable. A change of 3 dB represents one-half our twice the power. 2. Definition of dB By definition, the deciBel, or dB, is the logarithmic (base 10) ratio of two powers, P1 and P2 given by P dB = 10log 2 P1 Example: Given that P2 = 1 mW and P1 = 0.4 mW, then P2/ P1 = 2.5, and dB = 10log(2.5) = 3.98 dB The sign resulting from the calculation indicates which power is greater. If the sign is positive, then P2 > P1; if negative, then P2 < P1. It is important that the two powers be expressed in the same units, such as milliWatt (mW) or Watt (W), otherwise the calculation is meaningless. If the number of dB is known, the power ratio can be found from P dB dB 2 = Anti log = 10 10 P1 10 1 See Application Note No.