Pulse Transmission
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spectrum Management Technical Handbook
NTIA TN 89-2 SPECTRUM MANAGEMENT TECHNICAL HANDBOOK TECHNICAL NOTE SERIES NTIA TECHNICAL NOTE 89-2 SPECTRUM MANAGEMENT TECHNICAL HANDBOOK l U.S. DEPARTMENT OF COMMERCE Robert A. Mosbacher, Secretary Alfred C. Sikes, Assistant Secretary for Communications and Information JULY 1989 ACKNOWLEDGEMENT NT IA acknowledges the efforts of Mark Schellhammer in the completion of Phase I of this handbook (Sections 1-3). Other portions will be added as resources are available. ABSTRACT This handbook is a compilation of the procedures, definitions, relationships and conversions essential to electromagnetic compatibility analysis. It is intended as a reference for NTIA engineers. KEY WORDS CONVERSION FACTORS COUPLING EQUATIONS DEFINITIONS ·TECHNICAL RELATIONSHIPS iii TABLE OF CONTENTS Subsection Page SECTION 1 TECHNICAL TERMS:DEFINITIONS AND NOTATION TERMS AND DEFINITIONS . .. .. 1-1 GLOSSARY OF STANDARD NOTATION . .. 1-13 SECTION 2 TECHNICAL RELATIONSHIPS AND CONVERSION FACTORS INTRODUCTION . .. .. .. 2-1 TRANSMISSION LOSS FOR RADIO LINKS . �. .. .. 2-1 Propagation Loss . .. .. .. 2-1 Transmission Loss ........................................ 2-2 Free-Space Basic Transmission Loss .......................... 2-2 Basic Transmission Loss .................................... 2-2 Loss Relative to Free-Space .................................. 2-2 System Loss . .. 2-3 ; Total Loss . .. .. 2-3 ANTENNA CHARACTERISTICS . .. 2-3 Antenna Directivity ........................................ 2-3 Antenna Gain and Efficiency .................................. 2-3 I -
Revision of Wireless Channel
ELEC6214 Advanced Wireless Communications Networks and Systems S Chen Revision of Wireless Channel • Quick recap system block diagram Wireless CODEC MODEM Channel • Previous three lectures looked into wireless mobile channels – To understand mobile communication technologies, one needs a deep understand of mobile communication media – Two main sources of hostility in mobile media are Doppler spread and multipath – Many techniques developed are counter measures for fading and frequency selective – How spatial/angular dimension fits into wireless mobile landscape • Front end of transceiver is Modem, which faces hostile (fading and frequency selective) communication media – Next eight lectures we will have a close look into Modem 57 ELEC6214 Advanced Wireless Communications Networks and Systems S Chen Digital Modulation Overview In Digital Coding and Transmission, we learn schematic of MODEM (modulation and demodulation) • with its basic components: clock carrier pulse b(k) x(k) x(t) s(t) pulse Tx filter bits to modulat. symbols generator GT (f) clock carrier channel recovery recovery GC (f) ^ b(k) x(k)^x(t) ^s(t) ^ symbols sampler/ Rx filter AWGN demodul. + to bits decision GR (f) n(t) The purpose of MODEM: transfer the bit stream at required rate over the communication medium • reliably – Given system bandwidth and power resource 58 ELEC6214 Advanced Wireless Communications Networks and Systems S Chen Constellation Diagram • Digital modulation signal has finite states. This manifests in symbol (message) set: M = {m1, m2, ··· , mM }, where each symbol contains log2 M bits • Or in modulation signal set: S = {s1(t),s2(t), ··· sM (t)}. There is one-to-one relationship between two sets: modulation scheme M S ←→ Q • Example: BPSK, M = 2. -
Pulse Shape Filtering in Wireless Communication-A Critical Analysis
(IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 2, No.3, March 2011 Pulse Shape Filtering in Wireless Communication-A Critical Analysis A. S Kang Vishal Sharma Assistant Professor, Deptt of Electronics and Assistant Professor, Deptt of Electronics and Communication Engg Communication Engg SSG Panjab University Regional Centre University Institute of Engineering and Technology Hoshiarpur, Punjab, INDIA Panjab University Chandigarh - 160014, INDIA [email protected] [email protected] Abstract—The goal for the Third Generation (3G) of mobile networks. The standard that has emerged is based on ETSI's communications system is to seamlessly integrate a wide variety Universal Mobile Telecommunication System (UMTS) and is of communication services. The rapidly increasing popularity of commonly known as UMTS Terrestrial Radio Access (UTRA) mobile radio services has created a series of technological [1]. The access scheme for UTRA is Direct Sequence Code challenges. One of this is the need for power and spectrally Division Multiple Access (DSCDMA). The information is efficient modulation schemes to meet the spectral requirements of spread over a band of approximately 5 MHz. This wide mobile communications. Pulse shaping plays a crucial role in bandwidth has given rise to the name Wideband CDMA or spectral shaping in the modern wireless communication to reduce WCDMA.[8-9] the spectral bandwidth. Pulse shaping is a spectral processing technique by which fractional out of band power is reduced for The future mobile systems should support multimedia low cost, reliable , power and spectrally efficient mobile radio services. WCDMA systems have higher capacity, better communication systems. It is clear that the pulse shaping filter properties for combating multipath fading, and greater not only reduces inter-symbol interference (ISI), but it also flexibility in providing multimedia services with defferent reduces adjacent channel interference. -
Digital Baseband Modulation Outline • Later Baseband & Bandpass Waveforms Baseband & Bandpass Waveforms, Modulation
Digital Baseband Modulation Outline • Later Baseband & Bandpass Waveforms Baseband & Bandpass Waveforms, Modulation A Communication System Dig. Baseband Modulators (Line Coders) • Sequence of bits are modulated into waveforms before transmission • à Digital transmission system consists of: • The modulator is based on: • The symbol mapper takes bits and converts them into symbols an) – this is done based on a given table • Pulse Shaping Filter generates the Gaussian pulse or waveform ready to be transmitted (Baseband signal) Waveform; Sampled at T Pulse Amplitude Modulation (PAM) Example: Binary PAM Example: Quaternary PAN PAM Randomness • Since the amplitude level is uniquely determined by k bits of random data it represents, the pulse amplitude during the nth symbol interval (an) is a discrete random variable • s(t) is a random process because pulse amplitudes {an} are discrete random variables assuming values from the set AM • The bit period Tb is the time required to send a single data bit • Rb = 1/ Tb is the equivalent bit rate of the system PAM T= Symbol period D= Symbol or pulse rate Example • Amplitude pulse modulation • If binary signaling & pulse rate is 9600 find bit rate • If quaternary signaling & pulse rate is 9600 find bit rate Example • Amplitude pulse modulation • If binary signaling & pulse rate is 9600 find bit rate M=2à k=1à bite rate Rb=1/Tb=k.D = 9600 • If quaternary signaling & pulse rate is 9600 find bit rate M=2à k=1à bite rate Rb=1/Tb=k.D = 9600 Binary Line Coding Techniques • Line coding - Mapping of binary information sequence into the digital signal that enters the baseband channel • Symbol mapping – Unipolar - Binary 1 is represented by +A volts pulse and binary 0 by no pulse during a bit period – Polar - Binary 1 is represented by +A volts pulse and binary 0 by –A volts pulse. -
ECE 463 Lab 3: Pulse Shaping and Matched Filtering
UIUC ECE 463 Digital Communication Laboratory Fall 2018 ECE 463 Lab 3: Pulse Shaping and Matched Filtering 1. Introduction The objective of this lab session is to introduce the basic concepts of pulse shaping, matched filter and pulse alignment. In digital communication, the message in digital must be converted into an analog signal to be transmitted. This conversion is done by the pulse shaping filter, which changes each symbol into a suitable analog pulse. Designing the pulse shape is important because the spectrum of the pulse dictates the spectrum of the whole transmission. However, to confine the spectrum, we have to smooth the pulse with slow transition. This requires the pulse extending beyond a symbol time, which introduces inter- symbol interference (ISI). Thus, there is a trade-off between the bandwidth and the ISI of the pulse shape. After transmission, the matched filter helps to recapture the symbols from the received pulses. The matched filter is aimed at reducing the sensitivity of noise by maximizing the signal-to-noise ratio (SNR) and minimizing the ISI at the receiver. In a more realistic channel model, the receiver never knows the precise arrival time of the pulse. Therefore, the receiver must know the exact symbol timing in order to correctly demodulate the transmitted symbols from the transmitter. 1.1. Contents 1. Introduction 2. Pulse Shaping 3. Matched Filtering 4. Pulse Alignment (Symbol Timing Recovery) 1.2. Report Submit the answers, figures and the discussions on all the questions. The report is due as a hard copy at the beginning of the next lab. -
NORTHERN ENGINEER a Publication of the School of Engineering
THE NORTHERN ENGINEER a publication of the school of engineering ""-·, • •• 4/ltlll .. Volume 23, Number 2 & 3 u NIVERSilY OF ALASKA FAIRBANKS .. Summer/Fall 1991 ADVISORY BOARD e are a reflection of our times. For THE NOKTHERN W ENGINEER, the University of Alaska, the State of Alaska, the Robert Boswell Lake & Boswell United States ofAmerica, and even the world as a whole, this is a time Fairbanks, AK of transition. The University of Alaska Fairbanks, of which THE AndrieChen NOKTHERN ENGINEER is a part, is undergoing a reorganization with Exxon Production the intent being to create a more streamlined, stronger entity, better Research Company Houston, TX able to meet the needs of our many constituencies. Mark Fryer Fryer/Pressley How will these changes affect THE NOKTHERN ENGINEER? Engineering, Inc. Anchorage, AK Well, one change has already occurred, Cynthia M. Owen left the Wilbur Haas University ofAlaska Fairbanks, effective June 30, 1992. This is the last Michigan Technological University issue that Mrs. Owen collaborated on--editing, proofing, Houghton, MI brainstorming. She contributed greatly to the quality of this publication Lee Leonard and will be sorely missed. U.S. Department of Energy Washington, DC The next part of this change will be the need for us to address the problems of THE NOKTHERN ENGINEER. We have been facing a Ed Link U.S.CRREL decline in paid subscribers, dijficulty in obtaining publishable technical Hanover,NH material and severe budgetary constraints. For all of these reasons, MikeMetz THE NORTHERN ENGINEER will temporarily suspend publication, Yukon Pacific Corporation effective the Winter 1991/Spring 1992 issue. -
3510 33 P Department of Commerce
This document is scheduled to be published in the Federal Register on 08/15/2017 and available online at https://federalregister.gov/d/2017-16904, and on FDsys.gov Billing Code: 3510 33 P DEPARTMENT OF COMMERCE Bureau of Industry and Security 15 CFR Parts 740, 772, and 774 [Docket No. 170309249-7249-01] RIN 0694-AH35 Wassenaar Arrangement 2016 Plenary Agreements Implementation AGENCY: Bureau of Industry and Security, Commerce. ACTION: Final rule. SUMMARY: The Bureau of Industry and Security (BIS) maintains, as part of its Export Administration Regulations (EAR), the Commerce Control List (CCL), which identifies certain items subject to Department of Commerce jurisdiction. This final rule revises the CCL, as well as corresponding parts of the EAR, to implement changes made to the Wassenaar Arrangement 1 List of Dual-Use Goods and Technologies (WA List) maintained and agreed to by governments participating in the Wassenaar Arrangement on Export Controls for Conventional Arms and Dual-Use Goods and Technologies (Wassenaar Arrangement, or WA) at the December 2016 WA Plenary meeting. The Wassenaar Arrangement advocates implementation of effective export controls on strategic items with the objective of improving regional and international security and stability. This rule harmonizes the CCL with the agreements reached at the 2016 Plenary meeting by revising Export Control Classification Numbers (ECCNs) controlled for national security reasons in each category of the CCL, as well as making other associated changes to the EAR. DATES: This rule is effective [INSERT DATE OF PUBLICATION IN THE FEDERAL REGISTER], except that: 1. the effective date for amendatory instruction 30 (ECCN 4A003 in Supplement No. -
Root Raised Cosine (RRC) Filters and Pulse Shaping in Communication Systems
Root Raised Cosine (RRC) Filters and Pulse Shaping in Communication Systems Erkin Cubukcu Abstract This presentation briefly discusses application of the Root Raised Cosine (RRC) pulse shaping in the space telecommunication. Use of the RRC filtering (i.e., pulse shaping) is adopted in commercial communications, such as cellular technology, and used extensively. However, its use in space communication is still relatively new. This will possibly change as the crowding of the frequency spectrum used in the space communication becomes a problem. The two conflicting requirements in telecommunication are the demand for high data rates per channel (or user) and need for more channels, i.e., more users. Theoretically as the channel bandwidth is increased to provide higher data rates the number of channels allocated in a fixed spectrum must be reduced. Tackling these two conflicting requirements at the same time led to the development of the RRC filters. More channels with wider bandwidth might be tightly packed in the frequency spectrum achieving the desired goals. A link model with the RRC filters has been developed and simulated. Using 90% power Bandwidth (BW) measurement definition showed that the RRC filtering might improve spectrum efficiency by more than 75%. Furthermore using the matching RRC filters both in the transmitter and receiver provides the improved Bit Error Rate (BER) performance. In this presentation the theory of three related concepts, namely pulse shaping, Inter Symbol Interference (ISI), and Bandwidth (BW) will be touched -
Digital Phase Modulation: a Review of Basic Concepts
Digital Phase Modulation: A Review of Basic Concepts James E. Gilley Chief Scientist Transcrypt International, Inc. [email protected] August , Introduction The fundamental concept of digital communication is to move digital information from one point to another over an analog channel. More specifically, passband dig- ital communication involves modulating the amplitude, phase or frequency of an analog carrier signal with a baseband information-bearing signal. By definition, fre- quency is the time derivative of phase; therefore, we may generalize phase modula- tion to include frequency modulation. Ordinarily, the carrier frequency is much greater than the symbol rate of the modulation, though this is not always so. In many digital communications systems, the analog carrier is at a radio frequency (RF), hundreds or thousands of MHz, with information symbol rates of many megabaud. In other systems, the carrier may be at an audio frequency, with symbol rates of a few hundred to a few thousand baud. Although this paper primarily relies on examples from the latter case, the concepts are applicable to the former case as well. Given a sinusoidal carrier with frequency: fc , we may express a digitally-modulated passband signal, S(t), as: S(t) A(t)cos(2πf t θ(t)), () = c + where A(t) is a time-varying amplitude modulation and θ(t) is a time-varying phase modulation. For digital phase modulation, we only modulate the phase of the car- rier, θ(t), leaving the amplitude, A(t), constant. BPSK We will begin our discussion of digital phase modulation with a review of the fun- damentals of binary phase shift keying (BPSK), the simplest form of digital phase modulation. -
Biasing Techniques for Linear Power Amplifiers Anh Pham
Biasing Techniques for Linear Power Amplifiers by Anh Pham Bachelor of Science in Electrical Engineering and Economics California Institute of Technology, June 2000 Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Engineering and Computer Science Master of Engineering in Electrical 8ARKER at the &UASCHUSMrSWi#DTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUL 3 12002 May 2002 LIBRARIES @ Massachusetts Institute of Technology 2002. All right reserved. Author Department of Electrical Engineering and Computer Science May 2002 Certified by _ Charles G. Sodini Professor of Electrical Engineering and Computer Science Thesis Supervisor Accepted by Arthuf-rESmith, Ph.D. Chairman, Committee on Graduate Students Department of Electrical Engineering and Computer Science 2 Biasing Techniques for Linear Power Amplifiers by Anh Pham Submitted to the Department of electrical Engineering and Computer Science on May 10, 2002 in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science Abstract Power amplifiers with conventional fixed biasing attain their best efficiency when operate at the maximum output power. For lower output level, these amplifiers are very inefficient. This is the major shortcoming in recent wireless applications with an adaptive power design; where the desired output power is a function of the bit-error rate, channel characteristics, modulation schemes, etc. Such applications require the power amplifier to have an optimum performance not only at the peak output level, but also across the adaptive power range. An adaptive biasing topology is proposed and implemented in the design of a power amplifier intended for use in the WiGLAN (Wireless Gigabits per second Local Area Network) project. -
Spline Pulse Shaping with Isi-Free Matched Filter Receiver
SPLINE PULSE SHAPING WITH ISI-FREE MATCHED FILTER RECEIVER Jes´usIb´a˜nez, Carlos Pantale´on, Jos´eDiez, Ignacio Santamar´ıa DICOM, ETSII y Telecomunicaci´on,Universidad de Cantabria. Avda Los Castros s.n., 39005 Santander, Spain. Tel: +34 942 201388; fax: +34 942 201488 e-mail:[email protected] ∗ ABSTRACT idea, in this paper we propose to interpolate the discrete se- Although the raised cosine pulse shaping filter is a well- quence of symbols using splines. In this way, we construct an established standard in digital communications, in many ISI-free signal when sampled at the symbol rate. Although practical systems simpler approaches are useful. In this any reconstruction technique from the communications sym- paper a new family of pulse shaping filters with zero in- bols that exactly goes through the symbols is a zero ISI tersymbol interference after matched filtering is proposed. communications signal, splines have a number of advantages The method, based on the spline interpolation of the symbol that make them an interesting choice when spectral con- data, exploits two properties of splines: that the B-spline tent as well as complexity are of concern. The main advan- coefficients can be efficiently obtained via digital filtering, tage is that any spline interpolation model of odd-order may and that the B-spline kernels of order n can be constructed be computed by filtering the sequence of symbols with two from the convolution of n + 1 rectangular pulses. These matched filters, so it is quite simple to design an optimal re- two facts suggest how to decompose the filtering operations ceiver. -
The Db Concept
Chapter | six The dB Concept CHAPTER OUTLINE dBdPower Ratio..................................................................................................................... 40 dBdAmplitude Ratio.............................................................................................................. 40 From dB to Power or Amplitude Ratio............................................................................ 41 Conversion Table ....................................................................................................................... 41 Reference Values ...................................................................................................................... 41 Other Relative Units ................................................................................................................43 Weighted Measurements....................................................................................................... 44 Addition of dB........................................................................................................................... 44 Nomogram (Addition)..........................................................................................................................44 Subtraction of dB......................................................................................................................45 Nomogram (Subtraction) ...................................................................................................................46 When sound levels have to