Fish Community Structure in a Natural Rainforest Lake, Nigeria

Total Page:16

File Type:pdf, Size:1020Kb

Fish Community Structure in a Natural Rainforest Lake, Nigeria Animal Research International (2017) 14(3): 2809 – 2817 2809 FISH COMMUNITY STRUCTURE IN A NATURAL RAINFOREST LAKE, NIGERIA 1 IBEMEN UGA , Keziah Nwamaka , 1 OPARA , Prudentia Ogochukwu and 2 OK E KE , John Joseph 1 Department of Biological Sciences, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria . 2 Depar tment of Zoology, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria. Corresponding Author : Ibemenuga, K. N. Department of Biological Sciences, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria . Email : [email protected] Phone : +234 8126421299 ABSTRACT Studies on fish community of Agulu Lake were conducted from April to July 2015. Fish samples were b ought from fisherm e n who caught them using gillnets and traps. A total of 159 fish s amples belonging to 3 orders, 7 families , 8 genera and 10 species were obtained during the study. Station I had the highest fish abundance of 50.9 %, while station III had the lowest fish abundance of 23.5 %. Fishes belonging to the order Perciformes were the most abundant ( 66.04 % ) of the total catch. This was followed by Siluriformes (31.43 %). The least order Osteoglossiformes was represented by 1.26 % of the total fish caught. Cichlidae, the most abundant family, has the highest number (103, 64.78%) of fish caught from the lake. The monospecific families encountered in the study we re Channidae ( Parachanna obscura ) , Bagridae ( Chrysichthys nigrodigitatus ) , Mochokidae (S ynodontis ocellifer ) , Malapter uridae ( Malapterurus electricus ) and Notopteridae ( Papyroc ranus af e r ) . The highest number of fish was caught in May (52, 32.7 %) and the lowest number of fish was caught in July (28, 17.6 %). The general diversity index (H) was highest (0.741) in station I and lowest (0.605) in station II . Evenness (E) followed t he same trend be ing highest (0.741) in station I and lowest (0.670) in station II . Dominance was maximum (0.342) in station II and minimum (0.270) in station 1. The same trend was observed in Simpson’s index which was highest (0.324) in station III and low est (0.258) in station I . Keywords: Fish community, Clariidae, Cichlidae, Channidae, Malapteruridae , Notopteridae , Rainforest, Agulu Lake INTRODUCTION (omnivorous, herbivorous, plantivorous and piscivorous) and occupy different trophic levels. Fish is a two chambered heart vertebrate that Biological communities vary in time and space spends its entire life in water in order to live and as a result of differences in habitat structure u ndergo its necessary life activities. Fish is a (Gorman and Kar r , 1978 ), resource availability very highly preferred , traded and edible aquatic (Grenou illet et al ., 2002) and biogeographical resource all over the world (Ekpo et al ., 2014). patterns (Jackson and Harvey, 1989; Tonn et A species of f ish occupying a particular area at a al ., 1990; Ma t thews and Robinson, 1998). Thus , particular time constitutes fish population. there is need for detailed knowledge of fish Different popu lations of fish inhabiting particular species in our natural waters and the ir response water body at a particular time forms a fish to various abiotic and biotic components of community. Members of a fish community are waters that is needful for adequate diverse in species and feeding habits management and sustainability. Studies on fish ISSN: 1597 – 3115 ARI 2017 14(3): 2809 – 2817 www.zoo - unn.org Ibemenuga et al. 2810 communities include Victor and Tetteh (1988) in Other activities associated with the lake include Ikpoba River, Ikomi et al . (1997) in River construction of Lake Resort for tourism , Jamieson, Ogbeibu and Ezeunara (2002) in dumping of wastes and ritual sacrifices. Agulu Ikpoba River, Ogidiaka et al . (2013) in Warri Lake is the largest lake in Anambra State . It has River and Anigboro et al . (2014) in Iy i - Ekpen three permanent surface water sources namely Stream. However, apart from the study of Idemili Omelagha, Utokoloafo and Ch ukwujekwu and Chidi (2013) on the fish Egbulumawolo streams (Inyang and Ezenwaji, fauna of Agulu Lake, no other report exists on 2004). The climate is tropical and consists of the fish community structure of Agulu Lake. The wet season (April – September/October) and present study wa s carried out to provide dry season (October/November – March) . information on the fish community structure, species abundance and distribution , needful for Stations: Three sampling stations were the sustainable management of the lake and its studied. Station I wa s characterized by mud and fishery resources. sand. Human activities in this station include fish rearing in fish ponds, deposition of MATERIALS AND METHODS chippings within the catchment area and packing of company truck s in a garage Description of the Study Area : The study constructed with barbwire. Macrophytes in this was carried out in Agulu Lake in Anaocha Local station incl ude d Costus afar, Sag g iteria sp . and Government Area of Anambra State, Nigeria Elaeis guineensis . (Fig ure 1). Station II wa s characterized with sand, mud and debris in some places. Washing of clothes, breadfruit, fishing and swimming were among human activities occurring in this station. Plants growing alon g the banks include d Elaeis guineensis, Raphia hookeri and Persea americana . Station III ha d sand and debris. Washing of cars , motor cycles, construction of a La k e Resort and deposition of waste were among human activiti es occurring in this station. Macro phytes in this station include d Elaeis guineensis, Eic hhornia crassi pes, Ceratophyllum sp . and Saggiteria sp. Figure 1: Map of Agulu Lake showing the sampled stations Fishes: Fish es were col lected fortnightly from fisherme n who caught the fishes with different Ag ulu Lake lies within latitude 6 07 ' and 6 09 ' fishing gears including gillnet and traps (Eyo N and longitude 7 01 ' and 7 03 ' E in Anambra and Akpati, 1995) . The sampling was carried Basin ( Okoye et al. , 2014 ). It is a natural lake out for four month s (April – July 2015). The and the area is underlain by the Eocene fishes caught were imme d i ately preserved in 10 ( tertiary ) shallow m arine to continent al Ameki % formalin and transported to the laboratory for Formation, which is do minantly sandy with observation and identification. Fish sample d purpl e, white, grey, pink, clay - shale - silt bands were identified to species lev el using the (Offodile, 2002; Eyo et al ., 2008). The six - taxonomic keys of Olaosebikan and Raji (1998) armed lake serves the local population by and Idodo - Ume h (2003). provision of water for farming, washing , fishing and domestic use . Animal Research International (2017) 14(3): 2809 – 2817 Fish community structure in a Nigeria natural rainforest lake 2811 Data Analysis: Fish species compositions were It ha d the highest number of fishes (105) which analyzed using simple percentage. Bellinger’s represented 66.04 % of the total catch. coefficient, Margalef index of species richness Siluriformes, the next abundant order occurred (d), Shannon - Wiener diversity ind ex (H) and in all the stud ied stations contributing 38.27 % species evenness or equitability (E) , dominance in station I, 21.95 % in station II and 32.43 % (C) and Simpsons index (D) were analyzed in station II I. It accounted for 32.70 % of the using the methods of Zar ( 1984). Analysis of total catch . The least order Osteoglossiformes variance (ANOVA) was used to test for was occasional encountered in sta t i on s I and II significant difference among the sampling (2.44 %) and was absent in station III. It stations. contributed 1.26 % of the total fish captured in the study. RESULTS Fish Families: The com position and abundance Fish Specie s : Table 1 show ed the fish species of fish species and families caught from Agulu composition, abundance and distribution at the Lake is presented in Table 3. Cichlidae was the sampl ed stations of Agulu Lake. A total of 129 most abundant family with the highest number fish sample d during the study, belong ed to 3 (103) of fishes. It formed 64.78 % of the total orders, 7 families, 8 genera and 10 species . fish caught from the lake. The next abundant Station I had the highest fish abunda nce (81, family was Clariidae with 27 individuals which 50.9 %) , while station III h ad the least contributed 16.98 % of the total catch. The abundance (37, 23.3 %) (Fig ure 2) . Analysis o f families Channidae, Malapteruridae and variance showed that the fish abundance at the Notopteridae each had the lowest number (21) stud ied stations differed significant ly (p<0.05). with the le a st contribution of 1.26 % each of All the fish species (100 %) encountered during the overall catch. The family Cichl idae had the the study occu rred in station I. Eighty percent highest number of species (3) followed by (80 %) and 60 % of the species were recorded Clariidae (2) with respective percentage in stations II and III respectively . Tilapia zilli contribution of 30 % and 20 %. Channidae, which recorded 50.69 % of the total catch was Bagridae, Mochokidae, Malap t ruridae and the most abundant taxon in the Lake . It Notopteridae with 1 species each, accounted for dominated the fishes sample d from the th ree 10 % each to the total fish sp ecies caught stations. This was followed by Clarias gariepinus during the study. (21, 13.21%), Tilapia mariae, Sarotherodon galilaeus and Clarias anguillaris among others. Monthly Variations : The abundance and Clarias gariepinus occurred at all the sampl ed distribution of fish species and families in stations . However, some species were restricted relation to month s is show n in Table 4. There in distribution .
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Transcriptome Ortholog Alignment Sequence Tools (TOAST) for Phylogenomic Dataset Assembly
    Transcriptome Ortholog Alignment Sequence Tools (TOAST) for Phylogenomic Dataset Assembly Dustin J. Wcisel North Carolina State University J. Thomas Howard North Carolina State University Jeffrey A. Yoder North Carolina State University Alex Dornburg ( [email protected] ) NC Museum of Natural Sciences https://orcid.org/0000-0003-0863-2283 Software Keywords: BUSCO ortholog assembly, Cetacean and teleost sh phylogeny, Missing Data Visualization, Transcriptome, Concatenated Alignment Posted Date: March 12th, 2020 DOI: https://doi.org/10.21203/rs.2.16269/v4 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at BMC Evolutionary Biology on March 30th, 2020. See the published version at https://doi.org/10.1186/s12862-020-01603-w. Page 1/18 Abstract Background Advances in next-generation sequencing technologies have reduced the cost of whole transcriptome analyses, allowing characterization of non-model species at unprecedented levels. The rapid pace of transcriptomic sequencing has driven the public accumulation of a wealth of data for phylogenomic analyses, however lack of tools aimed towards phylogeneticists to eciently identify orthologous sequences currently hinders effective harnessing of this resource. Results We introduce TOAST, an open source R software package that can utilize the ortholog searches based on the software Benchmarking Universal Single-Copy Orthologs (BUSCO) to assemble multiple sequence alignments of orthologous loci from transcriptomes for any group of organisms. By streamlining search, query, and alignment, TOAST automates the generation of locus and concatenated alignments, and also presents a series of outputs from which users can not only explore missing data patterns across their alignments, but also reassemble alignments based on user-dened acceptable missing data levels for a given research question.
    [Show full text]
  • Food and Feeding Habits of Tilapia Zilli (Pisces: Cichlidae) in River Otamiri South-Eastern Nigeria
    Bioscience Discovery 3(2):146-148, June 2012 ISSN: 2229-3469 (Print) FOOD AND FEEDING HABITS OF TILAPIA ZILLI (PISCES: CICHLIDAE) IN RIVER OTAMIRI SOUTH-EASTERN NIGERIA Agbabiaka L. A. Department of Fisheries Technology, Federal Polytechnic Nekede, Owerri, Nigeria P.M.B. 1036, OWERRI, IMO STATE. NIGERIA [email protected] ABSTRACT Dietary habits of Tilapia zilli (Gervais, 1848) was studied in River Otamiri, Imo State, Nigeria. Fish specimens were procured from Artisanal fishermen every two weeks. Specimens were usually injected 4% formalin at the fishing station prior to laboratory analysis. A total of 97 specimens were analyzed for gut contents using Numerical and frequency of occurrence methods. Data collected showed that Tilapia zilli is an Omnivorous fish with dietary preference for Algae (71.05% and 59.52%), vegetative matter (10.52% and 50.00%), detritus (0% and 11.90%) and aquatic invertebrates larvae such as Chaoborus larvae (52.63% and 47.61%) and Chironomid larvae (31.58% and 21.43%) for juveniles and adult Tilapia respectively. Key words: Dietary habits, Tilapia zilli, River Otamiri, Omnivorous. INTRODUCTION MATERIALS AND METHODS Family Cichlidae comprising of Tilapia and River Otamiri lies between latitude 50 301 and 70 Hemichromis species are endemic to Nigeria, it is 301 North, and longitude 50 390 and 50 421 East. The widely distributed in Nigeria waters and second entire study area is about 20km representing the most abundant fish species at River Otamiri Southern part of the River along Obinze-Umuagwo (Agbabiaka, 2010). Various researchers have stretch in Imo State, Nigeria. Three sampling points investigated food and feeding habits of Cichlids and were located namely Obinze, Mgbirichi, and other commercially important fishes in Nigeria and Umuagwo which were about 7km intervals.
    [Show full text]
  • A Review of the Systematic Biology of Fossil and Living Bony-Tongue Fishes, Osteoglossomorpha (Actinopterygii: Teleostei)
    Neotropical Ichthyology, 16(3): e180031, 2018 Journal homepage: www.scielo.br/ni DOI: 10.1590/1982-0224-20180031 Published online: 11 October 2018 (ISSN 1982-0224) Copyright © 2018 Sociedade Brasileira de Ictiologia Printed: 30 September 2018 (ISSN 1679-6225) Review article A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei) Eric J. Hilton1 and Sébastien Lavoué2,3 The bony-tongue fishes, Osteoglossomorpha, have been the focus of a great deal of morphological, systematic, and evolutio- nary study, due in part to their basal position among extant teleostean fishes. This group includes the mooneyes (Hiodontidae), knifefishes (Notopteridae), the abu (Gymnarchidae), elephantfishes (Mormyridae), arawanas and pirarucu (Osteoglossidae), and the African butterfly fish (Pantodontidae). This morphologically heterogeneous group also has a long and diverse fossil record, including taxa from all continents and both freshwater and marine deposits. The phylogenetic relationships among most extant osteoglossomorph families are widely agreed upon. However, there is still much to discover about the systematic biology of these fishes, particularly with regard to the phylogenetic affinities of several fossil taxa, within Mormyridae, and the position of Pantodon. In this paper we review the state of knowledge for osteoglossomorph fishes. We first provide an overview of the diversity of Osteoglossomorpha, and then discuss studies of the phylogeny of Osteoglossomorpha from both morphological and molecular perspectives, as well as biogeographic analyses of the group. Finally, we offer our perspectives on future needs for research on the systematic biology of Osteoglossomorpha. Keywords: Biogeography, Osteoglossidae, Paleontology, Phylogeny, Taxonomy. Os peixes da Superordem Osteoglossomorpha têm sido foco de inúmeros estudos sobre a morfologia, sistemática e evo- lução, particularmente devido à sua posição basal dentre os peixes teleósteos.
    [Show full text]
  • Summary of Temperature Metrics for Aquatic Invasive Fish Species in the Prairie Region
    Summary of Temperature Metrics for Aquatic Invasive Fish Species in the Prairie Region Theresa E. Mackey, Caleb T. Hasler, and Eva C. Enders Fisheries and Oceans Canada Ecosystems and Oceans Science Central and Arctic Region Freshwater Institute Winnipeg, MB R3T 2N6 2019 Canadian Technical Report of Fisheries and Aquatic Sciences 3308 1 Canadian Technical Report of Fisheries and Aquatic Sciences Technical reports contain scientific and technical information that contributes to existing knowledge but which is not normally appropriate for primary literature. Technical reports are directed primarily toward a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely, fisheries and aquatic sciences. Technical reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base Aquatic Sciences and Fisheries Abstracts. Technical reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925. Rapport technique canadien des sciences halieutiques et aquatiques Les rapports techniques contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui ne sont pas normalement appropriés pour la publication dans un journal scientifique.
    [Show full text]
  • Adiaha Alda Alex UGWUMBA (Nee EKPO) (B) NATIONALITY: Nigerian
    CURRICULUM VITAE 1. (a) NAME: Adiaha Alda Alex UGWUMBA (Nee EKPO) (b) NATIONALITY: Nigerian (c) STATE OF ORIGIN: Akwa Ibom State, Nigeria (d) DATE OF BIRTH: 15 September 1956 (e) MARITAL STATUS: Married (f) NO OF CHILDREN: Two (g) EMPLOYER: University of Ibadan DEPARTMENT: Zoology FACULTY: Science (h) PRESENT POST: Professor (2007) (i) POSTAL ADDRESS: Department of Zoology, University of Ibadan, Ibadan, Oyo State (j) HOME ADDRESS: 19 Amina Way, University of Ibadan, Ibadan, Nigeria (k) EMAIL ADDRESS: [email protected] [email protected] [email protected] (l) TELEPHONE NO.: +2348023416143; +2348097308117; (n) NEXT OF KIN AND ADDRESS: Prof. O. A. Ugwumba Department of Zoology University of Ibadan Ibadan, Nigeria III. UNIVERSITY EDUCATION: (a) University of Ibadan: Undergraduate, 1976-1979 Postgraduate (Ph.D), 1985-1990 (b) University of Lagos: Postgraduate (M.Sc), 1980-1982 IV. ACADEMIC QUALIFICATIONS (WITH DATES & GRANTING BODIES): (a) B. Sc. (Zoology), Second Class Upper Division, University of Ibadan July1979 (b) M. Sc. (Zoology) (Area of specialization: Fisheries), University of Lagos July 1983 (c) Ph. D. (Zoology) (Area of specialization: Fisheries), University of Ibadan July 1990 V. PROFESSIONAL QUALIFICATION AND DIPLOMA (WITH DATES): Federal Marine Fisheries School Certificate on Instruction for Fisheries/Research Officers Sept. 1983. VI. SCHOLARSHIPS, FELLOWSHIPS AND PRIZES IN THE LAST TEN YEARS: Nigeria University Doctoral Thesis Award Scheme (NUDAS) -Supervisor of Best Doctoral Thesis in Biological Sciences within the Nigeria University System in 2007 VII. HONOURS, DISTINCTIONS AND MEMBERSHIP OF LEARNED SOCIETIES: 1 a. Fellow, Fisheries Society of Nigeria (Ffs) b. Fellow, Zoological Society of Nigeria (Fzsn) c. Member, Nigerian Association of Aquatic Sciences d.
    [Show full text]
  • A Review of the Systematic Biology of Fossil and Living Bony-Tongue Fishes, Osteoglossomorpha (Actinopterygii: Teleostei)" (2018)
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2018 A review of the systematic biology of fossil and living bony- tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei) Eric J. Hilton Virginia Institute of Marine Science Sebastien Lavoue Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Hilton, Eric J. and Lavoue, Sebastien, "A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei)" (2018). VIMS Articles. 1297. https://scholarworks.wm.edu/vimsarticles/1297 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Neotropical Ichthyology, 16(3): e180031, 2018 Journal homepage: www.scielo.br/ni DOI: 10.1590/1982-0224-20180031 Published online: 11 October 2018 (ISSN 1982-0224) Copyright © 2018 Sociedade Brasileira de Ictiologia Printed: 30 September 2018 (ISSN 1679-6225) Review article A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei) Eric J. Hilton1 and Sébastien Lavoué2,3 The bony-tongue fishes, Osteoglossomorpha, have been the focus of a great deal of morphological, systematic, and evolutio- nary study, due in part to their basal position among extant teleostean fishes. This group includes the mooneyes (Hiodontidae), knifefishes (Notopteridae), the abu (Gymnarchidae), elephantfishes (Mormyridae), arawanas and pirarucu (Osteoglossidae), and the African butterfly fish (Pantodontidae). This morphologically heterogeneous group also has a long and diverse fossil record, including taxa from all continents and both freshwater and marine deposits.
    [Show full text]
  • Historical Background of the Trust
    TRANSYLVANIAN REVIEW OF SYSTEMATICAL AND ECOLOGICAL RESEARCH 17.2 The Wetlands Diversity Editors Angela Curtean-Bănăduc & Doru Bănăduc Sibiu ‒ Romania 2015 TRANSYLVANIAN REVIEW OF SYSTEMATICAL AND ECOLOGICAL RESEARCH 17.2 The Wetlands Diversity Editors Angela Curtean-Bănăduc & Doru Bănăduc “Lucian Blaga” University of Sibiu, Faculty of Sciences, Department of Ecology and Environment Protection Published based mainly on some of the scientific materials presented at the fourth “Aquatic Biodiversity International Conference” ‒ Sibiu/Romania 2015 ESENIAS Ecotur Sibiu “Lucian Blaga” International East and South N.G.O. University Association for Danube European network for of Sibiu Research Invasive Alien Species Sibiu ‒ Romania 2015 Scientifical Reviewers John Robert AKEROYD Sherkin Island Marine Station, Sherkin Island ‒ Ireland. Doru BĂNĂDUC “Lucian Blaga” University of Sibiu, Sibiu ‒ Romania. Alexandru BURCEA “Lucian Blaga” University of Sibiu, Sibiu ‒ Romania. Bill CHAMBERS Liverpool Hope University, Liverpool ‒ United Kingdom. Kevin CIANFAGLIONE University of Camerino, Camerino ‒ Italy. Angela CURTEAN-BĂNĂDUC “Lucian Blaga” University of Sibiu, Sibiu ‒ Romania. Laurisse FRAMPTON Australian Rivers Institute, Griffith University, Nathan, Queensland ‒ Australia. Andréa GALOTTI CEACTierra – University of Jaén, Jaén ‒ Spain. Marian-Traian GOMOIU Romanian Academy, Bucharest ‒ Romania. Thomas HEIN Austrian Academy of Sciences, Institute for Limnology, Mondsee ‒ Austria. Georg Albert JANAUER University of Vienna, Vienna ‒ Austria. Mike JOY Te Kura Matauranga o nga Taonga a Papatuanuku Massey University, Palmerston North ‒ New Zealand. Mirjana LENHARDT Institute for Biological Research, Belgrade ‒ Serbia. Weronika MAŚLANKO University of Life Science of Lublin, Lublin – Poland. Skyler PAULI Montana University, Missula ‒ United States of America. Eckbert SCHNEIDER Karlsruhe University, Institute for Waters and River Basin Management, Rastatt ‒ Germay. Teodora TRICHKOVA Bulgarian Academy of Sciences, Institute of Zoology, Sofia ‒ Bulgaria.
    [Show full text]
  • Mitochondrial Phylogeny and Phylogeography of East African
    BMC Evolutionary Biology BioMed Central Research article Open Access Mitochondrial phylogeny and phylogeography of East African squeaker catfishes (Siluriformes: Synodontis) Stephan Koblmüller1, Christian Sturmbauer1, Erik Verheyen2, Axel Meyer3 and Walter Salzburger*3 Address: 1Department of Zoology, Karl-Franzens-University Graz, Universitätsplatz 2, 8010 Graz, Austria, 2Vertebrate Department, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium and 3Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, 78467 Konstanz, Germany Email: Stephan Koblmüller - [email protected]; Christian Sturmbauer - [email protected]; Erik Verheyen - [email protected]; Axel Meyer - [email protected]; Walter Salzburger* - walter.salzburger@uni- konstanz.de * Corresponding author Published: 19 June 2006 Received: 10 April 2006 Accepted: 19 June 2006 BMC Evolutionary Biology 2006, 6:49 doi:10.1186/1471-2148-6-49 This article is available from: http://www.biomedcentral.com/1471-2148/6/49 © 2006 Koblmüller et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Squeaker catfishes (Pisces, Mochokidae, Synodontis) are widely distributed throughout Africa and inhabit a biogeographic range similar to that of the exceptionally diverse cichlid fishes, including the three East African Great Lakes and their surrounding rivers. Since squeaker catfishes also prefer the same types of habitats as many of the cichlid species, we hypothesized that the East African Synodontis species provide an excellent model group for comparative evolutionary and phylogeographic analyses.
    [Show full text]
  • Notopteridae; Osteoglossiformes)
    G C A T T A C G G C A T genes Article From Chromosomes to Genome: Insights into the Evolutionary Relationships and Biogeography of Old World Knifefishes (Notopteridae; Osteoglossiformes) Felipe Faix Barby 1, Petr Ráb 2,Sébastien Lavoué 3, Tariq Ezaz 4 ID , Luiz Antônio Carlos Bertollo 1, Andrzej Kilian 5, Sandra Regina Maruyama 1 ID , Ezequiel Aguiar de Oliveira 1 ID , Roberto Ferreira Artoni 6, Mateus Henrique Santos 6, Oladele Ilesanmi Jegede 7, Terumi Hatanaka 1, Alongklod Tanomtong 8, Thomas Liehr 9 and Marcelo de Bello Cioffi 1,* 1 Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP 13565-905, Brazil; [email protected] (F.F.B.); [email protected] (L.A.C.B.); [email protected] (S.R.M.); [email protected] (E.A.d.O.); [email protected] (T.H.) 2 Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Libˇechov, Czech Republic; [email protected] 3 Institute of Oceanography, National Taiwan University, Roosevelt Road, Taipei 10617, Taiwan; [email protected] 4 Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia; [email protected] 5 Diversity Arrays Technology, University of Canberra, Bruce, Australian Capital Territory, Canberra, ACT 2617, Australia; [email protected] 6 Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR 84030-900 Brazil; [email protected] (R.F.A.); [email protected] (M.H.S.) 7 Department of Fisheries and Aquaculture, Adamawa State University, P.M.B.
    [Show full text]
  • Int. J. Biosci. 2020
    Int. J. Biosci. 2020 International Journal of Biosciences | IJB | ISSN: 2220-6655 (Print) 2222-5234 (Online) http://www.innspub.net Vol. 16, No. 4, p. 543-557, 2020 RESEARCH PAPER OPEN ACCESS Community structure of Mochokidae (Jordan, 1923) fishes from Niger River at Northern Benin: implications for conservation and sustainable exploitation Hamidou Arame, Alphonse Adite*, Kayode Nambil Adjibade, Rachad Sidi Imorou, Pejanos Stanislas Sonon Laboratoire d’Ecologie et de Management des Ecosystèmes Aquatiques (LEMEA), Département de Zoologie, Faculté des Sciences et Techniques, Université d’Abomey, Calavi, Cotonou, Bénin Key words: Degradation, Management, Mochokidae, Niger River, Synodontis schall abundance http://dx.doi.org/10.12692/ijb/16.4.543-557 Article published on April 30, 2020 Abstract In Niger River in Benin, Mochokid fishes constitute valuable fishery resources of high commercial and economic importance. An ichtyological survey targeted to Mochokidae family was conducted in Niger River to document the community structure of these taxa in order to contribute to species management and sustainable exploitation. Fish individuals were sampled every month from February 2015 to July 2016 from artisanal fisheries and experimental catches using gillnets, cast nets, seines and longlines. The results indicated that the Niger River in Benin was rich of fourteen (14) species belonging to one (1) genus, Synodontis. Numerically, three (3) species, Synodontis schall (74.50%), Synodontis membranaceus (16.79%) and Synodontis nigrita (2.24%) were the most abundant. Likewise, three (3) Mochokidae, Synodontis schall, Synodontis membranaceus and Synodontis clarias showed a wide distribution and consistently occurred in all sampling sites. Seasonaly, the flooding period was the most diverse season showing the highest Shannon-Weaver index of species diversity H’ =1.65.
    [Show full text]
  • NJ Tree Constructed from BOLD Database for Identification of Malapterurus and Protopterus from Our Study
    NJ tree constructed from BOLD database for identification of Malapterurus and Protopterus from our study 2 % Creteuchiloglanis macropterus|[1]|Sisoridae| Creteuchiloglanis gongshanensis|[2]|Sisoridae| Clarias batrachus|[3]|Bangladesh|Clariidae| Clarias batrachus|[4]|Clariidae| Clarias batrachus|[5]|Clariidae| Clarias batrachus|[6]|Clariidae| Clarias batrachus|[7]|Nepal.Gandaki|Clariidae| Triportheus magdalenae|[8]|Colombia|Characidae| Molossus molossus|[9]|Molossidae| Malapterurus electricus|[10]|Malapteruridae| Malapterurus electricus|[11]|Malapteruridae| Malapterurus beninensis|[12]|Malapteruridae| Malapterurus beninensis|[13]|Malapteruridae| Malapterurus sp.|[14]|Republic of the Congo|Malapteruridae| Malapterurus sp.|[15]|Republic of the Congo|Malapteruridae| Malapterurus beninensis|[16]|Republic of the Congo|Malapteruridae| Malapterurus beninensis|[17]|Republic of the Congo|Malapteruridae| Malapterurus melanochir|[18]|Democratic Republic of the Congo|Malapteruridae| Malapterurus microstoma|[19]|Democratic Republic of the Congo.Bas-Congo|Malapteruridae| Malapterurus monsembeensis|[20]|Democratic Republic of the Congo.Bas-Congo|Malapteruridae| Paradoxoglanis parvus|[21]|Democratic Republic of the Congo.Kasai-Oriental|Malapteruridae| Paradoxoglanis parvus|[22]|Democratic Republic of the Congo.Kasai-Oriental|Malapteruridae| Malapterurus monsembeensis|[23]|Democratic Republic of the Congo.Kinshasa|Malapteruridae| Malapterurus monsembeensis|[24]|Democratic Republic of the Congo.Bas-Congo|Malapteruridae| Malapterurus monsembeensis|[25]|Democratic
    [Show full text]