Geocoding Without Geotags: A Text-based Approach for reddit Keith Harrigian Warner Media Applied Analytics Boston, MA
[email protected] Abstract that will require more thorough informed consent processes (Kho et al., 2009; European Commis- In this paper, we introduce the first geolocation sion, 2018). inference approach for reddit, a social media While some social platforms have previously platform where user pseudonymity has thus far made supervised demographic inference dif- approached the challenge of balancing data access ficult to implement and validate. In particu- and privacy by offering users the ability to share lar, we design a text-based heuristic schema to and explicitly control public access to sensitive at- generate ground truth location labels for red- tributes, others have opted not to collect sensitive dit users in the absence of explicitly geotagged attribute data altogether. The social news website data. After evaluating the accuracy of our la- reddit is perhaps the largest platform in the lat- beling procedure, we train and test several ge- ter group; as of January 2018, it was the 5th most olocation inference models across our reddit visited website in the United States and 6th most data set and three benchmark Twitter geoloca- tion data sets. Ultimately, we show that ge- visited website globally (Alexa, 2018). Unlike olocation models trained and applied on the real-name social media platforms such as Face- same domain substantially outperform models book, reddit operates as a pseudonymous website, attempting to transfer training data across do- with the only requirement for participation being mains, even more so on reddit where platform- a screen name.