Modulation of Asic1a Function by Sigma-1 Receptors: Physiological and Pathophysiological Implications

Total Page:16

File Type:pdf, Size:1020Kb

Modulation of Asic1a Function by Sigma-1 Receptors: Physiological and Pathophysiological Implications University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2-27-2009 Modulation of ASIC1a Function by Sigma-1 Receptors: Physiological and Pathophysiological Implications Yelenis Herrera University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Herrera, Yelenis, "Modulation of ASIC1a Function by Sigma-1 Receptors: Physiological and Pathophysiological Implications" (2009). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/2011 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Modulation of ASIC1a Function by Sigma-1 Receptors: Physiological and Pathophysiological Implications by Yelenis Herrera A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Medical Sciences Department of Molecular Pharmacology and Physiology College of Medicine University of South Florida Major Professor: Javier Cuevas, Ph.D. Keith R. Pennypacker, Ph.D. Eric S. Bennett, Ph.D. Jay B. Dean, Ph.D. Alison Willing, Ph.D. ZhiGang Xiong, Ph.D. Date of Approval: February 27, 2009 Keywords: intracellular calcium, whole-cell currents, AKAP150, calcineurin, G protein, neurotransmission, glutamate, VGCC, NMDA receptor © Copyright 2009, Yelenis Herrera DEDICATION Those who have inspired me throughout my life and scientific career are those that I love the most. This dissertation is dedicated to them - my husband and family. I would like to thank my Mom and Dad for giving me the opportunity to be free, succeed and pursue my education. To my brother, you are the best and I am very proud of you; thank you for always being there and for your support. I would like to give a special thanks to my husband, Roger, for his love and always putting a smile in my face, and for his understanding, support and encouragement in making this dream possible. This accomplishment would have not been feasible if it was not for all of you. Thank you all and I love you all very much. I would also like to dedicate this thesis to my baby, Dukey. ACKNOWLEDGMENTS First of all, I would to thank my mentor, Dr. Javier Cuevas, for giving me the opportunity to grow as a scientist, for his support, inspiration and encouragement throughout the years. I would also like to thank my committee members, Drs. Keith R. Pennypacker, Eric S. Bennett, Jay B. Dean and Alison Willing, for their scientific advice and support. I would like to extend my gratitude to my external examiner, Dr. ZhiGang Xiong, for accepting to chair my dissertation committee and for his constructive comments on the dissertation. I would like to thank all the members of Dr. Cuevas’ laboratory, Dr. Christopher Katnik, Trimetria Bonds, Crystal Reed, Adam Behensky and Michelle Cortes-Salva, for their help and support all these years. Last but not least, I would like to thank the Chair, Dr. Bruce G. Lindsey, and staff, Bridget Shields and Barbara Nicholson, of the department of Molecular Pharmacology and Physiology for all their assistance. Thank you all very much. This work was funded in part by a McKnight Doctoral Fellowship from the Florida Education Fund. TABLE OF CONTENTS LIST OF FIGURES ............................................................................................... iii ABSTRACT ......................................................................................................... vii CHAPTER 1 INTRODUCTION ............................................................................. 1 Significance ....................................................................................................... 1 Background ....................................................................................................... 1 Pathobiology of Stroke ...................................................................................... 4 Acid-Sensing Ion Channels (ASIC) ................................................................... 8 ASIC1a Channels, Calcineurin and Scaffolding Proteins ................................ 13 Sigma Receptors ............................................................................................ 16 In Vitro Chemical Ischemia Models ................................................................. 22 CHAPTER 2 SIGMA-1 RECEPTOR MODULATION OF ASIC1a CHANNELS AND ASIC1a-INDUCED Ca2+ INFLUX IN RAT CORTICAL NEURONS.......................................................................................................... 25 Introduction ..................................................................................................... 25 Materials and Methods .................................................................................... 28 Primary Rat Cortical Neuron Preparation .................................................... 28 Calcium Imaging Measurements ................................................................. 29 Electrophysiology Recordings ..................................................................... 30 Solutions and Reagents .............................................................................. 31 Data Analysis .............................................................................................. 31 Results ............................................................................................................ 32 Discussion ....................................................................................................... 69 CHAPTER 3 SIGMA-1 RECEPTOR ACTIVATION INHIBITS ASIC1a CHANNELS VIA A PERTUSSIS TOXIN SENSITIVE G PROTEIN AND AN AKAP/CALCINEURIN COMPLEX ...................................................................... 75 Introduction ..................................................................................................... 75 Materials and Methods .................................................................................... 78 Primary Rat Cortical Neuron Preparation .................................................... 78 Calcium Imaging Measurements ................................................................. 78 Electrophysiology Recordings ..................................................................... 79 Immunohistochemistry................................................................................. 80 Confocal Microscopy ................................................................................... 81 Solutions and Reagents .............................................................................. 82 Data Analysis .............................................................................................. 82 i Results ............................................................................................................ 83 Discussion ..................................................................................................... 107 CHAPTER 4 SIGMA-1 RECEPTOR INHIBITION OF INTRACELLULAR Ca2+ DYSREGULATION DUE TO SYNERGISTIC INTERACTION BETWEEN ACIDOSIS AND ISCHEMIA ........................................................... 113 Introduction ................................................................................................... 113 Materials and Methods .................................................................................. 117 Primary Rat Cortical Neuron Preparation .................................................. 117 Calcium Imaging Measurements ............................................................... 117 Electrophysiology Recordings ................................................................... 118 Solutions and Reagents ............................................................................ 118 Data Analysis ............................................................................................ 119 Results .......................................................................................................... 120 Discussion ..................................................................................................... 150 CHAPTER 5 DISCUSSION .............................................................................. 159 Conclusions .................................................................................................. 159 Overall Significance ...................................................................................... 176 LIST OF REFERENCES .................................................................................. 184 APPENDICES .................................................................................................. 204 Appendix A – Pharmacological Compounds ................................................. 205 ABOUT THE AUTHOR ........................................................................... End Page ii LIST OF FIGURES Figure 1.1 Pathobiology of ischemic stroke.………………………………………7 2+ Figure 2.1 ASIC1a blockers inhibit proton-evoked increases in [Ca ]i in cultured cortical neurons from embryonic (E18) rats………………46 Figure 2.2 Pan-selective sigma agonists inhibit proton-evoked transient 2+ increases in [Ca ]i…………………………………………………….48 Figure 2.3 Activation of σ-1 receptors inhibits ASIC1a-induced increases in 2+ [Ca ]i……………………………………...…………………………....50 Figure 2.4 Inhibition of σ-1 receptors blocks CBP-mediated suppression
Recommended publications
  • Spider-Venom Peptides As Therapeutics
    Toxins 2010, 2, 2851-2871; doi:10.3390/toxins2122851 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Spider-Venom Peptides as Therapeutics Natalie J. Saez, Sebastian Senff, Jonas E. Jensen, Sing Yan Er, Volker Herzig, Lachlan D. Rash and Glenn F. King * Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia; E-Mails: [email protected] (N.J.S.); [email protected] (S.S.); [email protected] (J.E.J.); [email protected] (S.Y.E.); [email protected] (V.H.); [email protected] (L.D.R.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: 61-7-3346-2025; Fax: 61-7-3346-2021. Received: 16 November 2010; in revised form: 17 December 2010 / Accepted: 17 December 2010 / Published: 20 December 2010 Abstract: Spiders are the most successful venomous animals and the most abundant terrestrial predators. Their remarkable success is due in large part to their ingenious exploitation of silk and the evolution of pharmacologically complex venoms that ensure rapid subjugation of prey. Most spider venoms are dominated by disulfide-rich peptides that typically have high affinity and specificity for particular subtypes of ion channels and receptors. Spider venoms are conservatively predicted to contain more than 10 million bioactive peptides, making them a valuable resource for drug discovery. Here we review the structure and pharmacology of spider-venom peptides that are being used as leads for the development of therapeutics against a wide range of pathophysiological conditions including cardiovascular disorders, chronic pain, inflammation, and erectile dysfunction.
    [Show full text]
  • 510(K) SUBSTANTIAL EQUIVALENCE DETERMINATION CHECKLIST
    510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY ONLY TEMPLATE A. 510(k) Number: k122633 B. Purpose for Submission: New device C. Measurand: d-Amphetamine, Secobarbital, Buprenorphine Glucuroide, Oxazepam, Benzoylecgonine, 3,4-methylenedioxymethamphetamine, Methamphetamine, Methadone, Moprhine, Oxycodone, Phencyclidine, Propoxyphene, Nortriptyline, 11-nor-∆9-Tetrahydrocannabinol- 9-carboxylic acid D. Type of Test: Qualitative lateral flow immunoassay E. Applicant: Branan Medical Corporation F. Proprietary and Established Names: ToxCup® Drug Screen Cup G. Regulatory Information: Product Classification Regulation Section Panel Code LDJ II 862.3870 Cannabinoid test system Toxicology (91) DIO II 862.3250 Cocaine and cocaine metabolite Toxicology (91) test system DJG II 862.3650 Opiate test system Toxicology (91) DJC II 862.3610 Methamphetamine test system Toxicology (91) DKZ II 862.3100 Amphetamine test system Toxicology (91) LCM unclassifed Enzyme immunoassay Phencyclidine Toxicology (91) JXM II 862.3170 Benzodiazepine test system Toxicology (91) DIS II 862.3150 Barbiturate test system Toxicology (91) DJR II 862.3620 Methadone test system Toxicology (91) LFG II 862.3910 Tricyclic antidepressant drugs Toxicology (91) test system JXN II 862.3700 Propoxyphene test system Toxicology (91) H. Intended Use: 1. Intended use(s): See indications for use below. 2. Indications(s) for use: The ToxCup Drug Screen Cup is an in vitro screening test for the rapid detection of multiple drugs and drug metabolites in human urine at or above
    [Show full text]
  • The Alkaloids: Chemistry and Biology
    CONTRIBUTORS Numbers in parentheses indicate the pages on which the authors’ contributions begin. B. EMMANUEL AKINSHOLA (135), Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, eakinshola@ howard.edu NORMA E. ALEXANDER (293), NDA International, 46 Oxford Place, Staten Island, NY 10301, [email protected] SYED F. ALI (79, 135), Division of Neurotoxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, [email protected] KENNETH R. ALPER (1, 249), Departments of Psychiatry and Neurology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, [email protected] MICHAEL H. BAUMANN (79), Clinical Psychopharmacology Section, Intra- mural Research Program, NIDA, National Institutes of Health, Baltimore, MD 21224, [email protected] DANA BEAL (249), Cures-not-Wars, 9 Bleecker Street, New York, NY 10012, [email protected] ZBIGNIEW K. BINIENDA (193), Division of Neurotoxicology, National Cen- ter for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, [email protected] WAYNE D. BOWEN (173), Laboratory of Medicinal Chemistry, NIDDK, NIH, Building 8 B1-23, 8 Center Drive, MSC 0820, Bethesda, MD 20892, [email protected] FRANK R. ERVIN (155), Department of Psychiatry and Human Genetics, McGill University, Montreal, Quebec H3A 2T5, Canada, md18@musica. mcgill.ca JAMES W. FERNANDEZ (235), Department of Anthropology, University of Chicago, 1126 E. 59th Street, Chicago, IL 60637, jwfi@midway. uchicago.edu xi xii CONTRIBUTORS RENATE L. FERNANDEZ (235), Department of Anthropology, University of Chicago, 1126 E. 59th Street, Chicago, IL 60637, rlf2@midway. uchicago.edu GEERTE FRENKEN (283), INTASH, P.O.
    [Show full text]
  • Targeting Ion Channels in Cancer: a Novel Frontier in Antineoplastic Therapy A
    66 Current Medicinal Chemistry, 2009, 16, 66-93 Targeting Ion Channels in Cancer: A Novel Frontier in Antineoplastic Therapy A. Arcangeli*,1, O. Crociani1, E. Lastraioli1, A. Masi1, S. Pillozzi1 and A. Becchetti2 1Department of Experimental Pathology and Oncology, University of Firenze, Italy; 2Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy Abstract: Targeted therapy is considerably changing the treatment and prognosis of cancer. Progressive understanding of the molecular mechanisms that regulate the establishment and progression of different tumors is leading to ever more spe- cific and efficacious pharmacological approaches. In this picture, ion channels represent an unexpected, but very promising, player. The expression and activity of different channel types mark and regulate specific stages of cancer progression. Their contribution to the neoplastic phenotype ranges from control of cell proliferation and apoptosis, to regulation of invasiveness and metastatic spread. As is being in- creasingly recognized, some of these roles can be attributed to signaling mechanisms independent of ion flow. Evidence is particularly extensive for K+ channels. Their expression is altered in many primary human cancers, especially in early stages, and they frequently exert pleiotropic effects on the neoplastic cell physiology. For instance, by regulating membrane potential they can control Ca2+ fluxes and thus the cell cycle machinery. Their effects on mitosis can also de- pend on regulation of cell volume, usually in cooperation with chloride channels. However, ion channels are also impli- cated in late neoplastic stages, by stimulating angiogenesis, mediating the cell-matrix interaction and regulating cell motil- ity. Not surprisingly, the mechanisms of these effects are manifold.
    [Show full text]
  • Characterization of Multiple Sites of Action of Ibogaine
    ——Chapter 6—— CHARACTERIZATION OF MULTIPLE SITES OF ACTION OF IBOGAINE Henry Sershen, Audrey Hashim, And Abel Lajtha Nathan Kline Institute Orangeburg, New York 10962 I. Introduction.................................................................................................................. II. Issues Related to Ibogaine in the Treatment of Drug Dependence............................. A. Dopamine as a Primary Site of Drug-Mediated Responses .................................. B. Ibogaine or Its Metabolite and Acute versus Long-Term Effect........................... C. Single or Multiple Sites of Action of Ibogaine ..................................................... III. Effect of Ibogaine on Drug-Induced Behavior............................................................ IV. Binding Site Activity ................................................................................................... A. Relevant Site of Action.......................................................................................... V. Functional Activity ...................................................................................................... VI. Stimulant Drug Actions/Behaviors.............................................................................. VII. Current Non-Ibogaine Drug Treatment Protocols ....................................................... VIII. Conclusions.................................................................................................................. References...................................................................................................................
    [Show full text]
  • Potent Neuroprotection After Stroke Afforded by a Double-Knot Spider-Venom Peptide That Inhibits Acid-Sensing Ion Channel 1A
    Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a Irène R. Chassagnona, Claudia A. McCarthyb,c, Yanni K.-Y. China, Sandy S. Pinedaa, Angelo Keramidasd, Mehdi Moblie, Vi Phamb,c, T. Michael De Silvab,c, Joseph W. Lynchd, Robert E. Widdopb,c, Lachlan D. Rasha,f,1, and Glenn F. Kinga,1 aInstitute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; bBiomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; cDepartment of Pharmacology, Monash University, Clayton, VIC 3800, Australia; dQueensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia; eCentre for Advanced Imaging, The University of Queensland, St. Lucia, QLD 4072, Australia; and fSchool of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved February 6, 2017 (received for review September 1, 2016) Stroke is the second-leading cause of death worldwide, yet there are extracellular pH that occurs during cerebral ischemia. ASIC1a is the no drugs available to protect the brain from stroke-induced neuronal primary acid sensor in mammalian brain (9, 10) and a key mediator of injury. Acid-sensing ion channel 1a (ASIC1a) is the primary acid sensor stroke-induced neuronal damage. Genetic ablation of ASIC1a reduces in mammalian brain and a key mediator of acidosis-induced neuronal infarct size by ∼60% after transient middle cerebral artery occlusion damage following cerebral ischemia. Genetic ablation and selective (MCAO) in mice (7), whereas pharmacologic blockade with modestly pharmacologic inhibition of ASIC1a reduces neuronal death follow- potent ASIC1a inhibitors, such as amiloride (7) and nonsteroidal anti- ing ischemic stroke in rodents.
    [Show full text]
  • ION CHANNELS S72 Acid-Sensing (Proton-Gated) Ion Channels (Asics) Alexander Et Al
    ION CHANNELS S72 Acid-sensing (proton-gated) ion channels (ASICs) Alexander et al Acid-sensing (proton-gated) ion channels (ASICs) Overview: Acid-sensing ion channels (ASICs, provisional nomenclature) are members of a Na þ channel superfamily that includes the epithelial Na channel, ENaC, the FMRF-amide activated channel of Helix aspersa, the degenerins (DEG) of Caenorhabitis elegans (see Waldmann & Lazdunski, 1998; Mano & Discoll, 1999) and ‘orphan’ channels that include BLINaC (Sakai et al., 1999) and INaC (Schaefer et al., 2000). ASIC subunits contain two putative TM domains and assemble as homo- or heterotetramers to form proton-gated, Na þ permeable channels. Splice variants of ASIC1 (provisionally termed ASIC1a (ASIC-a) (Waldmann et al., 1997a) and ASIC1b (ASIC-b) (Chen et al., 1998)) and ASIC2 (provisionally termed ASIC2a (MDEG1) and ASIC2b (MDEG2); Lingueglia et al., 1997) have been cloned. Unlike ASIC2a (listed in table), heterologous expression of ASIC2b alone does not support H þ -gated currents. Transcripts encoding a fourth member of the ASIC family (ASIC4/SPASIC) do not produce a proton-gated channel in heterologous expression systems (Akopian et al., 2000; Grunder et al., 2000). ASIC channels are expressed in central and peripheral neurons and particularly in nociceptors where they participate in neuronal sensitivity to acidosis. The relationship of the cloned ASICs to endogenously expressed proton-gated ion channels is becoming established (Escoubas et al., 2000; Sutherland et al., 2001; Wemmie et al., 2002; 2003). Heterologously expressed heteromutimers of ASIC1/ASIC2a, ASIC2a/ASIC2b, ASIC2a/ASIC3 ASIC2b/ASIC3 and ASIC1a/ASIC3 form ion channels with altered kinetics, ion selectivity, pH-sensitivity and sensitivity to block by Gd3 þ (Bassilana et al., 1997; Lingueglia et al., 1997; Babinski et al., 2000; Escoubas et al., 2000).
    [Show full text]
  • Effects of Sustained Phencyclidine Exposure on Sensorimotor Gating of Startle in Rats Zoë A
    Effects of Sustained Phencyclidine Exposure on Sensorimotor Gating of Startle in Rats Zoë A. Martinez, M.A., Gaylord D. Ellison, Ph.D, Mark A. Geyer, Ph.D, and Neal R. Swerdlow, M.D., Ph.D Phencyclidine (PCP), a non-competitive NMDA which parallels the decrease observed in schizophrenia antagonist with actions at multiple other central nervous patients. In the present study, we examined changes in PPI system receptors, can cause both acute and lasting during and after sustained PCP administration, using psychoses in humans, and has also been used in cross- 5-day PCP exposure via subcutaneous osmotic minipumps, species models of psychosis. Acute exposure to PCP in rats or 14-day PCP exposure via repeated intraperitoneal produces behavioral changes, including a loss of prepulse injections. In both forms of drug delivery, PPI was inhibition (PPI) of the startle reflex, which parallels the loss disrupted during, but not after, sustained drug exposure. of PPI observed in schizophrenia patients. Sustained PPI does not appear to be sensitive to neuropathological exposure to PCP in rats produces neuropathological effects of sustained PCP exposure. changes in several limbic regions and prolonged behavioral [Neuropsychopharmacology 21:28–39, 1999] abnormalities that may parallel neuropsychological deficits © 1999 American College of Neuropsychopharmacology. in schizophrenia. It is unclear whether sustained PCP Published by Elsevier Science Inc. exposure will also produce a loss of prepulse inhibition KEY WORDS: Apomorphine; Phencyclidine; Prepulse schizophrenia is demonstrated by the significant corre- inhibition; Schizophrenia; Sensorimotor; Startle lation between PPI and measures of thought disorder (Perry and Braff 1994) and positive and negative symp- Schizophrenia patients demonstrate abnormalities in toms (Braff et al.
    [Show full text]
  • Phencyclidine: an Update
    Phencyclidine: An Update U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES • Public Health Service • Alcohol, Drug Abuse and Mental Health Administration Phencyclidine: An Update Editor: Doris H. Clouet, Ph.D. Division of Preclinical Research National Institute on Drug Abuse and New York State Division of Substance Abuse Services NIDA Research Monograph 64 1986 DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administratlon National Institute on Drug Abuse 5600 Fishers Lane Rockville, Maryland 20657 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, DC 20402 NIDA Research Monographs are prepared by the research divisions of the National lnstitute on Drug Abuse and published by its Office of Science The primary objective of the series is to provide critical reviews of research problem areas and techniques, the content of state-of-the-art conferences, and integrative research reviews. its dual publication emphasis is rapid and targeted dissemination to the scientific and professional community. Editorial Advisors MARTIN W. ADLER, Ph.D. SIDNEY COHEN, M.D. Temple University School of Medicine Los Angeles, California Philadelphia, Pennsylvania SYDNEY ARCHER, Ph.D. MARY L. JACOBSON Rensselaer Polytechnic lnstitute National Federation of Parents for Troy, New York Drug Free Youth RICHARD E. BELLEVILLE, Ph.D. Omaha, Nebraska NB Associates, Health Sciences Rockville, Maryland REESE T. JONES, M.D. KARST J. BESTEMAN Langley Porter Neuropsychiatric lnstitute Alcohol and Drug Problems Association San Francisco, California of North America Washington, D.C. DENISE KANDEL, Ph.D GILBERT J. BOTV N, Ph.D. College of Physicians and Surgeons of Cornell University Medical College Columbia University New York, New York New York, New York JOSEPH V.
    [Show full text]
  • Pain Research Product Guide | Edition 2
    Pain Research Product Guide | Edition 2 Chili plant Capsicum annuum A source of Capsaicin Contents by Research Area: • Nociception • Ion Channels • G-Protein-Coupled Receptors • Intracellular Signaling Tocris Product Guide Series Pain Research Contents Page Nociception 3 Ion Channels 4 G-Protein-Coupled Receptors 12 Intracellular Signaling 18 List of Acronyms 21 Related Literature 22 Pain Research Products 23 Further Reading 34 Introduction Pain is a major public health problem with studies suggesting one fifth of the general population in both the USA and Europe are affected by long term pain. The International Association for the Study of Pain (IASP) defines pain as ‘an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage’. Management of chronic pain in the clinic has seen only limited progress in recent decades. Treatment of pain has been reliant on, and is still dominated by two classical medications: opioids and non-steroidal anti-inflammatory drugs (NSAIDs). However, side effects such as dependence associated with opioids and gastric ulceration associated with NSAIDs demonstrates the need for new drug targets and novel compounds that will bring in a new era of pain therapeutics. Pain has been classified into three major types: nociceptive pain, inflammatory pain and neuropathic or pathological pain. Nociceptive pain involves the transduction of painful stimuli by peripheral sensory nerve fibers called nociceptors. Neuropathic pain results from damage or disease affecting the sensory system, and inflammatory pain represents the immunological response to injury through inflammatory mediators that contribute to pain. Our latest pain research guide focuses on nociception and the transduction of pain to the spinal cord, examining some of the main classical targets as well as emerging pain targets.
    [Show full text]
  • 01-Stanojlovic.Vp:Corelventura
    Acta Veterinaria (Beograd), Vol. 58, No. 2-3, 111-120, 2008. DOI: 10.2298/AVB0803111S UDK 619:616.853 EFECTS OF ETHANOL ON ELECTROENCEPHALOGRAPHIC AND BEHAVIORAL SIGNS OF METAPHIT-INDUCED AUDIOGENIC SEIZURE STANOJLOVI] OLIVERA*, PETROVI] BOJANA*, HRN^I] D*, MLADENOVI] D**, RA[I] ALEKSANDRA* and [U[I] VESELINKA*** *Department of Physiology, School of Medicine, University of Belgrade, Serbia **Department of Pathophysiology, School of Medicine, University of Belgrade; *** Serbian Academy of Sciences and Arts, Serbia (Received 17. November 2007) The goal of the experiment was to give an answer to the question whether the simultaneous action of metaphit and audiogenic stimulation, which together lead to generalized reflex seizure in rodents, could be modified by ethanol. The rats divided in four groups received (i.p.): saline; metaphit (10 mg/kg); metaphit (10 mg/kg) + ethanol (2 g/kg); and ethanol (2 g/kg). Ethanol was administered to the metaphit-treated animals which had displayed seizures in the first eight tests. Audiogenic stimulation was applied at hourly intervals starting from the first hour after giving the metaphit injection throughout 16 hours of the experiment. For EEG recordings, three gold-plated electrodes were implanted into the rat skull. Metaphit led to hypersynchrounus epileptiform activity which forms polyspikes and spike-wave complexes. Behavior was represented by established grades of motor seizures. It was noticed that ethanol significantly decreased EEG signs of seizure, reduced the frequency as the amplitude of the waves increased (dominant ones were d and q). Ethanol completely blocked all the manifestations of the convulsive behavior of metaphit-treated animals. The results of this experiment suggest that ethanol inhibits behavioral and modifies EEG signs of the metaphit induced audiogenic generalized epilepsy.
    [Show full text]
  • Trypsin-Like Proteases and Their Role in Muco-Obstructive Lung Diseases
    International Journal of Molecular Sciences Review Trypsin-Like Proteases and Their Role in Muco-Obstructive Lung Diseases Emma L. Carroll 1,†, Mariarca Bailo 2,†, James A. Reihill 1 , Anne Crilly 2 , John C. Lockhart 2, Gary J. Litherland 2, Fionnuala T. Lundy 3 , Lorcan P. McGarvey 3, Mark A. Hollywood 4 and S. Lorraine Martin 1,* 1 School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK; [email protected] (E.L.C.); [email protected] (J.A.R.) 2 Institute for Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; [email protected] (M.B.); [email protected] (A.C.); [email protected] (J.C.L.); [email protected] (G.J.L.) 3 Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, Belfast BT9 7BL, UK; [email protected] (F.T.L.); [email protected] (L.P.M.) 4 Smooth Muscle Research Centre, Dundalk Institute of Technology, A91 HRK2 Dundalk, Ireland; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Trypsin-like proteases (TLPs) belong to a family of serine enzymes with primary substrate specificities for the basic residues, lysine and arginine, in the P1 position. Whilst initially perceived as soluble enzymes that are extracellularly secreted, a number of novel TLPs that are anchored in the cell membrane have since been discovered. Muco-obstructive lung diseases (MucOLDs) are Citation: Carroll, E.L.; Bailo, M.; characterised by the accumulation of hyper-concentrated mucus in the small airways, leading to Reihill, J.A.; Crilly, A.; Lockhart, J.C.; Litherland, G.J.; Lundy, F.T.; persistent inflammation, infection and dysregulated protease activity.
    [Show full text]