The Nav1.7 Channel Subtype As an Antinociceptive Target for Spider Toxins in Adult Dorsal Root Ganglia Neurons Tânia C

Total Page:16

File Type:pdf, Size:1020Kb

The Nav1.7 Channel Subtype As an Antinociceptive Target for Spider Toxins in Adult Dorsal Root Ganglia Neurons Tânia C The NaV1.7 Channel Subtype as an Antinociceptive Target for Spider Toxins in Adult Dorsal Root Ganglia Neurons Tânia C. Gonçalves, Evelyne Benoit, Michel Partiseti, Denis Servent To cite this version: Tânia C. Gonçalves, Evelyne Benoit, Michel Partiseti, Denis Servent. The NaV1.7 Channel Subtype as an Antinociceptive Target for Spider Toxins in Adult Dorsal Root Ganglia Neurons. Frontiers in Pharmacology, Frontiers, 2018, 9, pp.1000. 10.3389/fphar.2018.01000. hal-02019554 HAL Id: hal-02019554 https://hal.archives-ouvertes.fr/hal-02019554 Submitted on 10 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fphar-09-01000 October 23, 2018 Time: 12:20 # 1 REVIEW published: 04 September 2018 doi: 10.3389/fphar.2018.01000 The NaV1.7 Channel Subtype as an Antinociceptive Target for Spider Toxins in Adult Dorsal Root Ganglia Neurons Tânia C. Gonçalves1,2, Evelyne Benoit2,3, Michel Partiseti1 and Denis Servent2* 1 Sanofi R&D, Integrated Drug Discovery – High Content Biology, Paris, France, 2 Service d’Ingénierie Moléculaire des Protéines, CEA de Saclay, Université Paris-Saclay, Gif-sur-Yvette, France, 3 Institut des Neurosciences Paris-Saclay, UMR CNRS/Université Paris-Sud 9197, Gif-sur-Yvette, France Although necessary for human survival, pain may sometimes become pathologic if long-lasting and associated with alterations in its signaling pathway. Opioid painkillers Edited by: are officially used to treat moderate to severe, and even mild, pain. However, the Yuri N. Utkin, consequent strong and not so rare complications that occur, including addiction and Institute of Bioorganic Chemistry (RAS), Russia overdose, combined with pain management costs, remain an important societal and Reviewed by: economic concern. In this context, animal venom toxins represent an original source Sandrine Cestèle, of antinociceptive peptides that mainly target ion channels (such as ASICs as well as UMR7275 Institut de Pharmacologie TRP, CaV,KV and NaV channels) involved in pain transmission. The present review Moléculaire et Cellulaire (IPMC), France aims to highlight the NaV1.7 channel subtype as an antinociceptive target for spider Maria Elena De Lima, toxins in adult dorsal root ganglia neurons. It will detail (i) the characteristics of these Universidade Federal de Minas Gerais, Brazil primary sensory neurons, the first ones in contact with pain stimulus and conveying the *Correspondence: nociceptive message, (ii) the electrophysiological properties of the different NaV channel Denis Servent subtypes expressed in these neurons, with a particular attention on the NaV1.7 subtype, [email protected] an antinociceptive target of choice that has been validated by human genetic evidence, Specialty section: and (iii) the features of spider venom toxins, shaped of inhibitory cysteine knot motif, This article was submitted to that present high affinity for the NaV1.7 subtype associated with evidenced analgesic Pharmacology of Ion Channels efficacy in animal models. and Channelopathies, a section of the journal Keywords: voltage-gated sodium channels, NaV1.7 channel subtype, spider toxins, pain, dorsal root ganglia Frontiers in Pharmacology neurons, electrophysiology Received: 22 June 2018 Accepted: 14 August 2018 Published: 04 September 2018 Abbreviations: ASIC, acid-sensitive ionic channel; BGB, blood-ganglia-barrier; BNB, blood-nerve-barrier; CaV channel, Citation: voltage-gated calcium channel; CNS, central nervous system; DRG, dorsal root ganglia; EC50, effective concentration Gonçalves TC, Benoit E, Partiseti M necessary for increasing the response by 50%; GDNF, glial cell line-derivated neurotrophic factor; GMT, gating modifier and Servent D (2018) The Na 1.7 toxin; GPCR, G-protein-coupled receptor; HnTx, hainantoxin; HwTx, huwentoxin; IC50, effective concentration necessary V for decreasing the response by 50%; iPSCs, induced pluripotent stem cells; JzTx, jingzhaotoxin; K channel, voltage-gated Channel Subtype as an V potassium channels; NaSpTx, spider NaV channel toxins; NAT, natural antisense transcript; NaV channel, voltage-gated Antinociceptive Target for Spider sodium channel; NGF, nerve growth factor; PaurTx, Phrixotoxin; PcTx-1, psalmotoxin-1; PNS, peripheral nervous system; Toxins in Adult Dorsal Root Ganglia ProTx, protoxin; PSN, primary sensory neuron; PTM, post-translational modification; Ret, “rearranged during transfection” Neurons. Front. Pharmacol. 9:1000. proto-oncogene; RUNX, Runt-related transcription factor; SSN, secondary sensory neuron; TRP channel, transient receptor doi: 10.3389/fphar.2018.01000 potential channel; TSN, tertiary sensory neuron; TTX, tetrodotoxin. Frontiers in Pharmacology| www.frontiersin.org 1 September 2018| Volume 9| Article 1000 fphar-09-01000 October 23, 2018 Time: 12:20 # 2 Gonçalves et al. NaV1.7 Target for Spider Toxins INTRODUCTION for the NaV1.7 channel subtype mainly expressed in DRG neurons. According to the International Association for the Study of Pain, at least 10% of the world’s population suffer from pain since 1 over 10 adults has experienced or had (acute, PRIMARY SENSORY NEURONS AS chronic, intermittent or combined) pain with a median of FRONT DOOR FOR PAIN suffering time around 7 years (Goldberg and McGee, 2011). The unpleasant sensation of pain is necessary to maintain The cellular elements involved in pain transmission from the the body integrity. However, it is often accompanied by peripheral to the CNS are detailed in Figure 1. The noxious long-term complications not only limited to comorbidities, as information is first detected by the nociceptors of peripheral and depression, but also including social and economic concerns visceral tissue, and then conveyed by the dendrites of primary as inability to work, social isolation and intrusive thoughts, sensory neurons (PSNs). The nociceptors are located at the leading to costs of more than 600 billion US dollars annually level of free nerve endings of Ad and C fibers of PSNs that (Holmes, 2016). Pain care is thus a global public health respond to noxious stimuli and are widely found throughout priority whose management must be regulated in its totality by skin and internal tissue. Three main types of pain receptors policies. exist: the thermal, the mechanical and the polymodal receptors, Nowadays, mild to moderate pain may be treated effectively activated by temperature, high pressure and mechanical, thermal with a combination of physical modalities (e.g., ice, rest or/and chemical stimuli, respectively (Figure 1, Box 1). The and splints) and non-opioid analgesics (e.g., non-steroidal PSNs are pseudo-bipolar neurons which send their axons, anti-inflammatory drugs, acetaminophen or other adjuvant components of dorsal roots, to the laminas I, II and V of medications). In contrast, the health system is pushed into its the dorsal horn of spinal cord and establish synapses with the limits to treat debilitating chronic pain because the therapy is dendrites of secondary sensory neurons (SSNs) (Figure 1, Box ineffective and/or associated with devastating effects. Indeed, 2). The SSNs, in turn, bring the noxious information to the management of chronic and severe pain, especially related to hypothalamus and connect to tertiary sensory neurons (TSNs) cancers or neuropathies, often requires opioids (Savage et al., whose cell bodies constitute, in part, the brain cortex (Figure 1, 2008). Unfortunately, the opioid abuse and overdose often Box 3). At each CNS level, the information is integrated and lead to death, which stimulates industries and academics to modulated by different ascending/descending control systems find an alternative with acceptable undesired effects (Negus, such as the medullary control, named “gate control,” and 2018). the diffuse inhibitory control including the noradrenergic and In this context, the likely promising target for therapeutic serotoninergic pathways induced by nociception from the higher treatment to fight pain and avoid central side-effects is centers to the dorsal horn, giving the affective, sensory and the neuron located in the periphery dorsal root ganglia cognitive dimensions to the human experience of pain (Porreca (DRG) which conveys pain from the skin and tendons to and Navratilova, 2017). the central nervous system (CNS). The DRG neurons are The neuron bodies of PSNs constitute the 31 pairs of DRG, well-known to express various families of transmembrane coming out all along the spinal marrow: 8 cervical (C1-C7, note proteins, including ion channels, G-protein-coupled receptors that the first cervical spinal nerve is born above C1 and the (GPCRs) and gap junctions/pannexins (Pan et al., 2008; eighth one below C7), 12 thoracic (T1–T12), 5 lumbar (L1– Spray and Hanani, 2017; Yekkirala et al., 2017). Among L5), 5 sacred (S1–S5), and 1 coccygeal (Co) which is vestigial. the ion channel family, the most extensively studied targets The cranial sensory (trigeminal or Gasser’s) ganglion (nerve for pain treatment are voltage-gated calcium (CaV) and V) conveys facial skin sensitivity, the spiral (or cochlear) and sodium (NaV) channels. In particular,
Recommended publications
  • Spider-Venom Peptides As Therapeutics
    Toxins 2010, 2, 2851-2871; doi:10.3390/toxins2122851 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Spider-Venom Peptides as Therapeutics Natalie J. Saez, Sebastian Senff, Jonas E. Jensen, Sing Yan Er, Volker Herzig, Lachlan D. Rash and Glenn F. King * Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia; E-Mails: [email protected] (N.J.S.); [email protected] (S.S.); [email protected] (J.E.J.); [email protected] (S.Y.E.); [email protected] (V.H.); [email protected] (L.D.R.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: 61-7-3346-2025; Fax: 61-7-3346-2021. Received: 16 November 2010; in revised form: 17 December 2010 / Accepted: 17 December 2010 / Published: 20 December 2010 Abstract: Spiders are the most successful venomous animals and the most abundant terrestrial predators. Their remarkable success is due in large part to their ingenious exploitation of silk and the evolution of pharmacologically complex venoms that ensure rapid subjugation of prey. Most spider venoms are dominated by disulfide-rich peptides that typically have high affinity and specificity for particular subtypes of ion channels and receptors. Spider venoms are conservatively predicted to contain more than 10 million bioactive peptides, making them a valuable resource for drug discovery. Here we review the structure and pharmacology of spider-venom peptides that are being used as leads for the development of therapeutics against a wide range of pathophysiological conditions including cardiovascular disorders, chronic pain, inflammation, and erectile dysfunction.
    [Show full text]
  • Examples of Successful Protein Expression with SUMO Reference Protein Type Family Kda System (Pubmed ID)
    Examples of Successful Protein Expression with SUMO Reference Protein Type Family kDa System (PubMed ID) 23 (FGF23), human Growth factor FGF superfamily ~26 E. coli 22249723 SARS coronavirus (SARS-CoV) membrane 3C-like (3CL) protease Viral membrane protein protein 33.8 E. coli 16211506 5′nucleotidase-related apyrase (5′Nuc) Saliva protein (apyrase) 5′nucleotidase-related proteins 65 E. coli 20351782 Acetyl-CoA carboxylase 1 (ACC1) Cytosolic enzyme Family of five biotin-dependent carboxylases ~7 E. coli 22123817 Acetyl-CoA carboxylase 2 (ACC2) BCCP domain Cytosolic enzyme Family of five biotin-dependent carboxylases ~7 E. coli 22123817 Actinohivin (AH) Lectin Anti-HIV lectin of CBM family 13 12.5 E. coli DTIC Allium sativum leaf agglutinin (ASAL) Sugar-binding protein Mannose-binding lectins 25 E. coli 20100526 Extracellular matrix Anosmin protein Marix protein 100 Mammalian 22898776 Antibacterial peptide CM4 (ABP-CM4) Antibacterial peptide Cecropin family of antimicrobial peptides 3.8 E. coli 19582446 peptide from centipede venoms of Scolopendra Antimicrobial peptide scolopin 1 (AMP-scolopin 1) small cationic peptide subspinipes mutilans 2.6 E. coli 24145284 Antitumor-analgesic Antitumor-analgesic peptide (AGAP) peptide Multifunction scorpion peptide 7 E. coli 20945481 Anti-VEGF165 single-chain variable fragment (scFv) Antibody Small antibody-engineered antibody 30 E. coli 18795288 APRIL TNF receptor ligand tumor necrosis factor (TNF) ligand 16 E. coli 24412409 APRIL (A proliferation-inducing ligand, also named TALL- Type II transmembrane 2, TRDL-1 and TNFSF-13a) protein Tumor necrosis factor (TNF) family 27.51 E. coli 22387304 Aprotinin/Basic pancreatic trypsin inhibitor (BPTI) Inhibitor Kunitz-type inhibitor 6.5 E.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Animal Venom Derived Toxins Are Novel Analgesics for Treatment Of
    Short Communication iMedPub Journals 2018 www.imedpub.com Journal of Molecular Sciences Vol.2 No.1:6 Animal Venom Derived Toxins are Novel Upadhyay RK* Analgesics for Treatment of Arthritis Department of Zoology, DDU Gorakhpur University, Gorakhpur, UP, India Abstract *Corresponding authors: Ravi Kant Upadhyay Present review article explains use of animal venom derived toxins as analgesics of the treatment of chronic pain and inflammation occurs in arthritis. It is a [email protected] progressive degenerative joint disease that put major impact on joint function and quality of life. Patients face prolonged inappropriate inflammatory responses and bone erosion. Longer persistent chronic pain is a complex and debilitating Department of Zoology, DDU Gorakhpur condition associated with a large personal, mental, physical and socioeconomic University, Gorakhpur, UttarPradesh, India. burden. However, for mitigation of inflammation and sever pain in joints synthetic analgesics are used to provide quick relief from pain but they impose many long Tel: 9838448495 term side effects. Venom toxins showed high affinity to voltage gated channels, and pain receptors. These are strong inhibitors of ion channels which enable them as potential therapeutic agents for the treatment of pain. Present article Citation: Upadhyay RK (2018) Animal Venom emphasizes development of a new class of analgesic agents in form of venom Derived Toxins are Novel Analgesics for derived toxins for the treatment of arthritis. Treatment of Arthritis. J Mol Sci. Vol.2 No.1:6 Keywords: Analgesics; Venom toxins; Ion channels; Channel inhibitors; Pain; Inflammation Received: February 04, 2018; Accepted: March 12, 2018; Published: March 19, 2018 Introduction such as the back, spine, and pelvis.
    [Show full text]
  • Targeting Ion Channels in Cancer: a Novel Frontier in Antineoplastic Therapy A
    66 Current Medicinal Chemistry, 2009, 16, 66-93 Targeting Ion Channels in Cancer: A Novel Frontier in Antineoplastic Therapy A. Arcangeli*,1, O. Crociani1, E. Lastraioli1, A. Masi1, S. Pillozzi1 and A. Becchetti2 1Department of Experimental Pathology and Oncology, University of Firenze, Italy; 2Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy Abstract: Targeted therapy is considerably changing the treatment and prognosis of cancer. Progressive understanding of the molecular mechanisms that regulate the establishment and progression of different tumors is leading to ever more spe- cific and efficacious pharmacological approaches. In this picture, ion channels represent an unexpected, but very promising, player. The expression and activity of different channel types mark and regulate specific stages of cancer progression. Their contribution to the neoplastic phenotype ranges from control of cell proliferation and apoptosis, to regulation of invasiveness and metastatic spread. As is being in- creasingly recognized, some of these roles can be attributed to signaling mechanisms independent of ion flow. Evidence is particularly extensive for K+ channels. Their expression is altered in many primary human cancers, especially in early stages, and they frequently exert pleiotropic effects on the neoplastic cell physiology. For instance, by regulating membrane potential they can control Ca2+ fluxes and thus the cell cycle machinery. Their effects on mitosis can also de- pend on regulation of cell volume, usually in cooperation with chloride channels. However, ion channels are also impli- cated in late neoplastic stages, by stimulating angiogenesis, mediating the cell-matrix interaction and regulating cell motil- ity. Not surprisingly, the mechanisms of these effects are manifold.
    [Show full text]
  • A Functional Nav1.7-Navab Chimera with a Reconstituted High-Affinity Protx-II Binding Site S
    Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2017/06/23/mol.117.108712.DC1 1521-0111/92/3/310–317$25.00 https://doi.org/10.1124/mol.117.108712 MOLECULAR PHARMACOLOGY Mol Pharmacol 92:310–317, September 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics A Functional NaV1.7-NaVAb Chimera with a Reconstituted High-Affinity ProTx-II Binding Site s Ramkumar Rajamani, Sophie Wu, Iyoncy Rodrigo, Mian Gao, Simon Low, Lisa Megson, David Wensel, Rick L. Pieschl, Debra J. Post-Munson, John Watson, David R. Langley, Michael K. Ahlijanian, Linda J. Bristow, and James Herrington Molecular Discovery Technologies, Wallingford, Connecticut, Princeton, New Jersey, and Waltham, Massachusetts (R.R., S.W., I.R., M.G., S.L., L.M., D.W., D.R.L.); Discovery Biology (R.L.P., D.J.P.-M., M.K.A., L.J.B., J.H.) and Lead Discovery and Optimization (J.W.), Bristol-Myers Squibb Company, Wallingford, Connecticut Downloaded from Received March 6, 2017; accepted June 14, 2017 ABSTRACT The NaV1.7 voltage-gated sodium channel is implicated in part of the voltage sensor domain 2 (VSD2) of NaV1.7. Importantly, human pain perception by genetics. Rare gain of function this chimera, DII S1–S4, forms functional sodium channels and is molpharm.aspetjournals.org mutations in NaV1.7 lead to spontaneous pain in humans whereas potently inhibited by the NaV1.7 VSD2 targeted peptide toxin loss of function mutations results in congenital insensitivity to pain. ProTx-II. Further, we show by [125I]ProTx-II binding and surface Hence, agents that specifically modulate the function of NaV1.7 plasmon resonance that the purified DII S1–S4 protein retains high have the potential to yield novel therapeutics to treat pain.
    [Show full text]
  • Potent Neuroprotection After Stroke Afforded by a Double-Knot Spider-Venom Peptide That Inhibits Acid-Sensing Ion Channel 1A
    Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a Irène R. Chassagnona, Claudia A. McCarthyb,c, Yanni K.-Y. China, Sandy S. Pinedaa, Angelo Keramidasd, Mehdi Moblie, Vi Phamb,c, T. Michael De Silvab,c, Joseph W. Lynchd, Robert E. Widdopb,c, Lachlan D. Rasha,f,1, and Glenn F. Kinga,1 aInstitute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; bBiomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; cDepartment of Pharmacology, Monash University, Clayton, VIC 3800, Australia; dQueensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia; eCentre for Advanced Imaging, The University of Queensland, St. Lucia, QLD 4072, Australia; and fSchool of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved February 6, 2017 (received for review September 1, 2016) Stroke is the second-leading cause of death worldwide, yet there are extracellular pH that occurs during cerebral ischemia. ASIC1a is the no drugs available to protect the brain from stroke-induced neuronal primary acid sensor in mammalian brain (9, 10) and a key mediator of injury. Acid-sensing ion channel 1a (ASIC1a) is the primary acid sensor stroke-induced neuronal damage. Genetic ablation of ASIC1a reduces in mammalian brain and a key mediator of acidosis-induced neuronal infarct size by ∼60% after transient middle cerebral artery occlusion damage following cerebral ischemia. Genetic ablation and selective (MCAO) in mice (7), whereas pharmacologic blockade with modestly pharmacologic inhibition of ASIC1a reduces neuronal death follow- potent ASIC1a inhibitors, such as amiloride (7) and nonsteroidal anti- ing ischemic stroke in rodents.
    [Show full text]
  • Expression Profiling of Ion Channel Genes Predicts Clinical Outcome in Breast Cancer
    UCSF UC San Francisco Previously Published Works Title Expression profiling of ion channel genes predicts clinical outcome in breast cancer Permalink https://escholarship.org/uc/item/1zq9j4nw Journal Molecular Cancer, 12(1) ISSN 1476-4598 Authors Ko, Jae-Hong Ko, Eun A Gu, Wanjun et al. Publication Date 2013-09-22 DOI http://dx.doi.org/10.1186/1476-4598-12-106 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Ko et al. Molecular Cancer 2013, 12:106 http://www.molecular-cancer.com/content/12/1/106 RESEARCH Open Access Expression profiling of ion channel genes predicts clinical outcome in breast cancer Jae-Hong Ko1, Eun A Ko2, Wanjun Gu3, Inja Lim1, Hyoweon Bang1* and Tong Zhou4,5* Abstract Background: Ion channels play a critical role in a wide variety of biological processes, including the development of human cancer. However, the overall impact of ion channels on tumorigenicity in breast cancer remains controversial. Methods: We conduct microarray meta-analysis on 280 ion channel genes. We identify candidate ion channels that are implicated in breast cancer based on gene expression profiling. We test the relationship between the expression of ion channel genes and p53 mutation status, ER status, and histological tumor grade in the discovery cohort. A molecular signature consisting of ion channel genes (IC30) is identified by Spearman’s rank correlation test conducted between tumor grade and gene expression. A risk scoring system is developed based on IC30. We test the prognostic power of IC30 in the discovery and seven validation cohorts by both Cox proportional hazard regression and log-rank test.
    [Show full text]
  • Identification of Key Genes and Pathways Involved in Response To
    Deng et al. Biol Res (2018) 51:25 https://doi.org/10.1186/s40659-018-0174-7 Biological Research RESEARCH ARTICLE Open Access Identifcation of key genes and pathways involved in response to pain in goat and sheep by transcriptome sequencing Xiuling Deng1,2†, Dong Wang3†, Shenyuan Wang1, Haisheng Wang2 and Huanmin Zhou1* Abstract Purpose: This aim of this study was to investigate the key genes and pathways involved in the response to pain in goat and sheep by transcriptome sequencing. Methods: Chronic pain was induced with the injection of the complete Freund’s adjuvant (CFA) in sheep and goats. The animals were divided into four groups: CFA-treated sheep, control sheep, CFA-treated goat, and control goat groups (n 3 in each group). The dorsal root ganglions of these animals were isolated and used for the construction of a cDNA= library and transcriptome sequencing. Diferentially expressed genes (DEGs) were identifed in CFA-induced sheep and goats and gene ontology (GO) enrichment analysis was performed. Results: In total, 1748 and 2441 DEGs were identifed in CFA-treated goat and sheep, respectively. The DEGs identi- fed in CFA-treated goats, such as C-C motif chemokine ligand 27 (CCL27), glutamate receptor 2 (GRIA2), and sodium voltage-gated channel alpha subunit 3 (SCN3A), were mainly enriched in GO functions associated with N-methyl- D-aspartate (NMDA) receptor, infammatory response, and immune response. The DEGs identifed in CFA-treated sheep, such as gamma-aminobutyric acid (GABA)-related DEGs (gamma-aminobutyric acid type A receptor gamma 3 subunit [GABRG3], GABRB2, and GABRB1), SCN9A, and transient receptor potential cation channel subfamily V member 1 (TRPV1), were mainly enriched in GO functions related to neuroactive ligand-receptor interaction, NMDA receptor, and defense response.
    [Show full text]
  • ION CHANNELS S72 Acid-Sensing (Proton-Gated) Ion Channels (Asics) Alexander Et Al
    ION CHANNELS S72 Acid-sensing (proton-gated) ion channels (ASICs) Alexander et al Acid-sensing (proton-gated) ion channels (ASICs) Overview: Acid-sensing ion channels (ASICs, provisional nomenclature) are members of a Na þ channel superfamily that includes the epithelial Na channel, ENaC, the FMRF-amide activated channel of Helix aspersa, the degenerins (DEG) of Caenorhabitis elegans (see Waldmann & Lazdunski, 1998; Mano & Discoll, 1999) and ‘orphan’ channels that include BLINaC (Sakai et al., 1999) and INaC (Schaefer et al., 2000). ASIC subunits contain two putative TM domains and assemble as homo- or heterotetramers to form proton-gated, Na þ permeable channels. Splice variants of ASIC1 (provisionally termed ASIC1a (ASIC-a) (Waldmann et al., 1997a) and ASIC1b (ASIC-b) (Chen et al., 1998)) and ASIC2 (provisionally termed ASIC2a (MDEG1) and ASIC2b (MDEG2); Lingueglia et al., 1997) have been cloned. Unlike ASIC2a (listed in table), heterologous expression of ASIC2b alone does not support H þ -gated currents. Transcripts encoding a fourth member of the ASIC family (ASIC4/SPASIC) do not produce a proton-gated channel in heterologous expression systems (Akopian et al., 2000; Grunder et al., 2000). ASIC channels are expressed in central and peripheral neurons and particularly in nociceptors where they participate in neuronal sensitivity to acidosis. The relationship of the cloned ASICs to endogenously expressed proton-gated ion channels is becoming established (Escoubas et al., 2000; Sutherland et al., 2001; Wemmie et al., 2002; 2003). Heterologously expressed heteromutimers of ASIC1/ASIC2a, ASIC2a/ASIC2b, ASIC2a/ASIC3 ASIC2b/ASIC3 and ASIC1a/ASIC3 form ion channels with altered kinetics, ion selectivity, pH-sensitivity and sensitivity to block by Gd3 þ (Bassilana et al., 1997; Lingueglia et al., 1997; Babinski et al., 2000; Escoubas et al., 2000).
    [Show full text]
  • The Methamphetamine-Induced RNA Targetome of Hnrnp H in Hnrnph1 Mutants Showing Reduced Dopamine Release and Behavior
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.06.451358; this version posted July 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The methamphetamine-induced RNA targetome of hnRNP H in Hnrnph1 mutants showing reduced dopamine release and behavior Qiu T. Ruan1,2,3, Michael A. Rieger4, William B. Lynch2,5, Jiayi W. Cox6, Jacob A. Beierle1,2,3, Emily J. Yao2, Amarpreet Kandola2, Melanie M. Chen2, Julia C. Kelliher2, Richard K. Babbs2, Peter E. A. Ash7, Benjamin Wolozin7, Karen K. Szumlinski8, W. Evan Johnson9, Joseph D. Dougherty4, and Camron D. Bryant1,2,3* 1. Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine 2. Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine 3. Transformative Training Program in Addiction Science, Boston University School of Medicine 4. Department of Genetics, Department of Psychiatry, Washington University School of Medicine 5. Graduate Program for Neuroscience, Boston University 6. Programs in Biomedical Sciences, Boston University School of Medicine 7. Department of Pharmacology and Experimental Therapeutics and Neurology, Boston University School of Medicine 8. Department of Psychological and Brain Sciences, University of California, Santa Barbara 9. Department of Medicine, Computational Biomedicine, Boston University School of Medicine *Corresponding Author Camron D. Bryant, Ph.D. Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry 72 E.
    [Show full text]
  • Pain Research Product Guide | Edition 2
    Pain Research Product Guide | Edition 2 Chili plant Capsicum annuum A source of Capsaicin Contents by Research Area: • Nociception • Ion Channels • G-Protein-Coupled Receptors • Intracellular Signaling Tocris Product Guide Series Pain Research Contents Page Nociception 3 Ion Channels 4 G-Protein-Coupled Receptors 12 Intracellular Signaling 18 List of Acronyms 21 Related Literature 22 Pain Research Products 23 Further Reading 34 Introduction Pain is a major public health problem with studies suggesting one fifth of the general population in both the USA and Europe are affected by long term pain. The International Association for the Study of Pain (IASP) defines pain as ‘an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage’. Management of chronic pain in the clinic has seen only limited progress in recent decades. Treatment of pain has been reliant on, and is still dominated by two classical medications: opioids and non-steroidal anti-inflammatory drugs (NSAIDs). However, side effects such as dependence associated with opioids and gastric ulceration associated with NSAIDs demonstrates the need for new drug targets and novel compounds that will bring in a new era of pain therapeutics. Pain has been classified into three major types: nociceptive pain, inflammatory pain and neuropathic or pathological pain. Nociceptive pain involves the transduction of painful stimuli by peripheral sensory nerve fibers called nociceptors. Neuropathic pain results from damage or disease affecting the sensory system, and inflammatory pain represents the immunological response to injury through inflammatory mediators that contribute to pain. Our latest pain research guide focuses on nociception and the transduction of pain to the spinal cord, examining some of the main classical targets as well as emerging pain targets.
    [Show full text]