B 0621 DJS1700000009 03.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
510(K) SUBSTANTIAL EQUIVALENCE DETERMINATION CHECKLIST
510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY ONLY TEMPLATE A. 510(k) Number: k122633 B. Purpose for Submission: New device C. Measurand: d-Amphetamine, Secobarbital, Buprenorphine Glucuroide, Oxazepam, Benzoylecgonine, 3,4-methylenedioxymethamphetamine, Methamphetamine, Methadone, Moprhine, Oxycodone, Phencyclidine, Propoxyphene, Nortriptyline, 11-nor-∆9-Tetrahydrocannabinol- 9-carboxylic acid D. Type of Test: Qualitative lateral flow immunoassay E. Applicant: Branan Medical Corporation F. Proprietary and Established Names: ToxCup® Drug Screen Cup G. Regulatory Information: Product Classification Regulation Section Panel Code LDJ II 862.3870 Cannabinoid test system Toxicology (91) DIO II 862.3250 Cocaine and cocaine metabolite Toxicology (91) test system DJG II 862.3650 Opiate test system Toxicology (91) DJC II 862.3610 Methamphetamine test system Toxicology (91) DKZ II 862.3100 Amphetamine test system Toxicology (91) LCM unclassifed Enzyme immunoassay Phencyclidine Toxicology (91) JXM II 862.3170 Benzodiazepine test system Toxicology (91) DIS II 862.3150 Barbiturate test system Toxicology (91) DJR II 862.3620 Methadone test system Toxicology (91) LFG II 862.3910 Tricyclic antidepressant drugs Toxicology (91) test system JXN II 862.3700 Propoxyphene test system Toxicology (91) H. Intended Use: 1. Intended use(s): See indications for use below. 2. Indications(s) for use: The ToxCup Drug Screen Cup is an in vitro screening test for the rapid detection of multiple drugs and drug metabolites in human urine at or above -
TR-348: Alpha-Methyldopa Sesquihydrate (CASRN 41372-08-1)
NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 348 TOXICOLOGY AND CARCINOGENESIS STUDIES OF a/pha-METHYLDOPA SESQUIHYDRATE (CAS NO. 41372-08-1) IN F344/N RATS AND B6C3Fi MICE (FEED STUDIES) U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF a/p/)a-METHYLDOPA SESQUIHYDRATE (CAS NO. 41372-08-1) IN F344/N RATS AND B6C3Fi MICE (FEED STUDIES) June K. Dunnick, Ph.D., Chemical Manager NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 March 1989 NTP TR 348 NIH Publication No. 89-2803 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health NOTE TO THE READER This study was performed under the direction of the K’ational Institute of Environmental Health Sci- ences as a function of the National Toxicology Program. The studies described in this Technical Re- port have been conducted in compliance with NTP chemical health and safety requirements and must meet or exceed all applicable Federal, state, and local health and safety regulations. Animal care and use were in accordance with the U.S. Public Health Service Policy on Humane Care and Use of Ani- mals. All NTP toxicology and carcinogenesis studies are subjected to a data audit before being pre- sented for public peer review. Although every effort is made to prepare the Technical Reports as accurately as possible, mistakes may occur. Readers are requested to identify any mistakes so that corrective action may be taken. Further, anyone who is aware of related ongoing or published studies not mentioned in this report is encouraged to make this information known to the NTP. -
United States Patent (10) Patent No.: US 8,969,514 B2 Shailubhai (45) Date of Patent: Mar
USOO896.9514B2 (12) United States Patent (10) Patent No.: US 8,969,514 B2 Shailubhai (45) Date of Patent: Mar. 3, 2015 (54) AGONISTS OF GUANYLATECYCLASE 5,879.656 A 3, 1999 Waldman USEFUL FOR THE TREATMENT OF 36; A 6. 3: Watts tal HYPERCHOLESTEROLEMIA, 6,060,037- W - A 5, 2000 Waldmlegand et al. ATHEROSCLEROSIS, CORONARY HEART 6,235,782 B1 5/2001 NEW et al. DISEASE, GALLSTONE, OBESITY AND 7,041,786 B2 * 5/2006 Shailubhai et al. ........... 530.317 OTHER CARDOVASCULAR DISEASES 2002fOO78683 A1 6/2002 Katayama et al. 2002/O12817.6 A1 9/2002 Forssmann et al. (75) Inventor: Kunwar Shailubhai, Audubon, PA (US) 2003,2002/0143015 OO73628 A1 10/20024, 2003 ShaubhaiFryburg et al. 2005, OO16244 A1 1/2005 H 11 (73) Assignee: Synergy Pharmaceuticals, Inc., New 2005, OO32684 A1 2/2005 Syer York, NY (US) 2005/0267.197 A1 12/2005 Berlin 2006, OO86653 A1 4, 2006 St. Germain (*) Notice: Subject to any disclaimer, the term of this 299;s: A. 299; NS et al. patent is extended or adjusted under 35 2008/0137318 A1 6/2008 Rangarajetal.O U.S.C. 154(b) by 742 days. 2008. O151257 A1 6/2008 Yasuda et al. 2012/O196797 A1 8, 2012 Currie et al. (21) Appl. No.: 12/630,654 FOREIGN PATENT DOCUMENTS (22) Filed: Dec. 3, 2009 DE 19744O27 4f1999 (65) Prior Publication Data WO WO-8805306 T 1988 WO WO99,26567 A1 6, 1999 US 2010/O152118A1 Jun. 17, 2010 WO WO-0 125266 A1 4, 2001 WO WO-02062369 A2 8, 2002 Related U.S. -
The Alkaloids: Chemistry and Biology
CONTRIBUTORS Numbers in parentheses indicate the pages on which the authors’ contributions begin. B. EMMANUEL AKINSHOLA (135), Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, eakinshola@ howard.edu NORMA E. ALEXANDER (293), NDA International, 46 Oxford Place, Staten Island, NY 10301, [email protected] SYED F. ALI (79, 135), Division of Neurotoxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, [email protected] KENNETH R. ALPER (1, 249), Departments of Psychiatry and Neurology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, [email protected] MICHAEL H. BAUMANN (79), Clinical Psychopharmacology Section, Intra- mural Research Program, NIDA, National Institutes of Health, Baltimore, MD 21224, [email protected] DANA BEAL (249), Cures-not-Wars, 9 Bleecker Street, New York, NY 10012, [email protected] ZBIGNIEW K. BINIENDA (193), Division of Neurotoxicology, National Cen- ter for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, [email protected] WAYNE D. BOWEN (173), Laboratory of Medicinal Chemistry, NIDDK, NIH, Building 8 B1-23, 8 Center Drive, MSC 0820, Bethesda, MD 20892, [email protected] FRANK R. ERVIN (155), Department of Psychiatry and Human Genetics, McGill University, Montreal, Quebec H3A 2T5, Canada, md18@musica. mcgill.ca JAMES W. FERNANDEZ (235), Department of Anthropology, University of Chicago, 1126 E. 59th Street, Chicago, IL 60637, jwfi@midway. uchicago.edu xi xii CONTRIBUTORS RENATE L. FERNANDEZ (235), Department of Anthropology, University of Chicago, 1126 E. 59th Street, Chicago, IL 60637, rlf2@midway. uchicago.edu GEERTE FRENKEN (283), INTASH, P.O. -
NTP-CERHR Expert Panel Report on the Reproductive and Developmental Toxicity of Amphetamine and Methamphetamine
Published 2005 Wiley-Liss, Inc.w Birth Defects Research (Part B) 74:471–584 (2005) NTP-CERHR Expert Panel Report on the Reproductive and Developmental Toxicity Of Amphetamine and Methamphetamine Mari Golub,1 Lucio Costa,2 Kevin Crofton,3 Deborah Frank,4 Peter Fried,5 Beth Gladen6 Rogene Henderson,7 Erica Liebelt,8 Shari Lusskin,9 Sue Marty,10 Andrew Rowland11 John Scialli12 and Mary Vore13 1California Environment Protection Agency, Sacramento, California 2University of Washington, Seattle, Washington 3U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 4Boston Medical Center, Boston, Massachusetts 5Carleton University, Ottawa, Ontario 6National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 7Lovelace Respiratory Research Institute, Albuquerque, New Mexico 8University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 9New York University School of Medicine, New York, New York 10The Dow Chemical Company, Midland, Michigan 11University of New Mexico, Albuquerque, New Mexico 12Phoenix, Arizona 13University of Kentucky, Lexington, Kentucky PREFACE studies indexed before December 31, 2004. References were also identified from databases such as REPRO- The National Toxicology Program (NTP) and the TOXs, HSDB, IRIS, and DART and from report National Institute of Environmental Health Sciences bibliographies. (NIEHS) established the NTP Center for the Evaluation This evaluation resulted from the efforts of a 13- of Risks to Human Reproduction (CERHR) in June 1998. member panel of government and non-government The purpose of the Center is to provide timely, unbiased, scientists that culminated in a public expert panel scientifically sound evaluations of human and experi- meeting held January 10–12, 2005. This report is a mental evidence for adverse effects on reproduction and product of the Expert Panel and is intended to (1) development caused by agents to which humans may be interpret the strength of scientific evidence that exposed. -
Characterization of Multiple Sites of Action of Ibogaine
——Chapter 6—— CHARACTERIZATION OF MULTIPLE SITES OF ACTION OF IBOGAINE Henry Sershen, Audrey Hashim, And Abel Lajtha Nathan Kline Institute Orangeburg, New York 10962 I. Introduction.................................................................................................................. II. Issues Related to Ibogaine in the Treatment of Drug Dependence............................. A. Dopamine as a Primary Site of Drug-Mediated Responses .................................. B. Ibogaine or Its Metabolite and Acute versus Long-Term Effect........................... C. Single or Multiple Sites of Action of Ibogaine ..................................................... III. Effect of Ibogaine on Drug-Induced Behavior............................................................ IV. Binding Site Activity ................................................................................................... A. Relevant Site of Action.......................................................................................... V. Functional Activity ...................................................................................................... VI. Stimulant Drug Actions/Behaviors.............................................................................. VII. Current Non-Ibogaine Drug Treatment Protocols ....................................................... VIII. Conclusions.................................................................................................................. References................................................................................................................... -
Summary of Product Characteristics
Health Products Regulatory Authority Summary of Product Characteristics 1 NAME OF THE MEDICINAL PRODUCT Salbutamol CFC-Free Inhaler 100 micrograms per metered dose, pressurised inhalation, suspension 2 QUALITATIVE AND QUANTITATIVE COMPOSITION One metered dose contains 100 micrograms of salbutamol (equivalent to 120 micrograms of salbutamol sulphate). This is equivalent to a delivered dose of 90 micrograms of salbutamol (equivalent to 108 micrograms of salbutamol sulphate). For the full list of excipients, see section 6.1. 3 PHARMACEUTICAL FORM Pressurised inhalation suspension Pressurised inhalation suspension supplied in an aluminium canister with a metering valve and a plastic actuator and dust cap. 4 CLINICAL PARTICULARS 4.1 Therapeutic Indications Salbutamol CFC-Free Inhaler is indicated in adults, adolescents and children. For babies and children under 4 years of age, see sections 4.2 and 5.1. Salbutamol CFC-Free Inhaler is indicated for the relief and prevention of bronchial asthma and conditions associated with reversible airways obstruction. Salbutamol CFC-Free Inhaler can be used as relief medication in the management of mild, moderate or severe asthma, provided that its use does not delay the introduction and use of regular inhaled corticosteroid therapy, where necessary. 4.2 Posology and method of administration Salbutamol CFC-Free Inhaler is for oral inhalation use only. Posology Adults (including the elderly) and adolescents (children 12 years and over): For the relief of acute bronchospasm, one inhalation (100 micrograms) increasing to two inhalations (200 micrograms), if necessary. To prevent allergen- or exercise-induced symptoms, two inhalations (200 micrograms) should be taken 10-15 minutes before challenge. Maximum daily dose: two inhalations (200 micrograms) up to four times a day. -
Colorimetric Approaches to Drug Analysis and Applications – a Review
REVIEW ARTICLE Am. J. PharmTech Res. 2019; 9(01) ISSN: 2249-3387 Journal home page: http://www.ajptr.com/ Colorimetric Approaches To Drug Analysis And Applications – A Review Sowjanya Gummadi*, Mohana Kommoju Department of Pharmaceutical Analysis, Institute of Pharmacy, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India ABSTRACT The main purpose of this review is to highlight the importance of colorimetric approaches to drug analysis both in dosage forms as well as biological samples. Colorimetric methods using colorimetric reagents are highly sensitive, specific and an easy way of determining various analytes in a variety of matrices within a short time. The colorimetric procedures discussed are statistically validated and reported in various quality control laboratories. Hence in the present review significance of colorimetric procedures, various reagents used along with principles and applications are mentioned. Key words: Colorimetric approaches, sensitive, matrices, quality control, applications. *Corresponding Author Email: [email protected] Received 01 November 2018, Accepted 23 December 2018 Please cite this article as: Gummadi S et al., Colorimetric Approaches To Drug Analysis And Applications – A Review. American Journal of PharmTech Research 2019. Gummadi et. al., Am. J. PharmTech Res. 2019; 9(01) ISSN: 2249-3387 INTRODUCTION Colorimetry is a technique which involves the quantitative estimation of colors frequently used in biochemical investigation. Color can be produced by any substance when it binds with color forming chromogens. The difference in color intensity results in difference in the absorption of light. The intensity of color is directly proportional to the concentration of the compound being measured.1 Wavelength between 380 nm to 780 nm forms the visible band of light in electromagnetic spectrum. -
Oral Fluid Drug Test Package Insert
Marijuana (THC) 11-nor-Δ9-THC-9 COOH 4 MTD: Methadone is a synthetic analgesic drug originally used for the Oral Fluid Drug Test treatment of narcotic addiction. In addition to use as a narcotic agonist, methadone is being used more frequently as a pain management agent. The Marijuana (THC) Δ9-THC 50 Package Insert psychological effects induced by using methadone are analgesia, sedation, and respiratory depression. Based on the saliva/plasma ratio calculated over Package insert for testing of the following drugs: > 0.02 % Alcohol (ALC) Alcohol salivary pH ranges of 6.4-7.6 for therapeutic or recreational doses of Amphetamine,Cocaine,Marijuana,Methamphetamine,Opiate,Methadone, B.A.C methadone, a cut-off <50 ng/mL is suggested. Due to this recommendation, Phencyclidine,Oxycodone,Benzodiazepine,Buprenorphine,Barbiturates, the cut-off level of the methadone test was calibrated to 30 ng/mL. Cotinine,EDDP,MDMA,6-MAM,Propoxyphene ,Fentanyl,ETG and Alcohol Tramadol(TRA) 50 Tramadol PCP: Phencyclidine is a hallucinogen and, can be detected in oral fluid as a INTENDED USE & SUMMARY result of the exchange of the drug between the circulatory system and the oral cavity.5 Fentanyl(FEN) 10 The Oral Fluid Drug And Alcohol Test is intended for screening for the Norfentanyl presence of drugs and alcohol and their metabolites in oral fluid. For professional in vitro diagnostic use only. OXY: Oxycodone is a semi-synthetic opioid with a structural similarity to Ethyl codeine. The drug is manufactured by modifying thebaine, an alkaloid found in 150 The Oral Fluid Pipette Test is a lateral flow chromatographic immunoassay for Glucuronide(ETG) the opium poppy. -
Review Memorandum
510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY ONLY TEMPLATE A. 510(k) Number: k062165 B. Purpose for Submission: New device C. Measurand: Barbiturates D. Type of Test: Qualitative and semi-quantitative enzyme immunoassay E. Applicant: Ortho-Clinical Diagnostics, Inc. F. Proprietary and Established Names: VITROS Chemistry Products BARB Reagent VITROS Chemistry Products Calibrator 26 VITROS Chemistry Products FS Calibrator 1 VITROS Chemistry Products DAT Performance Verifiers I, II, III, IV and V G. Regulatory Information: 1. Regulation section: 21 CFR 862.3150, Barbiturates test system 21 CFR 862.3200, Clinical Toxicology Calibrator 21 CFR 862.3180, Clinical Toxicology Control 2. Classification: Class II, (reagent, calibrator) Class I, reserved (control) 3. Product code: DIS, DLJ and DIF 4. Panel: Toxicology (91) 1 H. Intended Use: 1. Intended use(s): See Indications for use. 2. Indication(s) for use: VITROS Chemistry Products BARB Reagent: For in vitro diagnostic use only. VITROS Chemistry Products BARB Reagent is used on VITROS 5,1 FS Chemistry Systems for the semi- quantitative or qualitative determination of barbiturates (BARB) in human urine using a cutoff of 200 ng/mL or 300 ng/mL. Measurements obtained with the VITROS BARB method are used in the diagnosis and treatment of barbiturates use or overdose. The VITROS Chemistry Products BARB assay is intended for use by professional laboratory personnel. It provides only a preliminary test result. A more specific alternative chemical method must be used to confirm a result with this assay. Gas Chromatograpy/Mass Spectrometry (GC/MS) is the preferred confirmatory method. Clinical consideration and professional judgment should be applied to any drug-of-abuse test result, particularly when evaluating a preliminary positive result. -
Experimental and Molecular Dynamics Simulation Studies of Partitioning and Transport Across Lipid Bilayer Membranes
University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2009 EXPERIMENTAL AND MOLECULAR DYNAMICS SIMULATION STUDIES OF PARTITIONING AND TRANSPORT ACROSS LIPID BILAYER MEMBRANES Ravindra Wadhumal Tejwani University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Tejwani, Ravindra Wadhumal, "EXPERIMENTAL AND MOLECULAR DYNAMICS SIMULATION STUDIES OF PARTITIONING AND TRANSPORT ACROSS LIPID BILAYER MEMBRANES" (2009). University of Kentucky Doctoral Dissertations. 738. https://uknowledge.uky.edu/gradschool_diss/738 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Ravindra Wadhumal Tejwani The Graduate School University of Kentucky 2009 EXPERIMENTAL AND MOLECULAR DYNAMICS SIMULATION STUDIES OF PARTITIONING AND TRANSPORT ACROSS LIPID BILAYER MEMBRANES ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Pharmacy at the University of Kentucky By Ravindra Wadhumal Tejwani Lexington, Kentucky Director: Dr. Bradley D. Anderson, Professor of Pharmaceutical Sciences Lexington, Kentucky 2009 Copyright © Ravindra W. Tejwani 2009 ABSTRACT OF DISSERTATION EXPERIMENTAL AND MOLECULAR DYNAMICS SIMULATION STUDIES OF PARTITIONING AND TRANSPORT ACROSS LIPID BILAYER MEMBRANES Most drugs undergo passive transport during absorption and distribution in the body. It is desirable to predict passive permeation of future drug candidates in order to increase the productivity of the drug discovery process. -
Partial Agreement in the Social and Public Health Field
COUNCIL OF EUROPE COMMITTEE OF MINISTERS (PARTIAL AGREEMENT IN THE SOCIAL AND PUBLIC HEALTH FIELD) RESOLUTION AP (88) 2 ON THE CLASSIFICATION OF MEDICINES WHICH ARE OBTAINABLE ONLY ON MEDICAL PRESCRIPTION (Adopted by the Committee of Ministers on 22 September 1988 at the 419th meeting of the Ministers' Deputies, and superseding Resolution AP (82) 2) AND APPENDIX I Alphabetical list of medicines adopted by the Public Health Committee (Partial Agreement) updated to 1 July 1988 APPENDIX II Pharmaco-therapeutic classification of medicines appearing in the alphabetical list in Appendix I updated to 1 July 1988 RESOLUTION AP (88) 2 ON THE CLASSIFICATION OF MEDICINES WHICH ARE OBTAINABLE ONLY ON MEDICAL PRESCRIPTION (superseding Resolution AP (82) 2) (Adopted by the Committee of Ministers on 22 September 1988 at the 419th meeting of the Ministers' Deputies) The Representatives on the Committee of Ministers of Belgium, France, the Federal Republic of Germany, Italy, Luxembourg, the Netherlands and the United Kingdom of Great Britain and Northern Ireland, these states being parties to the Partial Agreement in the social and public health field, and the Representatives of Austria, Denmark, Ireland, Spain and Switzerland, states which have participated in the public health activities carried out within the above-mentioned Partial Agreement since 1 October 1974, 2 April 1968, 23 September 1969, 21 April 1988 and 5 May 1964, respectively, Considering that the aim of the Council of Europe is to achieve greater unity between its members and that this