NTP-CERHR Expert Panel Report on the Reproductive and Developmental Toxicity of Amphetamine and Methamphetamine

Total Page:16

File Type:pdf, Size:1020Kb

NTP-CERHR Expert Panel Report on the Reproductive and Developmental Toxicity of Amphetamine and Methamphetamine Published 2005 Wiley-Liss, Inc.w Birth Defects Research (Part B) 74:471–584 (2005) NTP-CERHR Expert Panel Report on the Reproductive and Developmental Toxicity Of Amphetamine and Methamphetamine Mari Golub,1 Lucio Costa,2 Kevin Crofton,3 Deborah Frank,4 Peter Fried,5 Beth Gladen6 Rogene Henderson,7 Erica Liebelt,8 Shari Lusskin,9 Sue Marty,10 Andrew Rowland11 John Scialli12 and Mary Vore13 1California Environment Protection Agency, Sacramento, California 2University of Washington, Seattle, Washington 3U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 4Boston Medical Center, Boston, Massachusetts 5Carleton University, Ottawa, Ontario 6National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 7Lovelace Respiratory Research Institute, Albuquerque, New Mexico 8University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 9New York University School of Medicine, New York, New York 10The Dow Chemical Company, Midland, Michigan 11University of New Mexico, Albuquerque, New Mexico 12Phoenix, Arizona 13University of Kentucky, Lexington, Kentucky PREFACE studies indexed before December 31, 2004. References were also identified from databases such as REPRO- The National Toxicology Program (NTP) and the TOXs, HSDB, IRIS, and DART and from report National Institute of Environmental Health Sciences bibliographies. (NIEHS) established the NTP Center for the Evaluation This evaluation resulted from the efforts of a 13- of Risks to Human Reproduction (CERHR) in June 1998. member panel of government and non-government The purpose of the Center is to provide timely, unbiased, scientists that culminated in a public expert panel scientifically sound evaluations of human and experi- meeting held January 10–12, 2005. This report is a mental evidence for adverse effects on reproduction and product of the Expert Panel and is intended to (1) development caused by agents to which humans may be interpret the strength of scientific evidence that exposed. Amphetamines were selected for expert panel evalua- tion because of widespread usage in children, availability A report of the CERHR Expert Panel with the support of CERHR Staff: of studies on developmental effects in children and NTP/NIEHS, Michael Shelby, Ph.D. (Director, CERHR), Christopher Portier, Ph.D. (Associate Director, National Toxicology Program); Sciences experimental animals, and public concern about the International, Inc., Anthony Scialli, M.D. (Principal Scientist), Annette effects of these stimulants on child development. Iannucci, M.S. (Toxicologist), Gloria Jahnke, D.V.M. (Toxicologist), Jessie Amphetamines evaluated were d- and d,l-amphetamine Poulin, B.A. (Associate). and methamphetamine. d- and d,l-Amphetamine are This report is prepared according to the Guidelines for CERHR Panel Members established by NTP/NIEHS. The guidelines are available on the approved by the Food and Drug Administration (FDA) CERHR web site (http://cerhr.niehs.nih.gov/). The format for Expert Panel for the treatment of attention deficit hyperactivity Reports includes synopses of studies reviewed, followed by an evaluation disorder (ADHD) and narcolepsy. d-Methamphetamine of the Strengths/Weaknesses and Utility (Adequacy) of the study for CERHR evaluation. Statements and conclusions made under Strengths/ hydrochloride is used in pharmaceutical preparations in Weaknesses and Utility evaluations are those of the Expert Panel and are the United States and is approved for the treatment of prepared according to the NTP/NIEHS guidelines. In addition, the Panel ADHD and for short-term treatment of obesity. Metham- often makes comments or notes limitations in the synopses of the study. phetamine is also manufactured and used as an illicit Bold, square brackets are used to enclose such statements. As discussed in the guidelines, square brackets are used to enclose key items of drug. information not provided in a publication, limitations noted in the study, To obtain information about amphetamines for conclusions that differ from those of the authors, and conversions or the CERHR evaluation, the PubMed (Medline) and analyses of data conducted by the Panel. Toxline databases were searched with CAS RNs for Correspondence to: Michael D. Shelby, Ph.D., NIEHS EC-32, PO Box 12233, Research Triangle Park, NC 27709. 919-541-3455 d- and l-amphetamine (51-64-9; 156-34-3) and d-metham- E-mail: [email protected] phetamine (537-46-2) and its hydrochloride (51-57-0), Published online in Wiley InterScience (www.interscience.wiley.com) and relevant keywords. The search was limited to DOI: 10.1002/bdrb.20048 w This article is a U.S. Government work and, as such, is in the public domain in the United States of America. 472 GOLUB ET AL. amphetamines are reproductive or developmental tox- meant by the term ‘‘speed.’’ l-Methamphetamine can icants based on data from in vitro, animal, or human produce palpitations and gastrointestinal upset but does studies, (2) assess the extent of human exposures to not produce the psychological effects desired by recrea- include the general public, occupational groups, and tional users. There are no pharmaceuticals in the U.S. that other sub-populations, (3) provide objective and thor- contain the l-enantiomer. ough assessments of the scientific evidence that adverse Many of the Hazardous Substance Data Bank (HSDB) reproductive/developmental health effects may be asso- proprietary names in Table 1 were not found on the FDA ciated with such exposures, and (4) identify knowledge web site (http://www.accessdata.fda.gov/scripts/cder/ gaps to help establish research and testing priorities to drugsatfda/) and were presumed to be discontinued or reduce uncertainties and increase confidence in future foreign. Some proprietary names that were found on the assessments of risk. This report has been reviewed by FDA web site are for products listed as discontinued. The CERHR staff scientists, and by members of the Amphe- products that are currently marketed in the U.S. are listed tamines and Methylphenidate Expert Panel. Copies have in Table 2. been provided to the CERHR Core Committee, which is 1.1.2. Formula and molecular mass. The chemi- made up of representatives of NTP-participating cal formula for amphetamine is C9H13N and the agencies. molecular mass is 135.20. The chemical formula for This Expert Panel Report will be a central part of methamphetamine is C10H15N and the molecular mass is the subsequent NTP-CERHR Monograph on the 149.24. The structures are shown in Figure 1. Potential Human Reproductive and Developmental 1.1.3 Chemical and physical properties. Che- Effects of Amphetamines. This monograph will include mical and physical properties of amphetamine and the NTP-CERHR Brief, the Expert Panel Report, and all methamphetamine are listed in Table 3. public comments on the Expert Panel Report. The NTP- 1.1.4 Technical products and impurities. Table 2 CERHR Monograph will be made publicly available and summarizes active ingredient strength and lists the transmitted to appropriate health and regulatory inactive ingredients in each marketed amphetamine agencies. and methamphetamine product. The ophthalmic solu- The NTP-CERHR is headquartered at NIEHS, Re- tion (Paremyds) is marketed as a mydriatic and will not search Triangle Park, NC and is staffed and administered be further considered in this report. by scientists and support personnel at NIEHS and at Illicit amphetamines, chiefly methamphetamine hy- Sciences International, Inc., Alexandria, Virginia. drochloride, can be synthesized by different methods (Section 1.2.1) with the potential for different contami- nants. According to the U.S. Drug Enforcement Admin- 1.0 CHEMISTRY, USE AND istration (DEA) (2004), chemical supply houses HUMAN EXPOSURE internationally have restricted sales of the chemicals This exposure section is initially based on secondary used to produce methamphetamine of high purity, review sources. Primary study reports are addressed by resulting in substitution of other chemicals and a the Expert Panel if they contain information that is highly decrease in methamphetamine purity. In 1994, the relevant to a CERHR evaluation of developmental or average purity of methamphetamine seized by DEA reproductive toxicity or if the studies were released was 71.9%, whereas in 1999, the average purity was subsequent to the reviews. 30.7%. Purity of seized methamphetamine increased thereafter to 35.3% in 2000 and 40.1% in 2001. The nature of the impurities was not discussed. 1.1 Chemistry 1.1.1 Nomenclature. The term ‘‘amphetamines’’ is used to denote a class of chemicals with structural 1.2 Use and Human Exposure similarity to amphetamine. The amphetamines used in 1.2.1 Production information. The methods of clinical practice include two distinct bases, amphetamine production used in the pharmaceutical manufacture of and methamphetamine, available in pharmaceutical amphetamine and methamphetamine are not available; preparations as various mixtures of enantiomers and as however, there are Internet sites that give a number of various salts. The compounds relevant to this report are different methods for the synthesis of these compounds. identified in Table 1. Many of the trade names are no Amphetamine can be synthesized by the sequential longer in use, although they remain in current lists of alkylation of methyl acetoacetate with dimethyl sulfate drug names (ChemIDplus, 2004a; HSDB, 2004). The and benzyl chloride, followed by hydrolysis and deace- most commonly encountered
Recommended publications
  • (12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao Et Al
    USOO9498481 B2 (12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao et al. (45) Date of Patent: *Nov. 22, 2016 (54) CYCLOPROPYL MODULATORS OF P2Y12 WO WO95/26325 10, 1995 RECEPTOR WO WO99/O5142 2, 1999 WO WOOO/34283 6, 2000 WO WO O1/92262 12/2001 (71) Applicant: Apharaceuticals. Inc., La WO WO O1/922.63 12/2001 olla, CA (US) WO WO 2011/O17108 2, 2011 (72) Inventors: Tadimeti Rao, San Diego, CA (US); Chengzhi Zhang, San Diego, CA (US) OTHER PUBLICATIONS Drugs of the Future 32(10), 845-853 (2007).* (73) Assignee: Auspex Pharmaceuticals, Inc., LaJolla, Tantry et al. in Expert Opin. Invest. Drugs (2007) 16(2):225-229.* CA (US) Wallentin et al. in the New England Journal of Medicine, 361 (11), 1045-1057 (2009).* (*) Notice: Subject to any disclaimer, the term of this Husted et al. in The European Heart Journal 27, 1038-1047 (2006).* patent is extended or adjusted under 35 Auspex in www.businesswire.com/news/home/20081023005201/ U.S.C. 154(b) by Od en/Auspex-Pharmaceuticals-Announces-Positive-Results-Clinical M YW- (b) by ayS. Study (published: Oct. 23, 2008).* This patent is Subject to a terminal dis- Concert In www.concertpharma. com/news/ claimer ConcertPresentsPreclinicalResultsNAMS.htm (published: Sep. 25. 2008).* Concert2 in Expert Rev. Anti Infect. Ther. 6(6), 782 (2008).* (21) Appl. No.: 14/977,056 Springthorpe et al. in Bioorganic & Medicinal Chemistry Letters 17. 6013-6018 (2007).* (22) Filed: Dec. 21, 2015 Leis et al. in Current Organic Chemistry 2, 131-144 (1998).* Angiolillo et al., Pharmacology of emerging novel platelet inhibi (65) Prior Publication Data tors, American Heart Journal, 2008, 156(2) Supp.
    [Show full text]
  • TR-348: Alpha-Methyldopa Sesquihydrate (CASRN 41372-08-1)
    NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 348 TOXICOLOGY AND CARCINOGENESIS STUDIES OF a/pha-METHYLDOPA SESQUIHYDRATE (CAS NO. 41372-08-1) IN F344/N RATS AND B6C3Fi MICE (FEED STUDIES) U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF a/p/)a-METHYLDOPA SESQUIHYDRATE (CAS NO. 41372-08-1) IN F344/N RATS AND B6C3Fi MICE (FEED STUDIES) June K. Dunnick, Ph.D., Chemical Manager NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 March 1989 NTP TR 348 NIH Publication No. 89-2803 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health NOTE TO THE READER This study was performed under the direction of the K’ational Institute of Environmental Health Sci- ences as a function of the National Toxicology Program. The studies described in this Technical Re- port have been conducted in compliance with NTP chemical health and safety requirements and must meet or exceed all applicable Federal, state, and local health and safety regulations. Animal care and use were in accordance with the U.S. Public Health Service Policy on Humane Care and Use of Ani- mals. All NTP toxicology and carcinogenesis studies are subjected to a data audit before being pre- sented for public peer review. Although every effort is made to prepare the Technical Reports as accurately as possible, mistakes may occur. Readers are requested to identify any mistakes so that corrective action may be taken. Further, anyone who is aware of related ongoing or published studies not mentioned in this report is encouraged to make this information known to the NTP.
    [Show full text]
  • Participant Handbook
    LOWNDES COUNTY DUI COURT PARTICIPANT HANDBOOK STATE COURT OF LOWNDES COUNTY 327 NORTH ASHLEY STREET VALDOSTA, GA 31601 PHONE: 229-671-2895 FAX: 229-671-3441 Lowndes County DUI Court Team: Ellen S. Golden Judge, State Court Cynthia Welch Assistant Solicitor-General Gee Edwards Defense Attorney Stacey Bass Court Coordinator Kayla Porter Probation Officer Laci Rankhorn Treatment Provider Jason Reeves Surveillance Officer Revised 3/1/19 1 | P a g e TABLE OF CONTENTS TABLE OF CONTENTS...........................................................................................................................2 INTRODUCTION TO THE LOWNDES COUNTY STATE COURT DUI COURT.......................... 4 TREATMENT OVERVIEW.................................................................................................................... 6 I. PHASES OF THE DUI COURT PROGRAM........................................................................................7 Phase 1 – (approximately 17 weeks)....................................................................................................7 Phase 2 – (approximately 17 weeks)................................................................................................... 8 Phase 3 – (approximately 17 weeks)................................................................................................... 9 Phase 4 Aftercare- (approximately 3 months)....................................................................................9 Phase Progression.........................................................................................................................
    [Show full text]
  • United States Patent (10) Patent No.: US 8,969,514 B2 Shailubhai (45) Date of Patent: Mar
    USOO896.9514B2 (12) United States Patent (10) Patent No.: US 8,969,514 B2 Shailubhai (45) Date of Patent: Mar. 3, 2015 (54) AGONISTS OF GUANYLATECYCLASE 5,879.656 A 3, 1999 Waldman USEFUL FOR THE TREATMENT OF 36; A 6. 3: Watts tal HYPERCHOLESTEROLEMIA, 6,060,037- W - A 5, 2000 Waldmlegand et al. ATHEROSCLEROSIS, CORONARY HEART 6,235,782 B1 5/2001 NEW et al. DISEASE, GALLSTONE, OBESITY AND 7,041,786 B2 * 5/2006 Shailubhai et al. ........... 530.317 OTHER CARDOVASCULAR DISEASES 2002fOO78683 A1 6/2002 Katayama et al. 2002/O12817.6 A1 9/2002 Forssmann et al. (75) Inventor: Kunwar Shailubhai, Audubon, PA (US) 2003,2002/0143015 OO73628 A1 10/20024, 2003 ShaubhaiFryburg et al. 2005, OO16244 A1 1/2005 H 11 (73) Assignee: Synergy Pharmaceuticals, Inc., New 2005, OO32684 A1 2/2005 Syer York, NY (US) 2005/0267.197 A1 12/2005 Berlin 2006, OO86653 A1 4, 2006 St. Germain (*) Notice: Subject to any disclaimer, the term of this 299;s: A. 299; NS et al. patent is extended or adjusted under 35 2008/0137318 A1 6/2008 Rangarajetal.O U.S.C. 154(b) by 742 days. 2008. O151257 A1 6/2008 Yasuda et al. 2012/O196797 A1 8, 2012 Currie et al. (21) Appl. No.: 12/630,654 FOREIGN PATENT DOCUMENTS (22) Filed: Dec. 3, 2009 DE 19744O27 4f1999 (65) Prior Publication Data WO WO-8805306 T 1988 WO WO99,26567 A1 6, 1999 US 2010/O152118A1 Jun. 17, 2010 WO WO-0 125266 A1 4, 2001 WO WO-02062369 A2 8, 2002 Related U.S.
    [Show full text]
  • 2D6 Substrates 2D6 Inhibitors 2D6 Inducers
    Physician Guidelines: Drugs Metabolized by Cytochrome P450’s 1 2D6 Substrates Acetaminophen Captopril Dextroamphetamine Fluphenazine Methoxyphenamine Paroxetine Tacrine Ajmaline Carteolol Dextromethorphan Fluvoxamine Metoclopramide Perhexiline Tamoxifen Alprenolol Carvedilol Diazinon Galantamine Metoprolol Perphenazine Tamsulosin Amiflamine Cevimeline Dihydrocodeine Guanoxan Mexiletine Phenacetin Thioridazine Amitriptyline Chloropromazine Diltiazem Haloperidol Mianserin Phenformin Timolol Amphetamine Chlorpheniramine Diprafenone Hydrocodone Minaprine Procainamide Tolterodine Amprenavir Chlorpyrifos Dolasetron Ibogaine Mirtazapine Promethazine Tradodone Aprindine Cinnarizine Donepezil Iloperidone Nefazodone Propafenone Tramadol Aripiprazole Citalopram Doxepin Imipramine Nifedipine Propranolol Trimipramine Atomoxetine Clomipramine Encainide Indoramin Nisoldipine Quanoxan Tropisetron Benztropine Clozapine Ethylmorphine Lidocaine Norcodeine Quetiapine Venlafaxine Bisoprolol Codeine Ezlopitant Loratidine Nortriptyline Ranitidine Verapamil Brofaramine Debrisoquine Flecainide Maprotline olanzapine Remoxipride Zotepine Bufuralol Delavirdine Flunarizine Mequitazine Ondansetron Risperidone Zuclopenthixol Bunitrolol Desipramine Fluoxetine Methadone Oxycodone Sertraline Butylamphetamine Dexfenfluramine Fluperlapine Methamphetamine Parathion Sparteine 2D6 Inhibitors Ajmaline Chlorpromazine Diphenhydramine Indinavir Mibefradil Pimozide Terfenadine Amiodarone Cimetidine Doxorubicin Lasoprazole Moclobemide Quinidine Thioridazine Amitriptyline Cisapride
    [Show full text]
  • Summary of Product Characteristics
    Health Products Regulatory Authority Summary of Product Characteristics 1 NAME OF THE MEDICINAL PRODUCT Salbutamol CFC-Free Inhaler 100 micrograms per metered dose, pressurised inhalation, suspension 2 QUALITATIVE AND QUANTITATIVE COMPOSITION One metered dose contains 100 micrograms of salbutamol (equivalent to 120 micrograms of salbutamol sulphate). This is equivalent to a delivered dose of 90 micrograms of salbutamol (equivalent to 108 micrograms of salbutamol sulphate). For the full list of excipients, see section 6.1. 3 PHARMACEUTICAL FORM Pressurised inhalation suspension Pressurised inhalation suspension supplied in an aluminium canister with a metering valve and a plastic actuator and dust cap. 4 CLINICAL PARTICULARS 4.1 Therapeutic Indications Salbutamol CFC-Free Inhaler is indicated in adults, adolescents and children. For babies and children under 4 years of age, see sections 4.2 and 5.1. Salbutamol CFC-Free Inhaler is indicated for the relief and prevention of bronchial asthma and conditions associated with reversible airways obstruction. Salbutamol CFC-Free Inhaler can be used as relief medication in the management of mild, moderate or severe asthma, provided that its use does not delay the introduction and use of regular inhaled corticosteroid therapy, where necessary. 4.2 Posology and method of administration Salbutamol CFC-Free Inhaler is for oral inhalation use only. Posology Adults (including the elderly) and adolescents (children 12 years and over): For the relief of acute bronchospasm, one inhalation (100 micrograms) increasing to two inhalations (200 micrograms), if necessary. To prevent allergen- or exercise-induced symptoms, two inhalations (200 micrograms) should be taken 10-15 minutes before challenge. Maximum daily dose: two inhalations (200 micrograms) up to four times a day.
    [Show full text]
  • Colorimetric Approaches to Drug Analysis and Applications – a Review
    REVIEW ARTICLE Am. J. PharmTech Res. 2019; 9(01) ISSN: 2249-3387 Journal home page: http://www.ajptr.com/ Colorimetric Approaches To Drug Analysis And Applications – A Review Sowjanya Gummadi*, Mohana Kommoju Department of Pharmaceutical Analysis, Institute of Pharmacy, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India ABSTRACT The main purpose of this review is to highlight the importance of colorimetric approaches to drug analysis both in dosage forms as well as biological samples. Colorimetric methods using colorimetric reagents are highly sensitive, specific and an easy way of determining various analytes in a variety of matrices within a short time. The colorimetric procedures discussed are statistically validated and reported in various quality control laboratories. Hence in the present review significance of colorimetric procedures, various reagents used along with principles and applications are mentioned. Key words: Colorimetric approaches, sensitive, matrices, quality control, applications. *Corresponding Author Email: [email protected] Received 01 November 2018, Accepted 23 December 2018 Please cite this article as: Gummadi S et al., Colorimetric Approaches To Drug Analysis And Applications – A Review. American Journal of PharmTech Research 2019. Gummadi et. al., Am. J. PharmTech Res. 2019; 9(01) ISSN: 2249-3387 INTRODUCTION Colorimetry is a technique which involves the quantitative estimation of colors frequently used in biochemical investigation. Color can be produced by any substance when it binds with color forming chromogens. The difference in color intensity results in difference in the absorption of light. The intensity of color is directly proportional to the concentration of the compound being measured.1 Wavelength between 380 nm to 780 nm forms the visible band of light in electromagnetic spectrum.
    [Show full text]
  • Experimental and Molecular Dynamics Simulation Studies of Partitioning and Transport Across Lipid Bilayer Membranes
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2009 EXPERIMENTAL AND MOLECULAR DYNAMICS SIMULATION STUDIES OF PARTITIONING AND TRANSPORT ACROSS LIPID BILAYER MEMBRANES Ravindra Wadhumal Tejwani University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Tejwani, Ravindra Wadhumal, "EXPERIMENTAL AND MOLECULAR DYNAMICS SIMULATION STUDIES OF PARTITIONING AND TRANSPORT ACROSS LIPID BILAYER MEMBRANES" (2009). University of Kentucky Doctoral Dissertations. 738. https://uknowledge.uky.edu/gradschool_diss/738 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Ravindra Wadhumal Tejwani The Graduate School University of Kentucky 2009 EXPERIMENTAL AND MOLECULAR DYNAMICS SIMULATION STUDIES OF PARTITIONING AND TRANSPORT ACROSS LIPID BILAYER MEMBRANES ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Pharmacy at the University of Kentucky By Ravindra Wadhumal Tejwani Lexington, Kentucky Director: Dr. Bradley D. Anderson, Professor of Pharmaceutical Sciences Lexington, Kentucky 2009 Copyright © Ravindra W. Tejwani 2009 ABSTRACT OF DISSERTATION EXPERIMENTAL AND MOLECULAR DYNAMICS SIMULATION STUDIES OF PARTITIONING AND TRANSPORT ACROSS LIPID BILAYER MEMBRANES Most drugs undergo passive transport during absorption and distribution in the body. It is desirable to predict passive permeation of future drug candidates in order to increase the productivity of the drug discovery process.
    [Show full text]
  • Inhibitory Effects of Phytochemicals on Metabolic Capabilities of CYP2D6*1 and CYP2D6*10 Using Cell-Based Models in Vitro
    Acta Pharmacologica Sinica (2014) 35: 685–696 npg © 2014 CPS and SIMM All rights reserved 1671-4083/14 $32.00 www.nature.com/aps Original Article Inhibitory effects of phytochemicals on metabolic capabilities of CYP2D6*1 and CYP2D6*10 using cell-based models in vitro Qiang QU1, 2, Jian QU1, Lu HAN2, Min ZHAN1, Lan-xiang WU3, Yi-wen ZHANG1, Wei ZHANG1, Hong-hao ZHOU1, * 1Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410078, China; 2Xiangya Hospital, Central South University, Changsha 410008, China; 3Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China Aim: Herbal products have been widely used, and the safety of herb-drug interactions has aroused intensive concerns. This study aimed to investigate the effects of phytochemicals on the catalytic activities of human CYP2D6*1 and CYP2D6*10 in vitro. Methods: HepG2 cells were stably transfected with CYP2D6*1 and CYP2D6*10 expression vectors. The metabolic kinetics of the enzymes was studied using HPLC and fluorimetry. Results: HepG2-CYP2D6*1 and HepG2-CYP2D6*10 cell lines were successfully constructed. Among the 63 phytochemicals screened, 6 compounds, including coptisine sulfate, bilobalide, schizandrin B, luteolin, schizandrin A and puerarin, at 100 μmol/L inhibited CYP2D6*1- and CYP2D6*10-mediated O-demethylation of a coumarin compound AMMC by more than 50%. Furthermore, the inhibition by these compounds was dose-dependent. Eadie-Hofstee plots demonstrated that these compounds competitively inhibited CYP2D6*1 and CYP2D6*10. However, their Ki values for CYP2D6*1 and CYP2D6*10 were very close, suggesting that genotype- dependent herb-drug inhibition was similar between the two variants.
    [Show full text]
  • Brain CYP2D6 and Its Role in Neuroprotection Against Parkinson's
    Brain CYP2D6 and its role in neuroprotection against Parkinson’s disease by Amandeep Mann A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Pharmacology and Toxicology University of Toronto © Copyright by Amandeep Mann 2011 Brain CYP2D6 and its role in neuroprotection against Parkinson’s disease Amandeep Mann Doctor of Philosophy, 2011 Graduate Department of Pharmacology and Toxicology University of Toronto Abstract The enzyme CYP2D6 can metabolize many centrally acting drugs and endogenous neural compounds (e.g. catecholamines); it can also inactivate neurotoxins such as 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1,2,3,4-tetrahydroisoquinoline (TIQ) and β- carbolines that have been associated with Parkinson’s disease (PD). CYP2D6 is ideally situated in the brain to inactivate these neurotoxins. The CYP2D6 gene is also highly polymorphic, which leads to large variation in substrate metabolism. Furthermore, CYP2D6 genetically poor metabolizers are known to be at higher risk for developing PD, a risk that increases with exposure to pesticides. Conversely, smokers have a reduced risk for PD and smokers are suggested to have higher brain CYP2D6 levels. Our studies furthered the characterization and involvement of CYP2D6 in neuroprotection against PD. METHODS: We investigated the effects of CYP2D6 inhibition on MPP+-induced cell death in SH-SHY5Y human neuroblastoma cells. We compared levels of brain CYP2D6, measured by western blotting, between human smokers and non-smokers, between African Green monkeys treated with saline or nicotine, and between PD cases and controls. In addition, we assessed changes in human brain CYP2D6 expression with age.
    [Show full text]
  • Use of Hμrel Human Coculture System for Prediction of Intrinsic
    Article pubs.acs.org/molecularpharmaceutics Use of HμREL Human Coculture System for Prediction of Intrinsic Clearance and Metabolite Formation for Slowly Metabolized Compounds Ia Hultman,*,†,‡ Charlotta Vedin,†,‡ Anna Abrahamsson,§ Susanne Winiwarter,† and Malin Darnell† † § Drug Safety & Metabolism and RIA iMed DMPK, AstraZeneca R&D Gothenburg, 431 83 Mölndal, Sweden *S Supporting Information ABSTRACT: Design of slowly metabolized compounds is an important goal in many drug discovery projects. Standard hepatocyte suspension intrinsic clearance (CLint) methods can μ only provide reliable CLint values above 2.5 L/min/million cells. A method that permits extended incubation time with maintained performance and metabolic activity of the in vitro system is warranted to allow in vivo clearance predictions and metabolite identification of slowly metabolized drugs. The aim of this study was to evaluate the static HμREL coculture of human hepatocytes with stromal cells to be set up in-house as a standard method for fi in vivo clearance prediction and metabolite identi cation of slowly metabolized drugs. Fourteen low CLint compounds were incubated for 3 days, and seven intermediate to high CLint compounds and a cocktail of cytochrome P450 (P450) marker substrates were incubated for 3 h. In vivo clearance was predicted for 20 compounds applying the regression line approach, and HμREL coculture predicted the human intrinsic clearance for 45% of the drugs within 2-fold and 70% of the drugs within 3-fold μ of the clinical values. CLint values as low as 0.3 L/min/million hepatocytes were robustly produced, giving 8-fold improved ff sensitivity of robust low CLint determination, over the cuto in hepatocyte suspension CLint methods.
    [Show full text]
  • The Organic Chemistry of Drug Synthesis
    The Organic Chemistry of Drug Synthesis VOLUME 2 DANIEL LEDNICER Mead Johnson and Company Evansville, Indiana LESTER A. MITSCHER The University of Kansas School of Pharmacy Department of Medicinal Chemistry Lawrence, Kansas A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY AND SONS, New York • Chichester • Brisbane • Toronto Copyright © 1980 by John Wiley & Sons, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc. Library of Congress Cataloging in Publication Data: Lednicer, Daniel, 1929- The organic chemistry of drug synthesis. "A Wiley-lnterscience publication." 1. Chemistry, Medical and pharmaceutical. 2. Drugs. 3. Chemistry, Organic. I. Mitscher, Lester A., joint author. II. Title. RS421 .L423 615M 91 76-28387 ISBN 0-471-04392-3 Printed in the United States of America 10 987654321 It is our pleasure again to dedicate a book to our helpmeets: Beryle and Betty. "Has it ever occurred to you that medicinal chemists are just like compulsive gamblers: the next compound will be the real winner." R. L. Clark at the 16th National Medicinal Chemistry Symposium, June, 1978. vii Preface The reception accorded "Organic Chemistry of Drug Synthesis11 seems to us to indicate widespread interest in the organic chemistry involved in the search for new pharmaceutical agents. We are only too aware of the fact that the book deals with a limited segment of the field; the earlier volume cannot be considered either comprehensive or completely up to date.
    [Show full text]