Effect of A22 on the Conformation of Bacterial Actin Mreb

Total Page:16

File Type:pdf, Size:1020Kb

Effect of A22 on the Conformation of Bacterial Actin Mreb International Journal of Molecular Sciences Article Effect of A22 on the Conformation of Bacterial Actin MreB Elvis Awuni 1 and Yuguang Mu 2,* 1 Department of Biochemistry, School of Biological Sciences, CANS, University of Cape Coast, Cape Coast 00233, Ghana; [email protected] 2 School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore * Correspondence: [email protected]; Tel.: +65-63162885 Received: 23 January 2019; Accepted: 25 February 2019; Published: 15 March 2019 Abstract: The mechanism of the antibiotic molecule A22 is yet to be clearly understood. In a previous study, we carried out molecular dynamics simulations of a monomer of the bacterial actin-like MreB in complex with different nucleotides and A22, and suggested that A22 impedes the release of Pi from the active site of MreB after the hydrolysis of ATP, resulting in filament instability. On the basis of the suggestion that Pi release occurs on a similar timescale to polymerization and that polymerization can occur in the absence of nucleotides, we sought in this study to investigate a hypothesis that A22 impedes the conformational change in MreB that is required for polymerization through molecular dynamics simulations of the MreB protofilament in the apo, ATP+, and ATP-A22+ states. We suggest that A22 inhibits MreB in part by antagonizing the ATP-induced structural changes required for polymerization. Our data give further insight into the polymerization/depolymerization dynamics of MreB and the mechanism of A22. Keywords: molecular dynamics; simulations; actin-like MreB; conformational change; polymerization; depolymerization 1. Introduction The bacterial actin-like MreB forms the cytoskeleton network, and is involved in several life processes of rod-shaped bacteria [1–10]. MreB polymerizes into filaments which are made of two straight and antiparallel strands, unlike the two twisted and parallel strands of eukaryotic actin [11]. Figure1a–c shows the crystal structures of the monomeric (PDB ID: 4CZK [ 11]), single protofilament (PDB ID: 4CZI [11]), and double protofilament (PDB ID: 4CZJ [11]), respectively, of Caulobacter (C) cresentus MreB (CcMreB). The four subdomains (IA, IB, IIA, and IIB) of MreB, A22, and ATP binding sites are indicated in Figure1a. To form a single filament, adjacent monomeric chains of MreB interact longitudinally at the intraprotofilament interfaces (Figure1b). Opposite chains interact laterally at the interprotofilament interfaces to form a double protofilament as illustrated in Figure1c. Thus, the polymerization of MreB involves both single filament and double filament formation. The antibiotic molecule A22 (Figure1d) has been shown to affect bacteria by targeting MreB [8,12,13], but its mechanism is yet to be clearly and fully understood. In a previous study [14], we carried out molecular dynamics (MD) simulations of monomeric bacterial actin-like MreB in complex with different nucleotides (NTs) and A22, and suggested that A22 impedes the release of Pi from the active site of MreB after the hydrolysis of ATP thus resulting in filament instability. On the basis of the observations we made [14], the fact that Pi release occurs on a similar timescale to polymerization [15–17], and that polymerization can occur in the absence of NTs [18], we proposed a hypothesis that A22 interferes with the conformational change in MreB that is required Int. J. Mol. Sci. 2019, 20, 1304; doi:10.3390/ijms20061304 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2019, 20, 1304 2 of 14 Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 2 of 14 for polymerization. In this study, MD simulations of the MreB protofilament in the empty (apo), wereATP+, carried and ATP-A22+out to test statesthis hypothesis. were carried We obse out torved test that this (i) hypothesis. ATP induces We a conformational observed that change (i) ATP ininduces MreB athat conformational could favor changethe formation in MreB of that stable could single favor and the formationdouble protofilaments, of stable single and and (ii) double A22 interferesprotofilaments, with the and generation (ii) A22 interferes of this favorable with the generation conformation of this and favorable induces conformationa structure that and may induces not supporta structure polymerization that may not of support MreB into polymerization stable filaments. of MreB into stable filaments. Figure 1. Forms of MreB and structure of A22. (a) Monomeric structure of MreB. Subdomains IA, IB, Figure 1. Forms of MreB and structure of A22. (a) Monomeric structure of MreB. Subdomains IA, IB, IIA, and IIB as well as the ATP and A22 binding sites are indicated. The α-helix and β-sheet secondary IIA, and IIB as well as the ATP and A22 binding sites are indicated. The α-helix and β-sheet secondary structural elements are labeled. (b) Structure of a single protofilament of MreB composing of chains A, structural elements are labeled. (b) Structure of a single protofilament of MreB composing of chains B, and C. The intraprotofilament interfaces are indicated. (c) Structure of double protofilament of MreB. A, B, and C. The intraprotofilament interfaces are indicated. (c) Structure of double protofilament of The antiparallel strands and the interprotofilament interface are shown. (d) Structure of A22. MreB. The antiparallel strands and the interprotofilament interface are shown. (d) Structure of A22. 2. Results and Discussion 2. Results and Discussion 2.1. A22 Impedes ATP-Induced Backbone Conformational Change in MreB 2.1. A22To Impedes determine ATP-Induced any conformational Backbone Conformational change in the Change apo, ATP+, in MreB and ATP-A22+ MreB, root mean squareTo deviationdetermine (RMSD)any conformational analysis was change carried in out the on apo, the ATP+, backbone and atomsATP-A22+ of chain MreB, B inroot all mean three squaresimulations deviation of each (RMSD) state. Theanalysis RMSDs was were carried calculated out on by the using backbone the corresponding atoms of chain equilibrated B in all initialthree simulationsstructure of of each each state state. of MreBThe RMSDs as the reference.were calculat Theed RMSD by using values the of corresponding the last 50 ns simulationsequilibrated ofinitial each structurestate were of usedeach state to generate of MreB RMSD as the distributionreference. The curves. RMSD The values results, of the as last reported 50 ns simulations in Figure2, of reveal each statethat therewere isused a relatively to generate large RMSD conformational distribution change curves. in The the results, ATP+ state as reported (broad redin Figure distribution 2, reveal curves) that thereof MreB. is a relatively In the apo large and ATP-A22+conformational forms change (narrow in cyanthe ATP+ and greenstate (broad distribution red distribution curves, respectively), curves) of MreB.however, In the the apo backbone and ATP-A22+ atoms undergo forms relatively (narrow smallcyan conformationaland green distribution changes curves, as compared respectively), with the however,ATP+ form. the The backbone closeness atoms of the undergo backbone relatively atom distributions small conformational of the apo changes and ATP-A22+ as compared MreB formswith thesuggests ATP+ thatform. A22 The impedes closeness ATP-induced of the backbone conformational atom distributions change. of the apo and ATP-A22+ MreB forms suggests that A22 impedes ATP-induced conformational change. Int. J. Mol. Sci. 2019, 20, 1304 3 of 14 Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 14 Figure 2. Figure 2. Backbone-atom root mean square deviation (RMSD) distribution curves of apo, ATP+,ATP+, and ATP-A22+ MreB. The solid, dashed, and dotted cyan lines represent backbone RMSD distributions of ATP-A22+ MreB. The solid, dashed, and dotted cyan lines represent backbone RMSD distributions of chain B from simulations 1, 2, and 3, respectively, of the apo filament. The solid, dashed, and dotted red chain B from simulations 1, 2, and 3, respectively, of the apo filament. The solid, dashed, and dotted lines represent backbone RMSD distributions of chain B from simulations 1, 2, and 3, respectively, of red lines represent backbone RMSD distributions of chain B from simulations 1, 2, and 3, respectively, the ATP+ filament. The solid, dashed, and dotted green lines represent backbone RMSD distributions of the ATP+ filament. The solid, dashed, and dotted green lines represent backbone RMSD of chain B from simulations 1, 2, and 3, respectively, of the ATP-A22+ filament. distributions of chain B from simulations 1, 2, and 3, respectively, of the ATP-A22+ filament. 2.2. MreB Adopts One Main Low-Energy Structure in the Apo, ATP+, and ATP-A22+ States 2.2. MreB Adopts One Main Low-Energy Structure in the Apo, ATP+, and ATP-A22+ States To visualize the most essential dynamics and structural variations in the apo, ATP+, and ATP-A22+ statesTo of visualize MreB, principal the most component essential dynamics analyses (PCA) and st wereructural performed variations on thein the backbone apo, ATP+, atoms and of chainATP- BA22+ of each states state of MreB, using principal the last 50component ns trajectories analyses of the(PCA) simulations. were performed The gmxcovar on the backbone tool in Gromacsatoms of 5.4.1chain was B of usedeach tostate generate using the eigenvectors. last 50 ns trajectori For thees three of the simulations simulations. of eachThe gmxcovar MreB state, tool the in trajectory Gromacs with5.4.1 thewas lowest used to cosine generate content eigenvec wastors. selected For forthe thethree generation simulations of aof 2D each projection MreB state, and the a free trajectory energy landscapewith the lowest (FEL) cosine plot using content gmxanaeig was selected and gmxfor the sham generation utilities inof Gromacs,a 2D projection respectively. and a free An energy earlier studylandscape suggested (FEL) thatplot ausing lower gmxanaeig cosine content and valuegmx sham (preferably, utilities <0.2 in Gromacs, on the scale respectively. of 0 to 1) is An indicative earlier ofstudy efficient suggested sampling that fora lower FEL analysiscosine content [19]. value (preferably, <0.2 on the scale of 0 to 1) is indicative of efficientIn each sampling case, the for first FEL and analysis the second [19].
Recommended publications
  • The Bacterial Actin Mreb Rotates, and Rotation Depends on Cell-Wall Assembly
    The bacterial actin MreB rotates, and rotation depends on cell-wall assembly Sven van Teeffelena,1, Siyuan Wanga,b, Leon Furchtgottc,d, Kerwyn Casey Huangd, Ned S. Wingreena,b, Joshua W. Shaevitzb,e,1, and Zemer Gitaia,1 aDepartment of Molecular Biology, Princeton University, Princeton, NJ 08544; bLewis–Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544; cBiophysics Program, Harvard University, Cambridge, MA 02138; dDepartment of Bioengineering, Stanford University, Stanford, CA 94305; and eDepartment of Physics, Princeton University, Princeton, NJ 08854 Edited by Lucy Shapiro, Stanford University School of Medicine, Palo Alto, CA, and approved July 27, 2011 (received for review June 3, 2011) Bacterial cells possess multiple cytoskeletal proteins involved in a tently in a nearly circumferential direction. Interestingly, this wide range of cellular processes. These cytoskeletal proteins are MreB rotation is not driven by its own polymerization, but rather dynamic, but the driving forces and cellular functions of these requires cell-wall synthesis. These findings indicate that a motor dynamics remain poorly understood. Eukaryotic cytoskeletal dy- whose activity depends on cell-wall assembly rotates MreB. namics are often driven by motor proteins, but in bacteria no mo- Furthermore, the coupling of MreB rotation to cell-wall synthesis tors that drive cytoskeletal motion have been identified to date. suggests that MreB may not merely act upstream of cell-wall Here, we quantitatively study the dynamics of the Escherichia coli assembly. Indeed, computational simulations suggest that cou- actin homolog MreB, which is essential for the maintenance of pling MreB rotation to cell-wall synthesis can help cells maintain rod-like cell shape in bacteria.
    [Show full text]
  • Bacterial Actin Mreb Forms Antiparallel Double Filaments Fusinita Van Den Ent1*†, Thierry Izoré1†, Tanmay AM Bharat1, Christopher M Johnson2, Jan Löwe1
    RESEARCH ARTICLE elifesciences.org Bacterial actin MreB forms antiparallel double filaments Fusinita van den Ent1*†, Thierry Izoré1†, Tanmay AM Bharat1, Christopher M Johnson2, Jan Löwe1 1Structural Studies Division, Medical Research Council - Laboratory of Molecular Biology, Cambridge, United Kingdom; 2Protein and Nucleic Acid Chemistry Division, Medical Research Council - Laboratory of Molecular Biology, Cambridge, United Kingdom Abstract Filaments of all actin-like proteins known to date are assembled from pairs of protofilaments that are arranged in a parallel fashion, generating polarity. In this study, we show that the prokaryotic actin homologue MreB forms pairs of protofilaments that adopt an antiparallel arrangement in vitro and in vivo. We provide an atomic view of antiparallel protofilaments of Caulobacter MreB as apparent from crystal structures. We show that a protofilament doublet is essential for MreB's function in cell shape maintenance and demonstrate by in vivo site-specific cross-linking the antiparallel orientation of MreB protofilaments in E. coli. 3D cryo-EM shows that pairs of protofilaments ofCaulobacter MreB tightly bind to membranes. Crystal structures of different nucleotide and polymerisation states of Caulobacter MreB reveal conserved conformational changes accompanying antiparallel filament formation. Finally, the antimicrobial agents A22/MP265 are shown to bind close to the bound nucleotide of MreB, presumably preventing nucleotide hydrolysis and destabilising double protofilaments. DOI: 10.7554/eLife.02634.001 *For correspondence: fent@mrc- lmb.cam.ac.uk Introduction †These authors contributed Cell shape is a characteristic and hereditary feature that is crucial for existence and its regulation is a equally to this work common challenge for organisms across all biological kingdoms.
    [Show full text]
  • Investigating the Actin Regulatory Activities of Las17, the Wasp Homologue in S. Cerevisiae Liemya E. Abugharsa
    Investigating the actin regulatory activities of Las17, the WASp homologue in S. cerevisiae A thesis submitted for the degree of Doctor of Philosophy By Liemya E. Abugharsa Department of Molecular Biology and Biotechnology University of Sheffield March 2015 Abstract Investigating the actin regulatory activities of Las17, the WASp homologue in S. cerevisiae Clathrin mediated endocytosis (CME) in S. cerevisiae requires the dynamic interplay between many proteins at the plasma membrane. Actin polymerisation provides force to drive membrane invagination and vesicle scission. The WASp homologue in yeast, Las17 plays a major role in stimulating actin filament assembly during endocytosis. The actin nucleation ability of WASP family members is attributed to their WCA domain [WH2 (WASP homology2) domain, C central, and A (acidic) domains] which provides binding sites for both actin monomers and the Arp2/3 complex. In addition, the central poly-proline repeat region of Las17 is able to bind and nucleate actin filaments independently of the Arp2/3 complex. While Las17 is a key regulator of endocytic progression and has been found to be phosphorylated in global studies, the mechanism behind regulation of Las17 actin-based function is unclear. Therefore, the aims of this study were to investigate the post-translation modification of Las17 by phosphorylation, and to determine how this modification impacts on Las17 function both in vivo and in vitro. Mass Spec analysis was employed and allowed identification of further phosphorylation sites in Las17. Through the studies described here I was able to demonstrate that Las17 is phosphorylated, and that one specific phosphorylation event was of importance in endocytosis.
    [Show full text]
  • Interrogating the Escherichia Coli Cell Cycle by Cell Dimension Perturbations
    Interrogating the Escherichia coli cell cycle by cell dimension perturbations Hai Zhenga,b, Po-Yi Hoc, Meiling Jianga, Bin Tangd, Weirong Liua,b, Dengjin Lia, Xuefeng Yue, Nancy E. Klecknerf, Ariel Amirc,1, and Chenli Liua,b,1 aCenter for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People’s Republic of China; bUniversity of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China; cSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; dDepartment of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China; eInstitute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People’s Republic of China; and fDepartment of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 Edited by Kiyoshi Mizuuchi, National Institutes of Health, Bethesda, MD, and approved November 14, 2016 (received for review September 30, 2016) Bacteria tightly regulate and coordinate the various events in by a phenomenological size variable, with no explicit reference to their cell cycles to duplicate themselves accurately and to control DNA replication. their cell sizes. Growth of Escherichia coli, in particular, follows a A second class of models for control of cell division postulates relation known as Schaechter’s growth law. This law says that the that cell division is governed by the process of DNA replica- average cell volume scales exponentially with growth rate, with tion, which can be described as follows. The time from a repli- a scaling exponent equal to the time from initiation of a round cation initiation event to the cell division that segregates the of DNA replication to the cell division at which the corresponding corresponding sister chromosomes can be split into the C period, sister chromosomes segregate.
    [Show full text]
  • Actin Homolog Mreb and RNA Polymerase Interact and Are Both Required for Chromosome Segregation in Escherichia Coli
    Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Actin homolog MreB and RNA polymerase interact and are both required for chromosome segregation in Escherichia coli Thomas Kruse,1 Blagoy Blagoev,1 Anders Løbner-Olesen,2 Masaaki Wachi,3 Kumi Sasaki,3 Noritaka Iwai,3 Matthias Mann,1,4 and Kenn Gerdes1,5 1Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, DK-5230 Odense M, Denmark; 2Department of Life Sciences and Chemistry, Roskilde University, DK-4000 Roskilde, Denmark; 3Department of Bioengineering, Tokyo Institute of Technology, Yokohama, Japan; 4Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany The actin-like MreB cytoskeletal protein and RNA polymerase (RNAP) have both been suggested to provide the force for chromosome segregation. Here, we identify MreB and RNAP as in vivo interaction partners. The interaction was confirmed using in vitro purified components. We also present convincing evidence that MreB and RNAP are both required for chromosome segregation in Escherichia coli. MreB is required for origin and bulk DNA segregation, whereas RNAP is required for bulk DNA, terminus, and possibly also for origin segregation. Furthermore, flow cytometric analyses show that MreB depletion and inactivation of RNAP confer virtually identical and highly unusual chromosome segregation defects. Thus, our results raise the possibility that the MreB–RNAP interaction is functionally important for chromosome segregation. [Keywords: MreB; actin; RNA polymerase (RNAP); chromosome segregation; oriC; terC] Supplemental material is available at http://www.genesdev.org. Received September 20, 2005; revised version accepted November 2, 2005. In eukaryotic cells, the mitotic spindle apparatus segre- chromosome segregation.
    [Show full text]
  • Dynamic Gradients of an Intermediate Filament-Like Cytoskeleton Are
    Dynamic gradients of an intermediate filament-like PNAS PLUS cytoskeleton are recruited by a polarity landmark during apical growth Katsuya Fuchinoa, Sonchita Bagchib,1, Stuart Cantlaya,1, Linda Sandbladc,DiWud, Jessica Bergmanb, Masood Kamali-Moghaddamd, Klas Flärdha, and Nora Ausmeesa,2 aDepartment of Biology, Lund University, 22362 Lund, Sweden; bDepartment of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden; cDepartment of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; and dDepartment of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden Edited by Richard Losick, Harvard University, Cambridge, MA, and approved April 8, 2013 (received for review March 21, 2013) Intermediate filament (IF)-like cytoskeleton emerges as a versatile in several species of the Gram-positive phylum Actinobacteria tool for cellular organization in all kingdoms of life, underscoring the (see below and ref. 8). importance of mechanistically understanding its diverse manifesta- Although most of the distantly related bacterial IF-like proteins tions. We showed previously that, in Streptomyces (a bacterium do not share obvious conserved sequence motifs with each other or with a mycelial lifestyle similar to that of filamentous fungi, includ- with eukaryotic IF proteins, we refer to them as “IF-like,” based on ing extreme cell and growth polarity), the IF protein FilP confers their structural, biochemical, and functional analogy to eukaryotic rigidity to the hyphae by an unknown mechanism. Here, we provide IF proteins. In addition to their similar coiled-coil domain archi- a possible explanation for the IF-like function of FilP by demonstrat- tecture, most of the above mentioned bacterial proteins also share ing its ability to self-assemble into a cis-interconnected regular net- a fundamental biochemical property with the eukaryotic IF pro- work in vitro and its localization into structures consistent with teins, which is to spontaneously self-assemble into ordered fila- a cytoskeletal network in vivo.
    [Show full text]
  • Functional Analysis of Actin-Like Protein Mreb and Alternative Sigma Factor Rpon in Chlamydial Developmental Cycle by Namita
    Functional analysis of actin-like protein MreB and alternative sigma factor RpoN in chlamydial developmental cycle By Namita Balwalli Submitted to the graduate degree program in Molecular Biosciences and Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Arts __________________________ Chairperson (Scott Hefty, Ph.D.) __________________________* (Susan Egan, Ph.D.) __________________________* (David Davido, Ph.D.) *Committee members Date Defended 03/29/13 i The Thesis Committee for Namita Balwalli certifies that this is the approved version of the following thesis: Functional analysis of actin-like protein MreB and alternative sigma factor RpoN in chlamydial developmental cycle Committee: __________________________________ Chairperson (P. Scott Hefty, Ph.D.) Date approved: 04/22/13 ii Abstract Chlamydia trachomatis is an obligate intracellular pathogen of immense public health impact and is responsible for diverse disease states leading to blindness, sterility, atherosclerosis etc. in humans. Its unique biphasic developmental cycle is essentially linked to its pathogenesis. MreB, an actin-like protein, is known to be present in most rod-shaped organisms as a part of the cell elongation machinery. The role of MreB in Chlamydia is unknown, even though this gene is conserved. Recent studies have attributed diverse roles to MreB in different organisms. Our study focusses on the possible role of MreB in Chlamydia trachomatis using different approaches and techniques. To understand the functional role of MreB, we sought two strategies, in vitro and in vivo analysis. Purified recombinant chlamydial MreB was subjected to a polymerization reactions using ATP and Mg2+ ions in the presence and absence of a known inhibitor of MreB polymerization i.e.
    [Show full text]
  • Mreb, the Cell Shape-Determining Bacterial Actin Homologue, Co-Ordinates Cell Wall Morphogenesis in Caulobacter Crescentus
    Blackwell Science, LtdOxford, UKMMIMolecular Microbiology0950-382XBlackwell Publishing Ltd, 2004? 200451513211332Original ArticleMreB-dependent regulation of cell shapeR. M. Figge, A. V. Divakaruni and J. W. Gober Molecular Microbiology (2004) 51(5), 1321–1332 doi:10.1046/j.1365-2958.2003.03936.x MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus Rainer M. Figge, Arun V. Divakaruni and distinct shape on the intact cell (Holtje, 1998). For rod- James W. Gober* shaped bacteria, morphogenesis occurs in two distinct Department of Chemistry and Biochemistry and the phases, cell elongation followed by septation (cell divi- Molecular Biology Institute, University of California, Los sion) (Wientjes and Nanninga, 1989; Nanninga, 1991; Angeles, CA 90095-1569, USA. de Pedro et al., 1997). During the elongation phase, the cells grow along the longitudinal axis with little increase in width. Once a critical cell length is Summary attained, cell wall synthesis switches direction at the The bacterial actin homologue, MreB, is required for mid-cell, turning inward, thus forming a cell division the maintenance of a rod-shaped cell and has been septum. The regulation of these two phases in cell shown to form spirals that traverse along the longitu- wall morphogenesis is co-ordinated with other cell dinal axis of Bacillus subtilis and Escherichia coli cycle-related events such as DNA replication and chro- cells. The depletion of MreB in Caulobacter crescen- mosome partitioning. tus resulted in lemon-shaped cells that possessed The structure and composition of peptidoglycan has defects in the integrity of the cell wall. MreB localiza- been determined in detail, and many enzymes involved tion appeared as bands or spirals that encircled the in its synthesis have been characterized (Holtje, 1998).
    [Show full text]
  • Biochimica Et Biophysica Acta 1833 (2013) 2334–2347
    Biochimica et Biophysica Acta 1833 (2013) 2334–2347 Contents lists available at SciVerse ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamcr Stimulation of in vivo nuclear transport dynamics of actin and its co-factors IQGAP1 and Rac1 in response to DNA replication stress Michael A. Johnson 1, Manisha Sharma, Myth T.S. Mok 2, Beric R. Henderson ⁎ Westmead Institute for Cancer Research, The University of Sydney, Westmead Millennium Institute at Westmead Hospital, Westmead, NSW 2145, Australia article info abstract Article history: Actin, a constituent of the cytoskeleton, is now recognized to function in the nucleus in gene transcription, Received 21 November 2012 chromatin remodeling and DNA replication/repair. Actin shuttles in and out of the nucleus through the action of Received in revised form 31 May 2013 transport receptors importin-9 and exportin-6. Here we have addressed the impact of cell cycle progression and Accepted 4 June 2013 DNA replication stress on actin nuclear localization, through study of actin dynamics in living cells. First, we Available online 13 June 2013 showed that thymidine-induced G1/S phase cell cycle arrest increased the nuclear levels of actin and of two factors that stimulate actin polymerization: IQGAP1 and Rac1 GTPase. When cells were exposed to hydroxyurea to induce Keywords: Nuclear actin DNA replication stress, the nuclear localization of actin and its regulators was further enhanced. We employed live IQGAP1 cell photobleaching assays and discovered that in response to DNA replication stress, GFP-actin nuclear import and Rac1 export rates increased by up to 250%. The rate of import was twice as fast as export, accounting for actin nuclear Nuclear transport accumulation.
    [Show full text]
  • Ftsz Exhibits Rapid Movement and Oscillation Waves in Helix-Like Patterns in Escherichia Coli
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology, Vol. 14, 1167–1173, July 13, 2004, 2004 Elsevier Ltd. All rights reserved. DOI 10.1016/j.cub.2004.06.048 FtsZ Exhibits Rapid Movement and Oscillation Waves in Helix-like Patterns in Escherichia coli Swapna Thanedar and William Margolin* viously observed for FtsZ outside of Z rings under spe- Department of Microbiology and Molecular cialized conditions, such as FtsZ overproduction in E. coli Genetics [5] or sporulation in B. subtilis [13]. University of Texas Medical School 6431 Fannin Street Houston, Texas 77030 FtsZ Moves Rapidly within a Helix-like Structure Apart from the Z Ring To monitor the localization and movement of FtsZ, we used a green fluorescent protein (GFP) fusion to FtsZ, Summary FtsZ-GFP, which is generally not capable of fully replac- ing native FtsZ for function. Nevertheless, FtsZ-GFP can Prokaryotes contain cytoskeletal proteins such as the localize like FtsZ and, when expressed at levels equiva- tubulin-like FtsZ, which forms the Z ring at the cell lent to or lower than those of native FtsZ, it acts as an center for cytokinesis [1], and the actin-like MreB, accurate tracer for FtsZ localization and dynamics [5, which forms a helix along the long axis of the cell and 12–14]. E. coli EC448 expresses a single copy of FtsZ- is required for shape maintenance [2]. Using time- GFP under IPTG control as well as wild-type FtsZ under lapse analysis of Escherichia coli cells expressing control of its native promoter.
    [Show full text]
  • The Role of Cytoskeletal Elements in Shaping Bacterial Cells Hongbaek Cho*
    J. Microbiol. Biotechnol. (2015), 25(3), 307–316 http://dx.doi.org/10.4014/jmb.1409.09047 Research Article Review jmb The Role of Cytoskeletal Elements in Shaping Bacterial Cells Hongbaek Cho* Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA Received: September 16, 2014 Revised: September 26, 2014 Beginning from the recognition of FtsZ as a bacterial tubulin homolog in the early 1990s, many Accepted: September 26, 2014 bacterial cytoskeletal elements have been identified, including homologs to the major eukaryotic cytoskeletal elements (tubulin, actin, and intermediate filament) and the elements unique in prokaryotes (ParA/MinD family and bactofilins). The discovery and functional First published online characterization of the bacterial cytoskeleton have revolutionized our understanding of September 29, 2014 bacterial cells, revealing their elaborate and dynamic subcellular organization. As in *Corresponding author eukaryotic systems, the bacterial cytoskeleton participates in cell division, cell morphogenesis, Phone: +1-617-432-6970; DNA segregation, and other important cellular processes. However, in accordance with the Fax: +1-617-432-6970; vast difference between bacterial and eukaryotic cells, many bacterial cytoskeletal proteins E-mail: hongbaek_cho@hms. harvard.edu play distinct roles from their eukaryotic counterparts; for example, control of cell wall synthesis for cell division and morphogenesis. This review is aimed at providing an overview of the bacterial cytoskeleton, and discussing the roles and assembly dynamics of bacterial cytoskeletal proteins in more detail in relation to their most widely conserved functions, DNA pISSN 1017-7825, eISSN 1738-8872 segregation and coordination of cell wall synthesis. Copyright© 2015 by The Korean Society for Microbiology Keywords: Bacterial cytoskeleton, DNA segregation, FtsZ, MreB, ParA, peptidoglycan and Biotechnology Introduction cytokinesis, and cell morphogenesis.
    [Show full text]
  • The Assembly and Interactions of Mreb in the Maintenance of Cell Shape in Caulobacter Crescentus
    THE ASSEMBLY AND INTERACTIONS OF MREB IN THE MAINTENANCE OF CELL SHAPE IN CAULOBACTER CRESCENTUS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF BIOCHEMISTRY AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Natalie Anne Dye May, 2010 © 2010 by Natalie Anne Dye. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/bg008yn0701 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Julie Theriot, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Lucille Shapiro, Co-Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. James Spudich I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Aaron Straight Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format.
    [Show full text]