Investigating the Actin Regulatory Activities of Las17, the Wasp Homologue in S. Cerevisiae Liemya E. Abugharsa

Total Page:16

File Type:pdf, Size:1020Kb

Investigating the Actin Regulatory Activities of Las17, the Wasp Homologue in S. Cerevisiae Liemya E. Abugharsa Investigating the actin regulatory activities of Las17, the WASp homologue in S. cerevisiae A thesis submitted for the degree of Doctor of Philosophy By Liemya E. Abugharsa Department of Molecular Biology and Biotechnology University of Sheffield March 2015 Abstract Investigating the actin regulatory activities of Las17, the WASp homologue in S. cerevisiae Clathrin mediated endocytosis (CME) in S. cerevisiae requires the dynamic interplay between many proteins at the plasma membrane. Actin polymerisation provides force to drive membrane invagination and vesicle scission. The WASp homologue in yeast, Las17 plays a major role in stimulating actin filament assembly during endocytosis. The actin nucleation ability of WASP family members is attributed to their WCA domain [WH2 (WASP homology2) domain, C central, and A (acidic) domains] which provides binding sites for both actin monomers and the Arp2/3 complex. In addition, the central poly-proline repeat region of Las17 is able to bind and nucleate actin filaments independently of the Arp2/3 complex. While Las17 is a key regulator of endocytic progression and has been found to be phosphorylated in global studies, the mechanism behind regulation of Las17 actin-based function is unclear. Therefore, the aims of this study were to investigate the post-translation modification of Las17 by phosphorylation, and to determine how this modification impacts on Las17 function both in vivo and in vitro. Mass Spec analysis was employed and allowed identification of further phosphorylation sites in Las17. Through the studies described here I was able to demonstrate that Las17 is phosphorylated, and that one specific phosphorylation event was of importance in endocytosis. Ser588 mutants were shown to affect an early stage of endocytosis whereby S588D mutant had a negative impact on growth, actin organisation, and endocytic invagination. The overall results suggest a regulatory model in which Las17 is subjected to intramolecular interaction that supports Arp2/3- independent actin nucleation mediated by its PP region. Phosphorylation must then be relieved to allow Arp2/3-dependent actin polymerisation to take place to drive invagination. These data establish a novel regulatory model of Las17 and have increased our understanding on the mechanism of actin nucleation during early endocytosis in yeast. i Table of contents Abstract ...................................................................................................................i Table of contents ................................................................................................. ii List of figures .................................................................................................... viii List of tables ....................................................................................................... x Abbreviations .........................................................................................................xi Chapter 1: Introduction 1.1 General introduction ......................................................................................... 1 1.2 Actin ................................................................................................................ 4 1.2.1 Actin structures ............................................................................................ 4 1.2.1.1 Monomeric (G)-actin .................................................................................. 4 1.2.1.2 The actin polymer (F-actin) ........................................................................ 8 1.2.2 Actin polymerisation ...................................................................................... 9 1.2.2.1 Nucleation ................................................................................................ 11 1.2.2.2 Elongation ................................................................................................ 13 1.2.2.3 Treadmiling .............................................................................................. 15 1.3 Cytoskeleton in prokaryotic ............................................................................ 15 1.4 Actin binding proteins (ABPs) ........................................................................ 18 1.4.1 G-actin binding proteins .............................................................................. 20 1.4.1.1 Profilin family ........................................................................................... 20 1.4.1.2Thymosin β4 ............................................................................................. 21 1.4.1.3 Twinfilin .................................................................................................... 21 1.4.2 F-actin binding proteins ............................................................................... 22 1.4.2.1 Capping -CapZ ......................................................................................... 22 1.4.2.2 F-actin depolymerisation proteins- ADF/Cofilin......................................... 22 1.4.2.3 F-actin severing proteins .......................................................................... 23 1.4.3 Actin crosslinking/bundling proteins ............................................................ 25 1.4.4 Myosins ...................................................................................................... 26 1.4.5 Actin stabilizers ........................................................................................... 26 1.4.6 Actin nucleators .......................................................................................... 27 1.4.6.1 Arp2/3 Complex ....................................................................................... 27 1.4.6.2 Formins .................................................................................................... 31 1.4.7 Nucleation promoting factors (NPFs) .......................................................... 33 1.4.7.1 NPFs class I ............................................................................................ 33 1.4.7.1.1WASP and N-WASP .............................................................................. 33 1.4.7.1.1.1Regulation of WASPs by phosphorylation ........................................... 36 1.4.7.1.2 Ena/VASP ............................................................................................. 39 1.4.7.1.3 WAVE/SCAR ........................................................................................ 39 1.4.7.1.4 WASH ................................................................................................... 40 1.4.7.1.5 WHAMM ............................................................................................... 41 1.4.7.1.6 JMY ...................................................................................................... 42 1.4.7.2 NPFs class II (Cortactin) .......................................................................... 42 ii Table of contents 1.5 Actin in yeast ................................................................................................. 44 1.5.1 Actin architecture in yeast ........................................................................... 45 1.5.1.1 Actin cortical patches ............................................................................... 45 1.5.1.2 Actin cables ............................................................................................. 45 1.5.1.3 Acto-myosin ring ...................................................................................... 46 1.6 Role of actin in yeast ..................................................................................... 48 1.7 Endocytosis in yeast ...................................................................................... 49 1.7.1 Actin binding proteins(ABPs) in yeast ......................................................... 50 1.7.2 Stages of yeast endocytosis ....................................................................... 50 1.7.2.1 Stage1: non-motile ................................................................................... 53 1.7.2.2 Stage 2: slow movement (invagination) .................................................... 55 1.7.2.2.1 Regulation of actin polymerisation in endocytosis ................................ 56 1.7.2.3 Stage 3: vesicle scission and uncoating .................................................. 59 1.8 The WASp homologue, Las17 ....................................................................... 61 1.9 Roles of Las17 in endocytosis ...................................................................... 66 1.10 Summary ..................................................................................................... 67 1.11 Aims of the project ....................................................................................... 68 Chapter 2: Materials and Methods 2.1 Materials ........................................................................................................ 69 2.2 Yeast strains, plasmids, oligonucleotides, and antibodies ............................. 96 2.3 Molecular Biology Techniques ...................................................................... 73 2.3.1 DNA plasmid mini prep .............................................................................. 73 2.3.2 DNA Agarose Gel Electrophoresis ............................................................ .73 2.3.3 DNA Extraction from Agarose Gel .............................................................
Recommended publications
  • The Cytoskeleton in Cell-Autonomous Immunity: Structural Determinants of Host Defence
    Mostowy & Shenoy, Nat Rev Immunol, doi:10.1038/nri3877 The cytoskeleton in cell-autonomous immunity: structural determinants of host defence Serge Mostowy and Avinash R. Shenoy Medical Research Council Centre of Molecular Bacteriology and Infection (CMBI), Imperial College London, Armstrong Road, London SW7 2AZ, UK. e‑mails: [email protected] ; [email protected] doi:10.1038/nri3877 Published online 21 August 2015 Abstract Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence. 1 Mostowy & Shenoy, Nat Rev Immunol, doi:10.1038/nri3877 Cell-autonomous immunity, which is defined as the ability of a host cell to eliminate an invasive infectious agent, is a first line of defence against microbial pathogens 1 . It relies on antimicrobial proteins, specialized degradative compartments and programmed host cell death 1–3 . Cell- autonomous immunity is mediated by tiered innate immune signalling networks that sense microbial pathogens and stimulate downstream pathogen elimination programmes. Recent studies on host– microorganism interactions show that components of the host cell cytoskeleton are integral to the detection of bacterial pathogens as well as to the mobilization of antibacterial responses (FIG.
    [Show full text]
  • Essential for Protein Regulation
    CYTOSKELETON NEWS NEWS FROM CYTOSKELETON INC. Rac GTP Rho GTPases Control Cell Migration P-Rex1 Related Publications Fli2 Rac Research Tools January GDP 2020 Tiam1 Rac GTP v Rho GTPases Control Cell Migration Meetings Directed cell migration depends upon integrin-containing deposition of the ECM protein fibronectin which supports Cold Spring Harbor focal adhesions connecting the cell’s actin cytoskeleton nascent lamellipodia formation. The fibronectin binds to Conference - Systems with the extracellular matrix (ECM) and transmitting integrin and serves as an ECM substrate for Rac1-dependent 18 Biology: Global Regulation of mechanical force. Focal adhesion formation and subsequent directional migration . N e Gene Expression migration require dynamic re-organization of actin-based w contractile fibers and protrusions at a cell’s trailing and Cell Directionality s March 11-14th leading edges, respectively, in response to extracellular Cold Spring Harbor, NY guidance cues. Migration is essential for healthy cell Rho-family-mediated remodeling of the actin cytoskeleton is Cytoskeleton Supported (and organism) development, growth, maturation, and necessary for the cell’s directional response to extracellular physiological responses to diseases, injuries, and/or immune guidance cues (e.g., chemokines, matrix-released molecules, system challenges. Various pathophysiological conditions growth factors, etc). The response is either a migration Cold Spring Harbor (e.g., cancer, fibrosis, infections, chronic inflammation) usurp toward or away from environmental cues and this directional Conference -Neuronal and/or compromise the dynamic physiological processes response requires dynamic reorganization of the actin Circuts underlying migration1-5. cytoskeleton. A central question is the identity of the March 18-21st signaling molecule (or molecules) that relays the extracellular 1-4 Cold Spring Harbor, NY Rho-family GTPases (e.g., RhoA, Rac1, Cdc42, and RhoJ) act information to the actin cytoskeleton .
    [Show full text]
  • Structure and Mechanics of Proteins from Single Molecules to Cells
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Summer 2009 Structure and Mechanics of Proteins from Single Molecules to Cells Andre E. Brown University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biological and Chemical Physics Commons Recommended Citation Brown, Andre E., "Structure and Mechanics of Proteins from Single Molecules to Cells" (2009). Publicly Accessible Penn Dissertations. 9. https://repository.upenn.edu/edissertations/9 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/9 For more information, please contact [email protected]. Structure and Mechanics of Proteins from Single Molecules to Cells Abstract Physical factors drive evolution and play important roles in motility and attachment as well as in differentiation. As animal cells adhere to survive, they generate force and “feel” various mechanical features of their surroundings and respond to externally applied forces. This mechanosensitivity requires a substrate for cells to adhere to and a mechanism for cells to apply force, followed by a cellular response to the mechanical properties of the substrate. We have taken an outside-in approach to characterize several aspects of cellular mechanosensitivity. First, we used single molecule force spectroscopy to measure how fibrinogen, an extracellular matrix protein that forms the scaffold of blood clots, responds to applied force and found that it rapidly unfolds in 23 nm steps at forces around 100 pN. Second, we used tensile testing to measure the force-extension behavior of fibrin gels and found that they behave almost linearly to strains of over 100%, have extensibilities of 170 ± 15 %, and undergo a large volume decrease that corresponds to a large and negative peak in compressibility at low strain, which indicates a structural transition.
    [Show full text]
  • ERIN D. GOLEY, Ph.D. Curriculum Vitae
    Curriculum vitae Goley, Erin D. ERIN D. GOLEY, Ph.D. Curriculum Vitae DEMOGRAPHIC INFORMATION: Professional Appointment Assistant Professor, Department of Biological Chemistry Johns Hopkins University School of Medicine 08/2011 – current Personal Data Laboratory address: 725 N. Wolfe Street, 520 WBSB Baltimore, MD 21205 Office Phone: 410-502-4931 Lab Phone: 410-955-2361 FAX: 410-955-5759 e-mail: [email protected] Education and Training 1994-1998 BA/Hood College, Frederick, MD Biochemistry and Maths 2000-2006 PhD/University of California, Berkeley, CA Molecular and Cell Biology 2006-2011 Postdoc/Stanford University, Stanford, CA Bacterial Cell Biology Professional Experience 1997-2000 Laboratory Technician USDA, Ft Detrick, MD 1997 NSF Undergrad Fellow University of Utah, Salt Lake City, UT RESEARCH ACTIVITIES: Peer Reviewed Publications 1) Tooley PW, Goley ED, Carras MM, Frederick RD, Weber EL, Kuldau GA. (2001) Characterization of Claviceps species pathogenic on sorghum by sequence analysis of the beta- tubulin gene intron 3 region and EF-1alpha gene intron 4. Mycologia. 93: 541-551. 2) Skoble J, Auerbuch V, Goley ED, Welch MD, Portnoy DA. (2001) Pivotal role of VASP in Arp2/3 complex-mediated actin nucleation, actin branch-formation, and Listeria monocytogenes motility. J Cell Biol. 155:89-100. 3) Gournier H, Goley ED, Niederstrasser H, Trinh T, Welch MD. (2001) Reconstitution of human Arp2/3 complex reveals critical roles of individual subunits in complex structure and activity. Mol Cell. 8:1041-52. 4) Tooley PW, Goley ED, Carras MM, O'Neill NR. (2002) AFLP comparisons among Claviceps africana isolates from the United States, Mexico, Africa, Australia, India, and Japan.
    [Show full text]
  • Ftsz Filaments Have the Opposite Kinetic Polarity of Microtubules
    FtsZ filaments have the opposite kinetic polarity of microtubules Shishen Dua, Sebastien Pichoffa, Karsten Kruseb,c,d, and Joe Lutkenhausa,1 aDepartment of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160; bDepartment of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; cDepartment of Theoretical Physics, University of Geneva, 1211 Geneva, Switzerland; and dThe National Center of Competence in Research Chemical Biology, University of Geneva, 1211 Geneva, Switzerland Contributed by Joe Lutkenhaus, August 29, 2018 (sent for review July 11, 2018; reviewed by Jan Löwe and Jie Xiao) FtsZ is the ancestral homolog of tubulin and assembles into the Z Since FtsZ filaments treadmill, longitudinal interface mutants ring that organizes the division machinery to drive cell division of FtsZ should have different effects on assembly. Interface in most bacteria. In contrast to tubulin that assembles into 13 mutants that can add to the growing end but prevent further stranded microtubules that undergo dynamic instability, FtsZ growth should be toxic to assembly and thus cell division at assembles into single-stranded filaments that treadmill to distrib- substoichiometric levels, whereas interface mutants that cannot ute the peptidoglycan synthetic machinery at the septum. Here, add onto filaments should be much less toxic. Redick et al. (22) using longitudinal interface mutants of FtsZ, we demonstrate observed that some amino acid substitutions at the bottom end that the kinetic polarity of FtsZ filaments is opposite to that of of FtsZ were toxic, whereas substitutions at the top end were not. microtubules. A conformational switch accompanying the assem- – bly of FtsZ generates the kinetic polarity of FtsZ filaments, which Furthermore, expression of just the N-terminal domain (1 193, explains the toxicity of interface mutants that function as a capper top end), but not the C-terminal domain of FtsZ, showed some and reveals the mechanism of cooperative assembly.
    [Show full text]
  • The Bacterial Actin Mreb Rotates, and Rotation Depends on Cell-Wall Assembly
    The bacterial actin MreB rotates, and rotation depends on cell-wall assembly Sven van Teeffelena,1, Siyuan Wanga,b, Leon Furchtgottc,d, Kerwyn Casey Huangd, Ned S. Wingreena,b, Joshua W. Shaevitzb,e,1, and Zemer Gitaia,1 aDepartment of Molecular Biology, Princeton University, Princeton, NJ 08544; bLewis–Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544; cBiophysics Program, Harvard University, Cambridge, MA 02138; dDepartment of Bioengineering, Stanford University, Stanford, CA 94305; and eDepartment of Physics, Princeton University, Princeton, NJ 08854 Edited by Lucy Shapiro, Stanford University School of Medicine, Palo Alto, CA, and approved July 27, 2011 (received for review June 3, 2011) Bacterial cells possess multiple cytoskeletal proteins involved in a tently in a nearly circumferential direction. Interestingly, this wide range of cellular processes. These cytoskeletal proteins are MreB rotation is not driven by its own polymerization, but rather dynamic, but the driving forces and cellular functions of these requires cell-wall synthesis. These findings indicate that a motor dynamics remain poorly understood. Eukaryotic cytoskeletal dy- whose activity depends on cell-wall assembly rotates MreB. namics are often driven by motor proteins, but in bacteria no mo- Furthermore, the coupling of MreB rotation to cell-wall synthesis tors that drive cytoskeletal motion have been identified to date. suggests that MreB may not merely act upstream of cell-wall Here, we quantitatively study the dynamics of the Escherichia coli assembly. Indeed, computational simulations suggest that cou- actin homolog MreB, which is essential for the maintenance of pling MreB rotation to cell-wall synthesis can help cells maintain rod-like cell shape in bacteria.
    [Show full text]
  • Of the Bacterial Cytoskeleton
    30 Apr 2004 18:9 AR AR214-BB33-09.tex AR214-BB33-09.sgm LaTeX2e(2002/01/18) P1: FHD 10.1146/annurev.biophys.33.110502.132647 Annu. Rev. Biophys. Biomol. Struct. 2004. 33:177–98 doi: 10.1146/annurev.biophys.33.110502.132647 Copyright c 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on January 7, 2004 MOLECULES OF THE BACTERIAL CYTOSKELETON Jan Lowe,¨ Fusinita van den Ent, and Linda A. Amos MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom; email: [email protected]; [email protected]; [email protected] Key Words FtsZ, MreB, ParM, tubulin, actin ■ Abstract The structural elucidation of clear but distant homologs of actin and tubulin in bacteria and GFP labeling of these proteins promises to reinvigorate the field of prokaryotic cell biology. FtsZ (the tubulin homolog) and MreB/ParM (the actin ho- mologs) are indispensable for cellular tasks that require the cell to accurately position molecules, similar to the function of the eukaryotic cytoskeleton. FtsZ is the organizing molecule of bacterial cell division and forms a filamentous ring around the middle of the cell. Many molecules, including MinCDE, SulA, ZipA, and FtsA, assist with this process directly. Recently, genes much more similar to tubulin than to FtsZ have been identified in Verrucomicrobia. MreB forms helices underneath the inner membrane and probably defines the shape of the cell by positioning transmembrane and periplas- mic cell wall–synthesizing enzymes. Currently, no interacting proteins are known for MreB and its relatives that help these proteins polymerize or depolymerize at certain times and places inside the cell.
    [Show full text]
  • Post-Translational Modifications of Β-Catenin and TFC/LEF-1 Regulate Canonical Wnt Signaling Related Publications MARCH Research Tools 2018
    CYTOSKELETON NEWS NEWS FROM CYTOSKELETON INC. Post-translational Modifications of β-catenin and TFC/LEF-1 Regulate Canonical Wnt Signaling Related Publications MARCH Research Tools 2018 v Meetings Post-translational Modifications of β-catenin and TCF/LEF-1 Regulate Canonical Wnt Signaling Boston Area Mitosis and Protein post-translational modifications (PTMs) such as consisting of the scaffolding/tumor suppressor proteins Axin News Meiosis Meeting phosphorylation, acetylation, ubiquitination, and SUMOylation, and adenomatous polyposis coli (APC), and the serine/threonine May 12 to name but a few, have evolved to diversify the functions of kinases casein kinase 1α (CK-1α) and glycogen synthase kinase 3 Boston MA a single protein and account for the vast increase in proteome (GSK3) mediates phosphorylation of β-catenin2,3,9. Under these Cytoskeleton Supported complexity and functional diversity1. A prime example of the quiescent conditions, β-cateinin is sequentially phosphorylated complex and dynamic regulatory power PTMs confer is the on Ser45 by CK-1α, followed by phosphorylation of Ser33, Ser37, GRC Phosphorylation Wnt/β-catenin signaling pathway2,3. This pathway regulates and Thr41 by GSK312 (Fig. 1). Upon phosphorylation, the E3 and G-Protein Mediated cellular proliferation, differentiation, and migration during ubiquitin ligase β-transducin repeats containing protein (β-TrCP) 4-6 13,14 Signaling Networks embryonic development and adult cell homeostasis . In ubiquitinates phospho-β-catenin on Lys19 and Lys49 , which addition, dysregulation of Wnt/β-catenin signaling is implicated leads to proteasomal destruction and low β-catenin levels June 3-8 in multiple pathological conditions, including carcinogenesis and and activity15,16. Conversely, in the presence of Wnt binding, Biddeford, ME degenerative diseases5,7.
    [Show full text]
  • Lessons from Bacterial Homolog of Tubulin, Ftsz for Microtubule Dynamics
    249 R R Battaje and D Panda Assembly dynamics of FtsZ and 24:9 T1–T21 Thematic Review microtubules Lessons from bacterial homolog of tubulin, FtsZ for microtubule dynamics Correspondence Rachana Rao Battaje and Dulal Panda should be addressed to D Panda Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India Email [email protected] Abstract FtsZ, a homolog of tubulin, is found in almost all bacteria and archaea where it has a Key Words primary role in cytokinesis. Evidence for structural homology between FtsZ and tubulin f FtsZ assembly came from their crystal structures and identification of the GTP box. Tubulin and FtsZ f microtubules constitute a distinct family of GTPases and show striking similarities in many of their f cell division polymerization properties. The differences between them, more so, the complexities f anticancer drugs of microtubule dynamic behavior in comparison to that of FtsZ, indicate that the f antibacterial drugs evolution to tubulin is attributable to the incorporation of the complex functionalities in higher organisms. FtsZ and microtubules function as polymers in cell division but their roles differ in the division process. The structural and partial functional homology has made the study of their dynamic properties more interesting. In this review, we focus on the application of the information derived from studies on FtsZ dynamics to study Endocrine-Related Cancer Endocrine-Related microtubule dynamics and vice versa. The structural and functional aspects that led to the establishment of the homology between the two proteins are explained to emphasize the network of FtsZ and microtubule studies and how they are connected.
    [Show full text]
  • Identification and Characterization of Novel Filament-Forming Proteins In
    www.nature.com/scientificreports OPEN Identifcation and characterization of novel flament-forming proteins in cyanobacteria Benjamin L. Springstein 1,4*, Christian Woehle1,5, Julia Weissenbach1,6, Andreas O. Helbig2, Tal Dagan 1 & Karina Stucken3* Filament-forming proteins in bacteria function in stabilization and localization of proteinaceous complexes and replicons; hence they are instrumental for myriad cellular processes such as cell division and growth. Here we present two novel flament-forming proteins in cyanobacteria. Surveying cyanobacterial genomes for coiled-coil-rich proteins (CCRPs) that are predicted as putative flament-forming proteins, we observed a higher proportion of CCRPs in flamentous cyanobacteria in comparison to unicellular cyanobacteria. Using our predictions, we identifed nine protein families with putative intermediate flament (IF) properties. Polymerization assays revealed four proteins that formed polymers in vitro and three proteins that formed polymers in vivo. Fm7001 from Fischerella muscicola PCC 7414 polymerized in vitro and formed flaments in vivo in several organisms. Additionally, we identifed a tetratricopeptide repeat protein - All4981 - in Anabaena sp. PCC 7120 that polymerized into flaments in vitro and in vivo. All4981 interacts with known cytoskeletal proteins and is indispensable for Anabaena viability. Although it did not form flaments in vitro, Syc2039 from Synechococcus elongatus PCC 7942 assembled into flaments in vivo and a Δsyc2039 mutant was characterized by an impaired cytokinesis. Our results expand the repertoire of known prokaryotic flament-forming CCRPs and demonstrate that cyanobacterial CCRPs are involved in cell morphology, motility, cytokinesis and colony integrity. Species in the phylum Cyanobacteria present a wide morphological diversity, ranging from unicellular to mul- ticellular organisms.
    [Show full text]
  • Bacterial Actin Mreb Forms Antiparallel Double Filaments Fusinita Van Den Ent1*†, Thierry Izoré1†, Tanmay AM Bharat1, Christopher M Johnson2, Jan Löwe1
    RESEARCH ARTICLE elifesciences.org Bacterial actin MreB forms antiparallel double filaments Fusinita van den Ent1*†, Thierry Izoré1†, Tanmay AM Bharat1, Christopher M Johnson2, Jan Löwe1 1Structural Studies Division, Medical Research Council - Laboratory of Molecular Biology, Cambridge, United Kingdom; 2Protein and Nucleic Acid Chemistry Division, Medical Research Council - Laboratory of Molecular Biology, Cambridge, United Kingdom Abstract Filaments of all actin-like proteins known to date are assembled from pairs of protofilaments that are arranged in a parallel fashion, generating polarity. In this study, we show that the prokaryotic actin homologue MreB forms pairs of protofilaments that adopt an antiparallel arrangement in vitro and in vivo. We provide an atomic view of antiparallel protofilaments of Caulobacter MreB as apparent from crystal structures. We show that a protofilament doublet is essential for MreB's function in cell shape maintenance and demonstrate by in vivo site-specific cross-linking the antiparallel orientation of MreB protofilaments in E. coli. 3D cryo-EM shows that pairs of protofilaments ofCaulobacter MreB tightly bind to membranes. Crystal structures of different nucleotide and polymerisation states of Caulobacter MreB reveal conserved conformational changes accompanying antiparallel filament formation. Finally, the antimicrobial agents A22/MP265 are shown to bind close to the bound nucleotide of MreB, presumably preventing nucleotide hydrolysis and destabilising double protofilaments. DOI: 10.7554/eLife.02634.001 *For correspondence: fent@mrc- lmb.cam.ac.uk Introduction †These authors contributed Cell shape is a characteristic and hereditary feature that is crucial for existence and its regulation is a equally to this work common challenge for organisms across all biological kingdoms.
    [Show full text]
  • Cytoskeleton UCSD
    Bacterial Cytoskeletal Elements Establishment of morphogenesis in bacteria ? ? Cytoskeletal elements The bacterial cytoskeleton Eukaryotes tubulin actin IFs Bacteria FtsZ MreB Ccrp (Crescentin) 3D structures of cytoskeletal elements Phylogeny of FtsZ Tubulin ortholog FtsZ forms a ring-like structure in the cell centre Immuno-fluorescence of FtsZ (red) and DNA (green) in Bacillus subtilis E. coli: FtsZ-GFP Tubulin forms hollow tubules, while FtsZ forms single strand polymers Assembly of the divisome Cell division in Bacillus subtilis Actin Treadmilling Plasmid segregation via a double protein filament K. Gerdes, J. Pogliano Bipolar movement through search and capturing of a second plasmid ParM-Alexa 488, ParR-Alexa red D. Mullins Structures of actin-like proteins F-actin and MreB filaments MreB MreB ParM ParM MreB J. Löwe Depletion of MreB (or MreC) leads to the formation of round cells and is lethal 2 4 6 doubling times membrane-stain The depletion of MreB leads to a loss in rod- shaped cell morphology GFP-MreB: dynamc helical filaments? GFP-MreB 2D arrangement of MreB filaments 3D arrangement of MreB filaments Filament dynamics at 100 nm resolution: TIRF-SIM YFP-MreB N-SIM A. Rohrbach Model for the generation of rod shape Intermediate-Filament proteins Crescentin affects cell curvature in Caulobacter crescentus C. Jacobs-Wagner, Yale Crescentin localizes to the short axis of the cell Crescentin forms left handed helices Crescentin-YFP Deletion of IF encoding genes leads to loss of cell shape in Helicobacter pylori Ccrps (coiled coil-rich proteins) form long bundles of filaments Cell curvature through mechanical bending of cells via a rigid protein filament Positioning of magnetosomes through an actin-like protein (MamK) Spiroplasma melliferum Bacterial cytoskeletal elements Model for the function of MreB Motility of Spiroplasma Filament formation in a mammalian cell system YFP-MreB CFP-Mbl mCherry-MreBH .
    [Show full text]