Eras of Technological Convergence: Machine Tools and Mechanization in the United States
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Industrial Revolution in America
DO NOT EDIT--Changes must be made through “File info” CorrectionKey=TX-A SECTION 1 The Industrial TEKS 5B, 5D, 7A, 11A, 12C, 12D, 13A, Revolution in 13B, 14A, 14B, 27A, 27D, 28B What You Will Learn… America Main Ideas 1. The invention of new machines in Great Britain If YOU were there... led to the beginning of the You live in a small Pennsylvania town in the 1780s. Your father is a Industrial Revolution. 2. The development of new blacksmith, but you earn money for the family, too. You raise sheep machines and processes and spin their wool into yarn. Your sisters knit the yarn into warm brought the Industrial Revolu- tion to the United States. wool gloves and mittens. You sell your products to merchants in the 3. Despite a slow start in manu- city. But now you hear that someone has invented machines that facturing, the United States made rapid improvements can spin thread and make cloth. during the War of 1812. Would you still be able to earn the same amount The Big Idea of money for your family? Why? The Industrial Revolution trans- formed the way goods were produced in the United States. BUILDING BACKOU GR ND In the early 1700s making goods depend- ed on the hard work of humans and animals. It had been that way for Key Terms and People hundreds of years. Then new technology brought a change so radical Industrial Revolution, p. 385 that it is called a revolution. It began in Great Britain and soon spread to textiles, p. -
DRAFT – Subject to NIST Approval 1.5 IMPACTS of AUTOMATION on PRECISION1 M. Alkan Donmez and Johannes A. Soons Manufacturin
DRAFT – Subject to NIST approval 1.5 IMPACTS OF AUTOMATION ON PRECISION1 M. Alkan Donmez and Johannes A. Soons Manufacturing Engineering Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 ABSTRACT Automation has significant impacts on the economy and the development and use of technology. In this section, the impacts of automation on precision, which directly influences science, technology, and the economy, are discussed. As automation enables improved precision, precision also improves automation. Followed by the definition of precision and the factors affecting precision, the relationship between precision and automation is described. This section concludes with specific examples of how automation has improved the precision of manufacturing processes and manufactured products over the last decades. 1.5.1 What is precision Precision is the closeness of agreement between a series of individual measurements, values, or results. For a manufacturing process, precision describes how well the process is capable of producing products with identical properties. The properties of interest can be the dimensions of the product, its shape, surface finish, color, weight, etc. For a device or instrument, precision describes the invariance of its output when operated with the same set of inputs. Measurement precision is defined by the International Vocabulary of Metrology [1] as the "closeness of agreement between indications obtained by replicate measurements on the same or similar objects under specified conditions." In this definition, the "specified conditions" describe whether precision is associated with the repeatability or the reproducibility of the measurement process. Repeatability is the closeness of the agreement between results of successive measurements of the same quantity carried out under the same conditions. -
Smart Contracts for Machine-To-Machine Communication: Possibilities and Limitations
Smart Contracts for Machine-to-Machine Communication: Possibilities and Limitations Yuichi Hanada Luke Hsiao Philip Levis Stanford University Stanford University Stanford University [email protected] [email protected] [email protected] Abstract—Blockchain technologies, such as smart contracts, present a unique interface for machine-to-machine communication that provides a secure, append-only record that can be shared without trust and without a central administrator. We study the possibilities and limitations of using smart contracts for machine-to-machine communication by designing, implementing, and evaluating AGasP, an application for automated gasoline purchases. We find that using smart contracts allows us to directly address the challenges of transparency, longevity, and Figure 1. A traditional IoT application that stores a user’s credit card trust in IoT applications. However, real-world applications using information and is installed in a smart vehicle and smart gasoline pump. smart contracts must address their important trade-offs, such Before refueling, the vehicle and pump communicate directly using short-range as performance, privacy, and the challenge of ensuring they are wireless communication, such as Bluetooth, to identify the vehicle and pump written correctly. involved in the transaction. Then, the credit card stored by the cloud service Index Terms—Internet of Things, IoT, Machine-to-Machine is charged after the user refuels. Note that each piece of the application is Communication, Blockchain, Smart Contracts, Ethereum controlled by a single entity. I. INTRODUCTION centralized entity manages application state and communication protocols—they cannot function without the cloud services of The Internet of Things (IoT) refers broadly to interconnected their vendors [11], [12]. -
Colt╎s Patent Fire Arms Manufacturing Company Collection
http://oac.cdlib.org/findaid/ark:/13030/c8hh6mgb No online items Finding Aid to the Colt’s Patent Firearms Manufacturing Company Collection 89.62 Finding aid prepared by Holly Rose Larson and Jeffrey Richardson Autry National Center, Autry Library 4700 Western Heritage Way Los Angeles, CA, 90027 (323) 667-2000 ext. 349 [email protected] 2012 March 7 Finding Aid to the Colt’s Patent 89.62 1 Firearms Manufacturing Company Collection 89.62 Title: Colt’s Patent Fire Arms Manufacturing Company Collection Identifier/Call Number: 89.62 Contributing Institution: Autry National Center, Autry Library Language of Material: English Physical Description: 3.4 Linear feet(2 boxes) Date (inclusive): 1894-1946 Abstract: Samuel Colt patented his revolver with a mechanically rotating cylinder in 1835 and 1836. It revolutionized the firearms industry and was the first truly global manufacturing export in American history. The success of the revolver ultimately allowed Samuel Colt to incorporate Colt’s Patent Fire Arms Manufacturing Company in 1855. This collection of Colt’s Patent Fire Arms Manufacturing Company documents spans 1894-1946 and includes contracts, correspondence, invoices, memos, notes, receipts, stock certificates, and trademark registration certificates regarding manufacture, registration and trade of Colt products. Language: English, Spanish, French. creator: Colt Manufacturing Company creator: Colt's Patent Fire Arms Manufacturing Company creator: Colt, Samuel, 1814-1862 Access Collection is open for research. Appointments to view materials are required. To make an appointment please visit http://theautry.org/research/research-rules-and-application or contact library staff at [email protected]. An item-level inventory is available from library staff. -
What Was the Assembly Line ?
59 WHAT WAS THE ASSEMBLY LINE ? DAVID E. NYE INTRODUCTION Today, ”assembly line” immediately suggests Asian or Latin-American factories where poorly-paid workers make consumer goods for export to the West. For example, many US corporations shifted jobs to northern Mexico beginning in 1965 as part of the Border Industrialization Program. This process accelerated dramatically after January 1, 1994, when the North American Free Trade Agreement (NAFTA) went into effect. It abolished tariffs and made re-importation of assembly line goods easy. By 2000, 1.2 million US jobs had been relocated to Mexico. Most of the Mexicans hired were semi-skilled women, preferred both for their manual dexterity and their willingness to accept low wages.1 Corporations built factories where environmental legislation was lax and unions were weak or non-existent. In such places, “the danger is that repression rather than innovation becomes a competitive advantage.”2 Yet if the assembly line of today is often part of a global production system for offshore, semi-skilled work, at its inception in 1913 the Americans saw the assembly line as the guarantor of high wages and domestic prosperity. This essay reviews the origins of the assembly line, what exactly it was as a technology, and how it was initially understood. In hindsight, it was less a beginning than a mid-point in long- term developments that are still underway. Historians frequently refer to the assembly line as an historical stage, in a sequence from Taylorism to Fordism to “post-Fordism,” with additional stages sometimes included such as “lexible production,” “lean production” and most recently “post- lean production.”3 As convenient as these historical stages once seemed, their proliferation suggests that the whole notion of a sequence was mistaken to begin with. -
Microscope Systems and Their Application in Machine Vision
Microscope Systems And Their Application in Machine Vision 1 1 Agenda • What is a microscope system? • Basic setup of a microscope • Differences to standard lenses • Parameters of microscope systems • Illumination options in a microscope setup • Special contrast enhancement techniques • Zoom components • Real-world examples What is a microscope systems? Greek: μικρός mikrós „small“; σκοπεῖν skopeín „observe“ Microscopes help us to look at small things, by enlarging them until we can see them with bare eyes or an image sensor. A microscope system is a system that consists of compatible components which can be combined into different configurations We only look at visible light microscopes We only look at digial microscopes no eyepiece but an image sensor in the object plane The optical magnification is ≥1 Basic setup of a microscope microscopes always show the same basic configuration: Sensor Tube lens: - Images onto the sensor - Defines the maximum sensor size Collimated beam path (infinity conjugated) Objective: - Images to infinity - Holds the system aperture - Defines the resolution of the system Object Differences to standard lenses microscope Finite-finite lens Sensor Sensor Collimated beam path (infinity conjugate) EnthältSystem apertureSystemblende Object Object Differences to standard lenses • Collimated beam path offers several options - Distance between objective and tube lens can be changed . Focusing by moving the objective without changing any optical parameter . Integration of filters, mirrors and beam splitters . Beam -
Second Machine Age Or Fifth Technological Revolution? Different
Second Machine Age or Fifth Technological Revolution? Different interpretations lead to different recommendations – Reflections on Erik Brynjolfsson and Andrew McAfee’s book The Second Machine Age (2014). Part 1 Introduction: the pitfalls of historical periodization Carlota Perez January 2017 Blog post: http://beyondthetechrevolution.com/blog/second-machine-age-or-fifth-technological- revolution/ This is the first instalment in a series of posts (and a Working Paper in progress) that reflect on aspects of Erik Brynjolfsson and Andrew McAfee’s influential book, The Second Machine Age (2014), in order to examine how different historical understandings of technological revolutions can influence policy recommendations in the present. Over the next few weeks, we will discuss the various criteria used for identifying a technological revolution, the nature of the current moment, and the different implications that stem from taking either the ‘machine ages’ or my ‘great surges’ point of view. We will look at what we see as the virtues and limits of Brynjolfsson and McAfee’s policy proposals, and why implementing policies appropriate to the stage of development of any technological revolution have been crucial to unleashing ‘Golden Ages’ in the past. 1 Introduction: the pitfalls of historical periodization Information technology has been such an obvious disrupter and game changer across our societies and economies that the past few years have seen a great revival of the notion of ‘technological revolutions’. Preparing for the next industrial revolution was the theme of the World Economic Forum at Davos in 2016; the European Union (EU) has strategies in place to cope with the changes that the current ‘revolution’ is bringing. -
Chapter 12 the North Chapter 13 the South Chapter 14 New Movements in America Chapter 15 a Divided Nation
UNIT 4 1790—1860 The Nation Expands Chapter 12 The North Chapter 13 The South Chapter 14 New Movements in America Chapter 15 A Divided Nation 378 6-8_SNLAESE484693_U04O.indd 378 7/2/10 1:06:42 PM What You Will Learn… The United States continued to grow in size and wealth, experiencing revolutions in technology and business as did other parts of the world. During the earliest phases of expansion, regions of the United States developed differently from each other. Citizens differed in their ideas of progress, government, and religion. For the success of the nation, they tried to compromise on their disagreements. In the next four chap- ters, you will learn about two regions in the United States, and how they were alike and different. Explore the Art This painting shows a bustling street scene in New York City around 1797. What does the scene indicate about business in the city during this period? 379 6-8_SNLAESE484693_U04O.indd 379 7/2/10 1:07:17 PM FLORIDA . The Story Continues CHAPTER 12, The North Expands (1790–1860) EVENTS 1851: The fi rst installment of Uncle Tom’s Cabin is printed. Harriet Beecher Stowe wrote a ctional story intended to show the evils of slavery. e story, initially written and published in installments in a magazine, was so popular that Stowe decided to publish it in book form. e story had its intended e ect… rallying thousands of people in support of the anti-slavery movement. As popular as the story was in the North, it enraged slave supporters in Florida and across the South, and fueled the division between the North and the South that led to the outbreak of the Civil War. -
The History of Computing in the History of Technology
The History of Computing in the History of Technology Michael S. Mahoney Program in History of Science Princeton University, Princeton, NJ (Annals of the History of Computing 10(1988), 113-125) After surveying the current state of the literature in the history of computing, this paper discusses some of the major issues addressed by recent work in the history of technology. It suggests aspects of the development of computing which are pertinent to those issues and hence for which that recent work could provide models of historical analysis. As a new scientific technology with unique features, computing in turn can provide new perspectives on the history of technology. Introduction record-keeping by a new industry of data processing. As a primary vehicle of Since World War II 'information' has emerged communication over both space and t ime, it as a fundamental scientific and technological has come to form the core of modern concept applied to phenomena ranging from information technolo gy. What the black holes to DNA, from the organization of English-speaking world refers to as "computer cells to the processes of human thought, and science" is known to the rest of western from the management of corporations to the Europe as informatique (or Informatik or allocation of global resources. In addition to informatica). Much of the concern over reshaping established disciplines, it has information as a commodity and as a natural stimulated the formation of a panoply of new resource derives from the computer and from subjects and areas of inquiry concerned with computer-based communications technolo gy. -
Reverse Engineering Integrated Circuits Using Finite State Machine Analysis
Proceedings of the 50th Hawaii International Conference on System Sciences | 2017 Reverse Engineering Integrated Circuits Using Finite State Machine Analysis Jessica Smithy, Kiri Oler∗, Carl Miller∗, David Manz∗ ∗Pacific Northwest National Laboratory Email: fi[email protected] yWashington State University Email: [email protected] Abstract are expensive and time consumptive but extremely accurate. Due to the lack of a secure supply chain, it is not possible Alternatively, there are a variety of non-destructive imaging to fully trust the integrity of electronic devices. Current methods for determining if an unknown IC is different from methods of verifying integrated circuits are either destruc- an ’assumed-good’ benchmark IC. However, these methods tive or non-specific. Here we expand upon prior work, in often only work for large or active differences, and are which we proposed a novel method of reverse engineering based on the assumption that the benchmark chip has not the finite state machines that integrated circuits are built been corrupted. What is needed, and what we will detail upon in a non-destructive and highly specific manner. In in the following sections, is an algorithm to enable a fast, this paper, we present a methodology for reverse engineering non-destructive method of reverse engineering ICs to ensure integrated circuits, including a mathematical verification of their veracity. We must assume the worst case scenario in a scalable algorithm used to generate minimal finite state which we have no prior knowledge, no design documents, machine representations of integrated circuits. no labeling, or an out-of-production IC. The mathematical theory behind our approach is pre- 1. -
ERC Machine Shop Operational Policy
College of Engineering --- Colorado State University Machine Shop Operational Policy Engineering Research Center November 2011 Table of Contents 1.0 Introduction and Context ................................................................................................................... - 1 - 1.1 Purpose ........................................................................................................................................... - 1 - 1.2 Introduction .................................................................................................................................... - 1 - 1.3 Contact Information ....................................................................................................................... - 1 - 2.0 Safety: Rules, Procedures and Guidelines ......................................................................................... - 1 - 2.1 General Shop Safety Rules and Conduct: ...................................................................................... - 1 - 2.2 Personal Protective Equipment (Eyes, Ears, Respiration, Body, Hands) ...................................... - 3 - 2.2.1. Protective Clothing ................................................................................................................. - 3 - 2.2.2 Eye Protection ......................................................................................................................... - 3 - 2.2.3 Protective Gloves ................................................................................................................... -
The Impact of the Technological Revolution on Labour Markets and Income Distribution
Department of Economic & Social Affairs FRONTIER ISSUES 31 JULY 2017 The impact of the technological revolution on labour markets and income distribution CONTENTS Executive Summary .................................................... 1 1. Introduction ....................................................... 3 2. A new technological revolution? ....................................... 4 A. Technological progress and revolutions ............................. 4 B. Economic potential of the new technological breakthroughs ............. 7 3. Long term and recent trends .......................................... 8 A. Productivity trends .............................................. 8 B. Sectoral employment shifts and work conditions ..................... 11 C. Income inequality .............................................. 14 4. How does technological innovation affect labour markets and inequality? ..... 17 A. Job destruction and job creation ................................. 17 B. Occupational shifts, job polarization and wage inequality .............. 20 C. Technology and globalization .................................... 21 D. Technology and market structures. .22 E. Technology and the organization of work ........................... 23 F. Technology and the informal sector ............................... 23 G. Technology and female labour force participation .................... 24 5. Looking ahead: What will technology mean for labour and inequality? ........ 26 A. The future of technological progress ............................... 26