New Feline Virus Threatens Health of Cats

Total Page:16

File Type:pdf, Size:1020Kb

New Feline Virus Threatens Health of Cats P e rsp e ctive s A Newsletter for Cat Fanciers From The Cornell Feline Health Center Summer 1988 New Feline Virus Threatens Health of Cats Margaret Barr, D.V.M. Feline immunodeficiency virus (FIV), formerly associated disease even when repeated tests for called feline T-lymphotropic lentivirus (FTLV), the virus were negative. Now that a test for is a recently recognized feline virus belonging FIV is available, it is apparent that about 20 to the family Retroviridae. Although FIV is in percent of these FeLV-negative, immunosup- the same family of viruses as feline leukemia pressed cats are infected with the feline lenti­ virus (FeLV), it is not classified in the oncor­ virus. navirus subfamily. Instead, the morphology and biochemistry of FIV closely resemble the FIV or FeLV? characteristics of the retroviruses that are associated with non-malignant disease processes. Feline immunodeficiency virus and feline leuke­ These viruses, the lentiviruses, include the mia virus are similar in certain disease manifes­ causative agents of progressive pneumonia of tations. However, there are major differences sheep, infectious anemia of horses, arthritis- indicating that FIV is not just a slightly differ­ encephalitis of goats, and acquired immunodefi­ ent strain of FeLV. One difference between ciency syndrome (AIDS) of humans. FIV and FeLV is the morphology (shape) of the viral particle. Infected cells can be examined Clinically, the disease caused by FIV may by electron microscopy, a technique which al­ have been recognized for years. However, the lows visualization of very tiny particles by immunodeficiency-like syndrome with its multi­ magnifying them tens-of-thousands of times. tude of secondary infections, anemia, and low Viruses can be seen budding from the outer white-blood-cell counts, is indistinguishable surface of the cell into the surrounding envi­ from the non-neoplastic syndromes associated ronment. Both FIV and FeLV have a char­ with FeLV infection. Prior to the isolation of acteristic outer envelope, comprised of a por­ FIV, many cats were diagnosed as having FeLV- tion of the host cell’s membrane and some viral proteins, which is formed around the virus as it exits the cell. However, the internal structure of the FIV particle is elongated or cone- Inside this Issue . shaped while that of FeLV is more circular. New Feline Virus Threatens page 1 The genome (genetic material) of FIV, as Health of Cats with other retroviruses, consists of single­ stranded ribonucleic acid (RNA). The produc­ The Mighty Mite page 3 tion of a double-stranded deoxyribonucleic acid (DNA) copy of the viral genome is an essential Honor Roll page 7 step in the replication of this virus within the host cell. This step requires the activity of an Student Receives Summer Fellowship page 8 enzyme, reverse transcriptase, which is carried into the cell as one of the viral proteins. All retroviruses must have their own reverse trans­ criptase since it is an enzyme which is not generally used by host cells. FIV can be dis­ Perspectives 2 O n C a t s tinguished from FeLV by a difference in envi­ count. This decrease in white cells is primarily ronmental conditions necessary for optimal due to a lack of neutrophils, cells which are activity of this enzyme. involved in protecting the cat against bacterial infections. A low red-blood-cell count (ane­ Also, FIV and FeLV are only distantly re­ mia) frequently develops. The cause of this lated since they are antigenically different. sometimes precipitous drop in blood cells is Antibodies produced in cats infected with FIV unknown, although it is likely due to a loss of do not recognize FeLV antigens (viral proteins), precursor cells in the bone marrow. and antibodies to FeLV do not bind to FIV particles. Furthermore, FIV is not antigenically Once the white-blood-cell count decreases, cross-reactive with human immunodeficiency the cat’s ability to protect itself against infec­ virus (HIV), the lentivirus responsible for AIDS tion is compromised. Bacteria, viruses, and in people. fungi, which are common in the cat’s everyday environment and generally are innocuous to a Pathogenesis of FIV Infection healthy cat, can cause severe illness in the immunosuppressed individual. It is these secon­ Very little is known about the sequence of dary infections which are responsible for most events which occurs following initial infection of the clinical signs associated with FIV. with the virus. The actual method of infection, or mode of transmission, is also unknown. Signs of FIV Infection Transmission through bite wounds is the most likely method of viral spread since free-roaming The clinical signs associated with the disease male cats are most frequently infected. Other are diverse because numerous secondary infec- types of salivary contact, such as the use of contaminated food and water bowls and social grooming practices, may also play a role in transmission. However, casual, nonaggressive contact such as this does not appear to be an Perspectives efficient route of infection. Transmission from A Newsletter for Cat Fanciers an infected queen to her kittens does occur, On Cats From The Cornell Feline Health Center but it is unknown whether this happens in utero (during gestation) or when the newborn The ultimate purpose of the Cornell Feline Health Center is to kittens ingest infected milk. A fairly high improve the health of cats everywhere, by developing methods to prevent or cure feline diseases, and by providing continuing percentage of infected cats are neutered, there­ education to veterinarians and cat owners. All contributions are fore sexual transmission probably is not a pri­ tax-deductible. mary method of initiating infection. Director: Fredric W. Scott, D.V.M., Ph.D. Editor: June E. Tuttle Secretaries: Sheryl A. Thomas, Gwen Frost, Following the initial contact of the cat with Karen Havekost FIV, the virus appears to be carried to regional Special Consultant: Leo A. Wuori, D.V.M. lymph nodes, where it may replicate in a sub­ This publication is made possible, in part, by population of white blood cells known as T- a grant from 9-Lives Cat Foods. We grate­ fully acknowledge this interest and support lymphocytes. These cells are suspected of being in the furthering of feline health. This the primary target of FIV since laboratory acknowledgement of our gratitude is not an endorsement of any particular company or culture techniques require the use of feline T- product. cells in order to grow the virus. The virus ®1988 by Cornell University on behalf of the then spreads to lymph nodes throughout the Cornell Feline Health Center, College of body, resulting in a general lymphadenopathy Veterinary Medicine, Ithaca, NY 14853. All rights reserved. Permission to reprint se­ (enlarged, lymph nodes). This stage of the lected portions must be obtained in writing. disease generally goes unnoticed by the cat’s Cornell University is an equal opportunity, owner unless the nodes are greatly enlarged. affirmative action educator and employer. Some time later, perhaps days but possibly weeks to months, the cat may develop a fever accompanied by a drop in the white-blood-cell 3 The Mighty Mite Dwight D. Bowman, B.A., M.S., Ph.D. Although mites are small external parasites, Ear mites are transmitted from cat to cat they can be detrimental to a cat’s health. during contact, and kittens will often become Mites are in the same family (arachnid) as infected from their mother. These mites cause spiders and ticks. Their common characteristics the cat to have intense itching of the ears and include having eight legs as adults and a hard also cause the production of a characteristically external shell (exoskeleton). However, mites dark-brown ear wax. During severe infestations, are considerably smaller and usually can be a cat may tilt its head to one side or shake its identified only by microscopic examination. head. Usually, both ears will be infested. Mites usually remain on the same host through­ Secondary bacterial infections can also develop out the entire course of their development. in the ear canal. In a multiple cat household, Thus, several generations can easily occur on all of the cats may be infested, and will require the same animal. The mites of this type that treatment. Ear mites can be a persistent prob­ are of interest to the cat owner include Oto- lem, especially if the cat has access to the dectes cynotis, Notoed res cati, Sarcoptes scabei, outdoors. Cheyletiella blakei and Demodex cati. Larval trombiculid mites, commonly called chiggers, Diagnosis is based on the microscopic exam­ have feeding habits that are more like those of ination of ear wax. Treatment consists of a tick; they only attach to their host long applying ear mite medications as per the veter­ enough to feed. inarian’s instructions. Before applying the medication it is usually necessary to remove the Otodectes cynotis (ear mites) excess ear wax and debris from the outer ear canal. The adult mites derive their sustenance from their feline host by piercing the skin of the outer ear canal. The hatching larvae feed on Notoedres cati the ear wax. Ear mites mature within 3 to 5 days and begin reproducing. This is a very small mite that burrows along underneath the superficial layers of the skin, causing a condition called notoedric mange (feline scabies). These mites are most com­ monly found on the top of the head or the forehead of the infested cat. Usually, the first sign will be a bald patch in one of these two areas caused by constant scratching by the cat. The bald patch may extend down the back of the head or across the bridge of the nose onto the cheeks. Prolonged infestations result in a grayish crust forming over the affected skin.
Recommended publications
  • Ectoparasites of Free-Roaming Domestic Cats in the Central United States
    Veterinary Parasitology 228 (2016) 17–22 Contents lists available at ScienceDirect Veterinary Parasitology journal homepage: www.elsevier.com/locate/vetpar Research paper Ectoparasites of free-roaming domestic cats in the central United States a b,1 a a,∗ Jennifer E. Thomas , Lesa Staubus , Jaime L. Goolsby , Mason V. Reichard a Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, 250 McElroy Hall Stillwater, OK 74078, USA b Department of Clinical Science, Center for Veterinary Health Sciences, Oklahoma State University, 1 Boren Veterinary Medical Teaching Hospital Stillwater, OK 74078, USA a r t i c l e i n f o a b s t r a c t Article history: Free-roaming domestic cat (Felis catus) populations serve as a valuable resource for studying ectoparasite Received 11 May 2016 prevalence. While they share a similar environment as owned cats, free-roaming cats do not receive rou- Received in revised form 27 July 2016 tine veterinary care or ectoparasiticide application, giving insight into parasite risks for owned animals. Accepted 29 July 2016 We examined up to 673 infested cats presented to a trap-neuter-return (TNR) clinic in the central United States. Ectoparasite prevalences on cats were as follows: fleas (71.6%), ticks (18.7%), Felicola subrostratus Keywords: (1.0%), Cheyletiella blakei (0.9%), and Otodectes cynotis (19.3%). Fleas, ticks, and O. cynotis were found in Cat all months sampled. A total of 1117 fleas were recovered from 322 infested cats. The predominate flea Feline recovered from cats was Ctenocephalides felis (97.2%) followed by Pulex spp.
    [Show full text]
  • Arthropod Parasites in Domestic Animals
    ARTHROPOD PARASITES IN DOMESTIC ANIMALS Abbreviations KINGDOM PHYLUM CLASS ORDER CODE Metazoa Arthropoda Insecta Siphonaptera INS:Sip Mallophaga INS:Mal Anoplura INS:Ano Diptera INS:Dip Arachnida Ixodida ARA:Ixo Mesostigmata ARA:Mes Prostigmata ARA:Pro Astigmata ARA:Ast Crustacea Pentastomata CRU:Pen References Ashford, R.W. & Crewe, W. 2003. The parasites of Homo sapiens: an annotated checklist of the protozoa, helminths and arthropods for which we are home. Taylor & Francis. Taylor, M.A., Coop, R.L. & Wall, R.L. 2007. Veterinary Parasitology. 3rd edition, Blackwell Pub. HOST-PARASITE CHECKLIST Class: MAMMALIA [mammals] Subclass: EUTHERIA [placental mammals] Order: PRIMATES [prosimians and simians] Suborder: SIMIAE [monkeys, apes, man] Family: HOMINIDAE [man] Homo sapiens Linnaeus, 1758 [man] ARA:Ast Sarcoptes bovis, ectoparasite (‘milker’s itch’)(mange mite) ARA:Ast Sarcoptes equi, ectoparasite (‘cavalryman’s itch’)(mange mite) ARA:Ast Sarcoptes scabiei, skin (mange mite) ARA:Ixo Ixodes cornuatus, ectoparasite (scrub tick) ARA:Ixo Ixodes holocyclus, ectoparasite (scrub tick, paralysis tick) ARA:Ixo Ornithodoros gurneyi, ectoparasite (kangaroo tick) ARA:Pro Cheyletiella blakei, ectoparasite (mite) ARA:Pro Cheyletiella parasitivorax, ectoparasite (rabbit fur mite) ARA:Pro Demodex brevis, sebacceous glands (mange mite) ARA:Pro Demodex folliculorum, hair follicles (mange mite) ARA:Pro Trombicula sarcina, ectoparasite (black soil itch mite) INS:Ano Pediculus capitis, ectoparasite (head louse) INS:Ano Pediculus humanus, ectoparasite (body
    [Show full text]
  • ESCCAP Guidelines Final
    ESCCAP Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire, WR14 3SZ First Published by ESCCAP 2012 © ESCCAP 2012 All rights reserved This publication is made available subject to the condition that any redistribution or reproduction of part or all of the contents in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise is with the prior written permission of ESCCAP. This publication may only be distributed in the covers in which it is first published unless with the prior written permission of ESCCAP. A catalogue record for this publication is available from the British Library. ISBN: 978-1-907259-40-1 ESCCAP Guideline 3 Control of Ectoparasites in Dogs and Cats Published: December 2015 TABLE OF CONTENTS INTRODUCTION...............................................................................................................................................4 SCOPE..............................................................................................................................................................5 PRESENT SITUATION AND EMERGING THREATS ......................................................................................5 BIOLOGY, DIAGNOSIS AND CONTROL OF ECTOPARASITES ...................................................................6 1. Fleas.............................................................................................................................................................6 2. Ticks ...........................................................................................................................................................10
    [Show full text]
  • Cryptic Arthropod Infestations Affecting Humans BENJAMIN KEH, MS, and ROBERT S
    192 Clinical Mledicline Cheyletiella blakei, an Ectoparasite of Cats, as Cause of Cryptic Arthropod Infestations Affecting Humans BENJAMIN KEH, MS, and ROBERT S. LANE, PhD, Berkeley, and SHERRY P. SHACHTER, DVM, Alameda, California Cheyletiella blakei, an ectoparasitic mite of domestic cats, can cause an extremely annoying, persis- tent and pruritic dermatosis of obscure origin (cryptic infestation) in susceptible persons having close contact with infested cats. Although the prevalence ofcheyletiellosis in humans andcats appears to be low, evidence of its occurrence in California is increasing. Cheyletiellosis is often underdiagnosed in both its natural host and in humans. The small size of the mite, lack of publicity about the disease, frequentabsence ofsymptoms in infested cats andfailure to recover the mite from humans contribute to its delayedrecognition. When C blakei or other mites are suspectedofbeing the cause ofa dermatosis, medical entomologists may help to hasten the diagnosis by examining the patient's physical surround- ings, potential vertebrate hosts and other sources for the presence of mites. After C blakei has been eliminatedfrom cats with an appropriate pesticide, the disease in humans is self-limiting. (Keh B, Lane RS, Shachter SP: Cheyletiella blakei, an ectoparasite of cats, as cause of cryptic arthropod infestations affecting humans. West J Med 1987 Feb; 146:192-194) Several mites including Cheyletiella blakei, * a widely dis- be aware of its existence. The frequent lack of obvious symp- tributed ectoparasite of domestic cats, are capable of toms in the natural host, the domestic cat, also contributes to causing cryptic infestations in humans. 1-3 This mite and the the failure of patients to recognize the specific cause of their related Cheyletiella yasguri on dogs produce a skin condition dermatitis.
    [Show full text]
  • Arthropods of Public Health Significance in California
    ARTHROPODS OF PUBLIC HEALTH SIGNIFICANCE IN CALIFORNIA California Department of Public Health Vector Control Technician Certification Training Manual Category C ARTHROPODS OF PUBLIC HEALTH SIGNIFICANCE IN CALIFORNIA Category C: Arthropods A Training Manual for Vector Control Technician’s Certification Examination Administered by the California Department of Health Services Edited by Richard P. Meyer, Ph.D. and Minoo B. Madon M V C A s s o c i a t i o n of C a l i f o r n i a MOSQUITO and VECTOR CONTROL ASSOCIATION of CALIFORNIA 660 J Street, Suite 480, Sacramento, CA 95814 Date of Publication - 2002 This is a publication of the MOSQUITO and VECTOR CONTROL ASSOCIATION of CALIFORNIA For other MVCAC publications or further informaiton, contact: MVCAC 660 J Street, Suite 480 Sacramento, CA 95814 Telephone: (916) 440-0826 Fax: (916) 442-4182 E-Mail: [email protected] Web Site: http://www.mvcac.org Copyright © MVCAC 2002. All rights reserved. ii Arthropods of Public Health Significance CONTENTS PREFACE ........................................................................................................................................ v DIRECTORY OF CONTRIBUTORS.............................................................................................. vii 1 EPIDEMIOLOGY OF VECTOR-BORNE DISEASES ..................................... Bruce F. Eldridge 1 2 FUNDAMENTALS OF ENTOMOLOGY.......................................................... Richard P. Meyer 11 3 COCKROACHES ...........................................................................................
    [Show full text]
  • First Record of Cheletonella (Acariformes: Cheyletidae) in Poland, with Comments on Other Member of the Genus
    Acarological Studies Vol 1 (2): 95-100 RESEARCH ARTICLE First record of Cheletonella (Acariformes: Cheyletidae) in Poland, with comments on other member of the genus Salih DOĞAN 1,3 , Sibel DOĞAN 1 , Joanna MĄKOL2 1 Department of Biology, Faculty of Sciences and Arts, Erzincan Binali Yıldırım University, Erzincan, Turkey 2 Department of Zoology and Ecology, Faculty of Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland 3 Corresponding author: [email protected] Received: 28 October 2018 Accepted: 7 December 2018 Available online: 31 July 2019 ABSTRACT: Members of the family Cheyletidae are generally free-living predators, and have a worldwide distribution. The genus Cheletonella Womersley within the family Cheyletidae comprises four species. This study presents the first record of the Cheletonella and C. vespertilionis Womersley for the fauna of Poland, and is based on mite specimens found in litter and detritus samples collected from the foot of wall of a tunnel used as shelter by bats, and found in litter and soil samples located close to the bat boxes in the city park. Cheletonella summersi Chatterjee and Gupta is considered here as a species inquirenda. It is also provided an updated list of cheyletid mites recorded from Poland. Keywords: Acari, Cheletonella, Cheyletidae, fauna, species inquirenda. Zoobank: http://zoobank.org/CC44E52E-646B-4E58-B6C8-88DEDC9E8904 INTRODUCTION The family Cheyletidae with around 500 described spe- Yıldırım University, Erzincan, Turkey. Measurements cies in 77 genera (Fuangarworn and Lekprayoon, 2010; were taken in micrometers (μm) using Leica Application Doğan et al., 2011; Zhang et al., 2011; Negm and Mesbah, Suite (LAS) Software Version 3.8.
    [Show full text]
  • Glossar Medizinischer Und Biologischer Fachbegriffe
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Glossar medizinischer und biologischer Fachbegriffe zusammengestellt von Julia WALOCHNIK & Erna AESCHT unter der Mitarbeit von H. ASPÖCK, H. AUER, P. DEPLAZES, H. HADITSCH, K. JANITSCHKE, H. KAMPEN, W.A. MAIER, A. MATHIS, H. MITTERMAYER, T.J. NAUKE, H. SATTMANN, R. SCHUSTER, G. STANEK, H. TARASCHEWSKJ, R. WEBER & W.H. WERNSDORPER Abkürzungen und Symbole: bzw. beziehungsweise ca. circa Ggs. Gegensatz; nur angeführt, wenn im Glossar enthalten gr. griechisch hier - bedeutet im Kontext des Kataloges i.e.S. im engeren Sinn i.w.S. im weiteren Sinn kb Kilobase um Mikrometer, ein Tausendstel Millimeter (0,001 mm). nm Nanometer, ein Millionstel Millimeter (0,000001 mm). p. i. post infectionem, nach der Infektion*. Pl. Plural, Mehrzahl s. siehe s. 1. sensu lato, im weiteren Sinn sog. sogenannt sp. Spezies*; sp. nach einem Gattungsnamen bedeutet, daß die Art* nicht bekannt ist oder nicht genannt zu werden braucht, spp. Plural von Spezies*. s. str. sensu stricto, im engeren (eigentlichen) Sinn syn. synonym, bedeutungsähnlich u.a. unter anderem, und andere z.B. zum Beispiel 9 Weibchen d Männchen Hinweise für die Benutzung: Ein Sternchen (*) hinter einem Wort verweist auf seine ausführliche Behandlung an anderer Stelle. Der Hinweis „s." verweist auf einen Begriff unter einer anderen Bezeichnung. Bei Fachtermini und taxonomischen Begriffen wird nicht zwischen wissenschaftlicher, umgangssprachlicher, subjektivischer und adjektivischer Wortwahl unterschieden. So werden „Acanthocephala" und „Akantho- zephale", „Nekrose" und „nekrotisiert", „opisthorchiid" und „Opisthorchiidae" gleichwertig behandelt. Wissenschaftliche Artnamen (Binomina) scheinen nur unter dem deutschen, umgangssprachlichen Namen auf; die Informationen dazu findet man über den Gattungsregister. Denisia 6, zugleich Kataloge Wird der Begriff oder der Name innerhalb des erklärenden Ansatzes mehrfach verwendet, so wird er mit An- Neue Folqe Nr 184 (2002) 573 596 fangsbuchstaben und Punkt abgekürzt.
    [Show full text]
  • Acariasis Center for Food Security and Public Health 2012 1
    Acariasis S l i d Acariasis e Mange, Scabies 1 S In today’s presentation we will cover information regarding the l Overview organisms that cause acariasis and their epidemiology. We will also talk i • Organism about the history of the disease, how it is transmitted, species that it d • History affects (including humans), and clinical and necropsy signs observed. e • Epidemiology Finally, we will address prevention and control measures, as well as • Transmission actions to take if acariasis is suspected. • Disease in Humans 2 • Disease in Animals • Prevention and Control • Actions to Take Center for Food Security and Public Health, Iowa State University, 2012 S l i d e THE ORGANISM(S) 3 Center for Food Security and Public Health, Iowa State University, 2012 S Acariasis in animals is caused by a variety of mites (class Arachnida, l The Organism(s) subclass Acari). Due to the great number and ecological diversity of i • Acariasis caused by mites these organisms, as well as the lack of fossil records, the higher d – Class Arachnida classification of these organisms is evolving, and more than one – Subclass Acari taxonomic scheme is in use. Zoonotic and non-zoonotic species exist. e • Numerous species • Ecological diversity 4 • Multiple taxonomic schemes in use • Zoonotic and non-zoonotic species Center for Food Security and Public Health, Iowa State University, 2012 S The zoonotic species include the following mites. Sarcoptes scabiei l Zoonotic Mites causes sarcoptic mange (scabies) in humans and more than 100 other i • Family Sarcoptidae species of other mammals and marsupials. There are several subtypes of d – Sarcoptes scabiei var.
    [Show full text]
  • Cheyletiella Mites
    CLOSE ENCOUNTERS WITH THE ENVIRONMENT What’s Eating You? Cheyletiella Mites Dirk M. Elston, MD heyletiella are nonburrowing mites character- ized by hooked anterior palps (Figure). These C mites have a worldwide distribution, and Cheyletiella dermatitis in human beings results from contact with an affected animal: Cheyletiella blakei Hooklike affects cats, Cheyletiella parasitivorax is found on palps rabbits, and Cheyletiella yasguri is found on dogs. In animals, contact with Cheyletiella mites produces a subtle dermatitis sometimes referred to as walking dandruff.1 Animals are commonly asymptomatic, and up to 50% of rabbits in commercial colonies may harbor Cheyletiella or other species of mites.2 The typical human patient with Cheyletiella der- matitis is female, aged 40 years or younger, and pre- sents with pruritic papules.3 Papules commonly are grouped4 but may be widespread.5 The diagnosis of Cheyletiella dermatitis may be challenging because 8 legs it is uncommon to find the mite on a human with this condition. Therefore, a high index of suspicion is required. Cheyletiella blakei mite. Bullous eruptions caused by Cheyletiella mites may mimic those found in individuals with immunobullous disease.6 Children may experience explosive dermatitis after napping where the family but may be toxic in some animals. A veterinarian dog sleeps.7 Farmers and veterinarians are especially should direct the search for mites. The scaly area is vulnerable to zoonotic mite-induced dermatitis.8 carefully brushed with a toothbrush or fine-toothed Various diagnostic techniques are used to help comb, and all scale, crust, and hair collected is identify Cheyletiella infestation in an affected ani- placed in a sealable plastic bag.
    [Show full text]
  • Ectoparasites: Preventive Plans and Innovations in Treatment
    Vet Times The website for the veterinary profession https://www.vettimes.co.uk Ectoparasites: preventive plans and innovations in treatment Author : Hany Elsheikha Categories : Companion animal, Vets Date : May 19, 2017 ABSTRACT Ectoparasites are a complex group of parasites that cause pets and their owners a lot of concerns worldwide. Ectoparasites, such as ticks, mites and fleas, live on the skin, deep inside the dermis or even within the hair follicles – causing a wide range of dermatological problems. Control of these ectoparasites in dogs and cats is essential, not only to maintain the health and welfare of the animal, but also to protect people from flea and tick infestations with their known vectorial capacity of transmission of serious zoonotic infections. A large number of safe and effective ectoparasiticides are already available; however, effective management of ectoparasites is still challenging. Knowledge of the indications, safety and side effects of different available ectoparasiticide drugs for the common ectoparasitic infestations is crucial when choosing the appropriate treatment for the individual patient. Effective counselling, innovative strategies and interventions targeting pet owner compliance, and individualised ectoparaciticide regimens, are needed and may be crucial if we are to achieve effective ectoparasite control. Here, the clinical impact of key ectoparasites are summarised and information regarding the most effective therapeutic approaches to control ticks, mites and fleas is provided. Companion animals have always suffered from ectoparasite infestations. Ticks, mites and fleas act as ectoparasites by living on the skin (ticks and mites) or transiently feeding through the skin (fleas). 1 / 11 Figure 1. Adult female common tick species that infest dogs and cats in the UK.
    [Show full text]
  • Case Report Cheyletiella Blakei Infestation in a Cat L
    CASE REPORT CHEYLETIELLA BLAKEI INFESTATION IN A CAT L. AYALEW and M. VILLANcoURT* Introduction Cheyletiella are fur mites which have been associated with skin lesions in animals as well as in man (1, 8, 11, 12, 15, 16). First dis- covered on rabbits in 1878 in France (10), these mites have subsequently been recovered from dogs and cats (4). The first report of Cheyletiella from cats was made by Hirst in 1917 in England (6), but a good number of similar observations have since been docu- mented from other parts of the world (4, 7, 15). What have been so far reported of Chey- letiella infestations from Canada, however, are C. parasitivorax in hares (9) and C. yasguri in dogs (1, 3). The present report is on C. *.; :... ................. blakei from a cat with dermatosis. .. .... ..- History In June 1975, a one year old male Persian :::...... .: ..... cat was presented to us with a history of scratching for the past five weeks and small FIGUPE 1. Adult: Cheyletiella blakei. Note sores over the head and neck. The owner had palpal claws ( arrow ). x 150. bought the cat from a commercial kennel in Montreal and the animal had since been kept and eggs (Figure 3), were demonstrated. in her apartment with a four year old mongrel Virtuallyt~~~~~~~~~~~~~~~~~~~..all the....developmental.....X.: stages of the cat which had been picked up from a Montreal mite were recovered. On the basis of the oval- street. Previously similar skin sores were seen shaped sense organ on genu 1 (Figure 4) on the mongrel cat, but the condition dis- the mite was identified as C.
    [Show full text]
  • Ectoparasites in Urban Stray Cats in Jerusalem, Israel: Differences in Infestation Patterns of fleas, Ticks and Permanent Ectoparasites
    Medical and Veterinary Entomology (2013), doi: 10.1111/mve.12032 Ectoparasites in urban stray cats in Jerusalem, Israel: differences in infestation patterns of fleas, ticks and permanent ectoparasites H. SALANT1, K.Y.MUMCUOGLU1 andG. BANETH2 1Department of Microbiology and Molecular Genetics, Kuvin Centre for the Study of Infectious and Tropical Diseases, Hadassah Medical School, Hebrew University, Jerusalem, Israel and 2School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel Abstract. In a period cross-sectional study performed to examine ectoparasites on 340 stray cats in Jerusalem, Israel, 186 (54.7%) were infested with the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae), 49 (14.4%) with the cat louse, Felicola subrostratus (Phthiraptera: Trichodectidae), 41 (12.0%) with the ear mite, Otodectes cynotis (Astigmata: Psoroptidae), three (0.9%) with the fur mite, Cheyletiella blakei (Trobidiformes: Cheyletidae), two (0.6%) with the itch mite Notoedres cati (Astigmata: Sarcoptidae), and 25 (7.3%) with ticks of the species Rhipicephalus sanguineus sensu lato (Ixodida: Ixodidae), Rhipicephalus turanicus or Haemaphysalis adleri (Ixodida: Ixodidae). A higher number of flea infestations was observed in apparently sick cats (P < 0.05) and in cats aged < 6 months (P < 0.05). The proportion of flea-infested cats (P < 0.01), as well as the number of fleas per infested cat (P < 0.01), was higher in autumn than in other seasons. By contrast with findings in cats with flea infestations, rates of infestation with ticks were higher amongst cats with clinical signs (P < 0.01) and cats aged ≥ 6 months (P < 0.05). The high rates of ectoparasite infestation in the cats studied constitute a risk for the spread of vector-borne infections of zoonotic and veterinary importance.
    [Show full text]