Understanding Advanced Baseball Stats: Hitting

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Advanced Baseball Stats: Hitting Understanding Advanced Baseball Stats: Hitting “Baseball is like church. Many attend few understand.” ~ Leo Durocher Durocher, a 17-year major league vet and Hall of Fame manager, sums up the game of baseball quite brilliantly in the above quote, and it’s pretty ridiculous how much fans really don’t understand about the game of baseball that they watch so much. This holds especially true when you start talking about baseball stats. Sure, most people can tell you what a home run is and that batting average is important, but once you get past the basic stats, the rest is really uncharted territory for most fans. But fear not! This is your crash course in advanced baseball stats, explained in plain English, so that even the most rudimentary of fans can become knowledgeable in the mysterious world of baseball analytics, or sabermetrics as it is called in the industry. Because there are so many different stats that can be covered, I’m just going to touch on the hitting stats in this article and we can save the pitching ones for another piece. So without further ado – baseball stats! The Slash Line The baseball “slash line” typically looks like three different numbers rounded to the thousandth decimal place that are separated by forward slashes (hence the name). We’ll use Mike Trout‘s 2014 slash line as an example; this is what a typical slash line looks like: .287/.377/.561 The first of those numbers represents batting average. While most fans know about this stat, I’ll touch on it briefly just to make sure that I have all of my bases covered (baseball pun intended). Batting average is calculated by dividing a player’s total number of hits by their total number of at bats, which gives you a number that tells you how often (on average) that player gets a hit. If you take a batting average and multiply it by 100 (or slide the decimal point over two spots to the right), it will give you a raw percentage of how often a player gets a hit. So using Mike Trout’s batting average as an example, he accumulated 172 hits in 602 at bats last year for a batting average of .287 (172/602). Multiplying .287 by 100 gives you 28.7 which tells you that in 2014, Mike Trout averaged a hit in 28.7% of his at bats. Batting Average in Context League Average Best in 2014 Worst in 2014 .251 .341 .196 The second number in a slash line represents on base percentage. This is calculated by dividing the total times a player gets on base (hits, walks, and hit-by-pitch) by a player’s total number of eligible at bats, essentially all trips to the plate minus events outside of the batters control, like reaching on error and hitting into a fielder’s choice). These “eligible at bats” are calculated by adding regular at bats with the total number of times walked, hit-by-pitch, and hit into a sacrifice fly. That gives you the following formula to calculate on-base percentage, or OBP for short. Just like with batting average, OBP can be easily turned into a raw percentage by multiplying it by 100. Going back to Mike Trout’s slash, his OBP of .377 means that in 2014, he got on base an average of 37.7% of the time. On Base Percentage in Context League Average Best in 2014 Worst in 2014 .314 .410 .256 The third and final number in a slash line represents slugging percentage. This number is very similar to batting average, but instead of treating all hits as equals, it weighs each type of hit according to its significance. Slugging percentage (or SLG) is calculated by adding singles, 2 X doubles, 3 X triples, and 4 X home runs all divided by at bats. Another way of looking at it is total bases divided by at bats. Here is the official formula that is used: The main application of slugging percentage is to go beyond just being able to tell how good a player is at getting hits, but how good they are at getting quality hits. For example, Robinson Cano and Andrew McCutchen both had a batting average of .314 last year; however Cano slugged just .454 opposed to McCutchen who finished with a .542 mark. While both players got hits just as often, McCutchen got the more valuable kinds of hits more often (he had more doubles, triples, and homers than Cano), so he was the better hitter in 2014. Slugging Percentage in Context League Average Best in 2014 Worst in 2014 .386 .581 .300 .
Recommended publications
  • TODAY's HEADLINES AGAINST the OPPOSITION Home
    ST. PAUL SAINTS (6-9) vs INDIANAPOLIS INDIANS (PIT) (9-5) LHP CHARLIE BARNES (1-0, 4.00) vs RHP JAMES MARVEL (0-0, 3.48) Friday, May 21st, 2021 - 7:05 pm (CT) - St. Paul, MN - CHS FIeld Game #16 - Home Game #10 TV: FOX9+/MiLB.TV RADIO: KFAN Plus 2021 At A Glance TODAY'S HEADLINES AGAINST THE OPPOSITION Home .....................................................4-5 That Was Last Night - The Saints got a walk-off win of their resumed SAINTS VS INDIANAPOLIS Road ......................................................2-4 game from Wednesday night, with Jimmy Kerrigan and the bottom of the Saints order manufacturing the winning run. The second game did .235------------- BA -------------.301 vs. LHP .............................................1-0 not go as well for St. Paul, where they dropped 7-3. Alex Kirilloff has vs. RHP ............................................5-9 homered in both games of his rehab assignment with the Saints. .333-------- BA W/2O ----------.300 Current Streak ......................................L1 .125 ------- BA W/ RISP------- .524 Most Games > .500 ..........................0 Today’s Game - The Saints aim to preserve a chance at a series win 9 ----------------RUNS ------------- 16 tonight against Indianapolis, after dropping two of the first three games. 2 ----------------- HR ---------------- 0 Most Games < .500 ..........................3 Charlie Barnes makes his third start of the year, and the Saints have yet 2 ------------- STEALS ------------- 0 Overall Series ..................................1-0-1 to lose a game he’s started. 5.00 ------------- ERA ----------- 3.04 Home Series ...............................0-0-1 28 ----------------- K's -------------- 32 Keeping it in the Park - Despite a team ERA of 4.66, the Saints have Away Series ................................0-1-0 not been damaged by round-trippers.
    [Show full text]
  • NCAA Division I Baseball Records
    Division I Baseball Records Individual Records .................................................................. 2 Individual Leaders .................................................................. 4 Annual Individual Champions .......................................... 14 Team Records ........................................................................... 22 Team Leaders ............................................................................ 24 Annual Team Champions .................................................... 32 All-Time Winningest Teams ................................................ 38 Collegiate Baseball Division I Final Polls ....................... 42 Baseball America Division I Final Polls ........................... 45 USA Today Baseball Weekly/ESPN/ American Baseball Coaches Association Division I Final Polls ............................................................ 46 National Collegiate Baseball Writers Association Division I Final Polls ............................................................ 48 Statistical Trends ...................................................................... 49 No-Hitters and Perfect Games by Year .......................... 50 2 NCAA BASEBALL DIVISION I RECORDS THROUGH 2011 Official NCAA Division I baseball records began Season Career with the 1957 season and are based on informa- 39—Jason Krizan, Dallas Baptist, 2011 (62 games) 346—Jeff Ledbetter, Florida St., 1979-82 (262 games) tion submitted to the NCAA statistics service by Career RUNS BATTED IN PER GAME institutions
    [Show full text]
  • Sabermetrics: the Past, the Present, and the Future
    Sabermetrics: The Past, the Present, and the Future Jim Albert February 12, 2010 Abstract This article provides an overview of sabermetrics, the science of learn- ing about baseball through objective evidence. Statistics and baseball have always had a strong kinship, as many famous players are known by their famous statistical accomplishments such as Joe Dimaggio’s 56-game hitting streak and Ted Williams’ .406 batting average in the 1941 baseball season. We give an overview of how one measures performance in batting, pitching, and fielding. In baseball, the traditional measures are batting av- erage, slugging percentage, and on-base percentage, but modern measures such as OPS (on-base percentage plus slugging percentage) are better in predicting the number of runs a team will score in a game. Pitching is a harder aspect of performance to measure, since traditional measures such as winning percentage and earned run average are confounded by the abilities of the pitcher teammates. Modern measures of pitching such as DIPS (defense independent pitching statistics) are helpful in isolating the contributions of a pitcher that do not involve his teammates. It is also challenging to measure the quality of a player’s fielding ability, since the standard measure of fielding, the fielding percentage, is not helpful in understanding the range of a player in moving towards a batted ball. New measures of fielding have been developed that are useful in measuring a player’s fielding range. Major League Baseball is measuring the game in new ways, and sabermetrics is using this new data to find better mea- sures of player performance.
    [Show full text]
  • The Rules of Scoring
    THE RULES OF SCORING 2011 OFFICIAL BASEBALL RULES WITH CHANGES FROM LITTLE LEAGUE BASEBALL’S “WHAT’S THE SCORE” PUBLICATION INTRODUCTION These “Rules of Scoring” are for the use of those managers and coaches who want to score a Juvenile or Minor League game or wish to know how to correctly score a play or a time at bat during a Juvenile or Minor League game. These “Rules of Scoring” address the recording of individual and team actions, runs batted in, base hits and determining their value, stolen bases and caught stealing, sacrifices, put outs and assists, when to charge or not charge a fielder with an error, wild pitches and passed balls, bases on balls and strikeouts, earned runs, and the winning and losing pitcher. Unlike the Official Baseball Rules used by professional baseball and many amateur leagues, the Little League Playing Rules do not address The Rules of Scoring. However, the Little League Rules of Scoring are similar to the scoring rules used in professional baseball found in Rule 10 of the Official Baseball Rules. Consequently, Rule 10 of the Official Baseball Rules is used as the basis for these Rules of Scoring. However, there are differences (e.g., when to charge or not charge a fielder with an error, runs batted in, winning and losing pitcher). These differences are based on Little League Baseball’s “What’s the Score” booklet. Those additional rules and those modified rules from the “What’s the Score” booklet are in italics. The “What’s the Score” booklet assigns the Official Scorer certain duties under Little League Regulation VI concerning pitching limits which have not implemented by the IAB (see Juvenile League Rule 12.08.08).
    [Show full text]
  • An Offensive Earned-Run Average for Baseball
    OPERATIONS RESEARCH, Vol. 25, No. 5, September-October 1077 An Offensive Earned-Run Average for Baseball THOMAS M. COVER Stanfortl University, Stanford, Californiu CARROLL W. KEILERS Probe fiystenzs, Sunnyvale, California (Received October 1976; accepted March 1977) This paper studies a baseball statistic that plays the role of an offen- sive earned-run average (OERA). The OERA of an individual is simply the number of earned runs per game that he would score if he batted in all nine positions in the line-up. Evaluation can be performed by hand by scoring the sequence of times at bat of a given batter. This statistic has the obvious natural interpretation and tends to evaluate strictly personal rather than team achievement. Some theoretical properties of this statistic are developed, and we give our answer to the question, "Who is the greatest hitter in baseball his- tory?" UPPOSE THAT we are following the history of a certain batter and want some index of his offensive effectiveness. We could, for example, keep track of a running average of the proportion of times he hit safely. This, of course, is the batting average. A more refined estimate ~vouldb e a running average of the total number of bases pcr official time at bat (the slugging average). We might then notice that both averages omit mention of ~valks.P erhaps what is needed is a spectrum of the running average of walks, singles, doublcs, triples, and homcruns per official time at bat. But how are we to convert this six-dimensional variable into a direct comparison of batters? Let us consider another statistic.
    [Show full text]
  • Name of the Game: Do Statistics Confirm the Labels of Professional Baseball Eras?
    NAME OF THE GAME: DO STATISTICS CONFIRM THE LABELS OF PROFESSIONAL BASEBALL ERAS? by Mitchell T. Woltring A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Leisure and Sport Management Middle Tennessee State University May 2013 Thesis Committee: Dr. Colby Jubenville Dr. Steven Estes ACKNOWLEDGEMENTS I would not be where I am if not for support I have received from many important people. First and foremost, I would like thank my wife, Sarah Woltring, for believing in me and supporting me in an incalculable manner. I would like to thank my parents, Tom and Julie Woltring, for always supporting and encouraging me to make myself a better person. I would be remiss to not personally thank Dr. Colby Jubenville and the entire Department at Middle Tennessee State University. Without Dr. Jubenville convincing me that MTSU was the place where I needed to come in order to thrive, I would not be in the position I am now. Furthermore, thank you to Dr. Elroy Sullivan for helping me run and understand the statistical analyses. Without your help I would not have been able to undertake the study at hand. Last, but certainly not least, thank you to all my family and friends, which are far too many to name. You have all helped shape me into the person I am and have played an integral role in my life. ii ABSTRACT A game defined and measured by hitting and pitching performances, baseball exists as the most statistical of all sports (Albert, 2003, p.
    [Show full text]
  • "What Raw Statistics Have the Greatest Effect on Wrc+ in Major League Baseball in 2017?" Gavin D
    1 "What raw statistics have the greatest effect on wRC+ in Major League Baseball in 2017?" Gavin D. Sanford University of Minnesota Duluth Honors Capstone Project 2 Abstract Major League Baseball has different statistics for hitters, fielders, and pitchers. The game has followed the same rules for over a century and this has allowed for statistical comparison. As technology grows, so does the game of baseball as there is more areas of the game that people can monitor and track including pitch speed, spin rates, launch angle, exit velocity and directional break. The website QOPBaseball.com is a newer website that attempts to correctly track every pitches horizontal and vertical break and grade it based on these factors (Wilson, 2016). Fangraphs has statistics on the direction players hit the ball and what percentage of the time. The game of baseball is all about quantifying players and being able give a value to their contributions. Sabermetrics have given us the ability to do this in far more depth. Weighted Runs Created Plus (wRC+) is an offensive stat which is attempted to quantify a player’s total offensive value (wRC and wRC+, Fangraphs). It is Era and park adjusted, meaning that the park and year can be compared without altering the statistic further. In this paper, we look at what 2018 statistics have the greatest effect on an individual player’s wRC+. Keywords: Sabermetrics, Econometrics, Spin Rates, Baseball, Introduction Major League Baseball has been around for over a century has given awards out for almost 100 years. The way that these awards are given out is based on statistics accumulated over the season.
    [Show full text]
  • Changing Compensation in MLB
    Beyond Moneyball: Changing Compensation in MLB By Joshua Congdon-Hohman and Jonathan A. Lanning May 2017 COLLEGE OF THE HOLY CROSS, DEPARTMENT OF ECONOMICS FACULTY RESEARCH SERIES, PAPER NO. 17-02* Department of Economics College of the Holy Cross Box 45A Worcester, Massachusetts 01610 (508) 793-3362 (phone) (508) 793-3708 (fax) https://www.holycross.edu/academics/programs/economics-and-accounting *All papers in the Holy Cross Working Paper Series should be considered draft versions subject to future revision. Comments and suggestions are welcome. Beyond Moneyball: Changing Compensation in MLB By Joshua Congdon-Hohman† College of the Holy Cross and Jonathan A. Lanning†† College of the Holy Cross May 2017 Abstract This study examines the changes in player compensation in Major League Baseball during the last three decades. Specifically, we examine the extent to which recently documented changes in players’ compensation structure based on certain types of productivity fits in with the longer term trends in compensation, and identify the value of specific output activities in different time periods. We examine free agent contracts in three-year periods across three decades and find changes to which players’ performance measures are significantly rewarded in free agency. We find evidence that the compensation strategies of baseball teams increased the rewards to “power” statistics like home runs and doubles in the 1990s when compared to a model that focused on successfully reaching base with a batted ball without a significant regard for the number of bases reached. Similarly, we confirm and expand upon the increased financial return to bases-on-balls in the late 2000s as found in previous research.
    [Show full text]
  • Salary Correlations with Batting Performance
    Salary correlations with batting performance By: Jaime Craig, Avery Heilbron, Kasey Kirschner, Luke Rector, Will Kunin Introduction Many teams pay very high prices to acquire the players needed to make that team the best it can be. While it often seems that high budget teams like the New York Yankees are often very successful, is the high price tag worth the improvement in performance? We compared many statistics including batting average, on base percentage, slugging, on base plus slugging, home runs, strike outs, stolen bases, runs created, and BABIP (batting average for balls in play) to salaries. We predicted that higher salaries will correlate to better batting performances. We also divided players into three groups by salary range, with the low salary range going up to $1 million per year, the mid-range salaries from $1 million to $10 million per year, and the high salaries greater than $10 million per year. We expected a stronger correlation between batting performance and salaries for players in the higher salary range than the correlation in the lower salary ranges. Low Salary Below $1 million In figure 1 is a correlation plot between salary and batting statistics. This correlation plot is for players that are making below $1 million. We see in all of the plots that there is not a significant correlation between salary and batting statistics. It is , however, evident that players earning the lowest salaries show the lowest correlations. The overall trend for low salary players--which would be expected--is a negative correlation between salary and batting performance. This negative correlation is likely a result of players getting paid according to their specific performance, or the data are reflecting underpaid rookies who have not bloomed in the major leagues yet.
    [Show full text]
  • Bowling Green Hot Rods Lansing Lugnuts
    Lansing Lugnuts History vs. Bowling Green The Nuts are 73-76 all-time vs. the Hot Rods, Class A Affiliate, Toronto Blue Jays • 10-9, T-3rd 42-35 at home, 31-41 road. RHP Fitz Stadler (5.40 ERA) 1st Half Score 2nd Half Score 4/25 at BG 6/29 at LAN at 4/26 at BG 6/30 at LAN 4/27 at BG 7/1 at LAN 4/28 at BG 8/3 at BG Bowling Green Hot Rods 5/31 at LAN 8/4 at BG Class A Affiliate, Toronto Blue Jays • 11-9, 2nd 6/1 at LAN 8/5 at BG 6/2 at LAN 8/6 at BG RHP Caleb Sampen (6.75 ERA) 6/14 at LAN 6/15 at LAN 6/16 at LAN BOWLING GREEN BALLPARK 1ST PITCH: 6:35 PM THURSDAY, APRIL 25TH, 2019 Tonight: The Nuts open up a four-game road series in Kentucky against the Bowling Green Hot Rods, sending right-hander Fitz Stadler (followed by piggybacking tandem-mate Cobi Johnson) against Bowling Green right-hander Caleb Sampen. This is the first meeting of 17 between the Lugnuts and Hot Rods this year. Lansing is coming off a 3-3 home- stand, winning two of three against Dayton before dropping two of three against South Bend. The Hot Rods, meanwhile, have won five of their last seven games and just completed a 4-2 road trip, winning two of three games at both Great Lakes and Fort Wayne. Yesterday: South Bend 10, Lansing 8. Jordan Groshans and Alejandro Kirk blasted two-run homers and Reggie Pruitt reached base five times on a single, double and three walks, but a six-run Cubs fifth proved the difference in the rubber match of a three-game series.
    [Show full text]
  • Utilizing the Impact Test to Predict Performance in College Baseball Hitters by Ryan Nussbaum a Thesis Submitted to the Honors C
    Utilizing the ImPACT Test to Predict Performance in College Baseball Hitters By Ryan Nussbaum A Thesis Submitted to the Honors College In Partial Fulfillment of the Bachelors degree With Honors in Psychology (B.S.) THE UNIVERSITY OF ARIZONA MAY2013 .- 1 The University of Arizona Electronic Theses and Dissertations Reproduction and Distribution Rights Form The UA Campus Repository supports the dissemination and preservation of scholarship produced by University of Arizona faculty, researchers, and students. The University library, in collaboration with the Honors College, has established a collection in the UA Campus Repository to share, archive, and preserve undergraduate Honors theses. Theses that are submitted to the UA Campus Repository are available for public view. Submission of your thesis to the Repository provides an opportunity for you to showcase your work to graduate schools and future employers. It also allows for your work to be accessed by others in your discipline, enabling you to contribute to the knowledge base in your field. Your signature on this consent form will determine whether your thesis is included in the repository. Name (Last, First, Middle) N usSbo."'M.' ll. 'lo.-/1, ?t- \A l Degree tiUe (eg BA, BS, BSE, BSB, BFA): B. 5. Honors area (eg Molecular and Cellular Biology, English, Studio Art): e.si'c ko to~ 1 Date thesis submitted to Honors College: M ,..., l, Z-.0[3 TiUe of Honors thesis: LH;tn.. ;J +he-- L-\?1kT 1~:.+ 1o P~-t P~.t>('.,.,. ....... ~ ~ ~~ '""' G.~~ l3~~~u (-(t~..s The University of Arizona Library Release Agreement I hereby grant to the University of Arizona Library the nonexclusive worldwide right to reproduce and distribute my dissertation or thesis and abstract (herein, the "licensed materials"), in whole or in part, in any and all media of distribution and in any format in existence now or developed in the Mure.
    [Show full text]
  • Combining Radar and Optical Sensor Data to Measure Player Value in Baseball
    sensors Article Combining Radar and Optical Sensor Data to Measure Player Value in Baseball Glenn Healey Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92617, USA; [email protected] Abstract: Evaluating a player’s talent level based on batted balls is one of the most important and difficult tasks facing baseball analysts. An array of sensors has been installed in Major League Baseball stadiums that capture seven terabytes of data during each game. These data increase interest among spectators, but also can be used to quantify the performances of players on the field. The weighted on base average cube model has been used to generate reliable estimates of batter performance using measured batted-ball parameters, but research has shown that running speed is also a determinant of batted-ball performance. In this work, we used machine learning methods to combine a three-dimensional batted-ball vector measured by Doppler radar with running speed measurements generated by stereoscopic optical sensors. We show that this process leads to an improved model for the batted-ball performances of players. Keywords: Bayesian; baseball analytics; machine learning; radar; intrinsic values; forecasting; sensors; batted ball; statistics; wOBA cube 1. Introduction The expanded presence of sensor systems at sporting events has enhanced the enjoy- ment of fans and supported a number of new applications [1–4]. Measuring skill on batted balls is of fundamental importance in quantifying player value in baseball. Traditional measures for batted-ball skill have been based on outcomes, but these measures have a low Citation: Healey, G. Combining repeatability due to the dependence of outcomes on variables such as the defense, the ball- Radar and Optical Sensor Data to park dimensions, and the atmospheric conditions [5,6].
    [Show full text]