Diversity and Conservation Status Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
<I>Punctelia</I> from SãO Paulo State, Brazil
MYCOTAXON Volume 109, pp. 49–61 July–September 2009 Four new species of Punctelia from São Paulo State, Brazil Marcelo Pinto Marcelli1 & Patrícia Jungbluth2 1 [email protected] – 2 [email protected] Instituto de Botânica, Seção de Micologia e Liquenologia Caixa Postal 3005, São Paulo / SP 01061-970, Brazil John A. Elix [email protected] Department of Chemistry, Building 33, Australian National University Canberra, A.C.T. 0200, Australia Abstract — The following new species ofPunctelia are described from remnant cerrado forests in São Paulo State, Brazil: Punctelia crispa, P. digitata, P. imbricata, and P. roseola. A key to the seven species of Punctelia found in the study area is presented. Keywords — Punctelia colombiana, Punctelia constantimontium, Punctelia fimbriata, Punctelia graminicola, Punctelia rudecta, Punctelia appalachensis Introduction The Brazilian cerrado is included in the savanna world biome. It is recognized as one of the world’s five hot spots of biodiversity and threatened vegetation (Fonseca et al. 1999). Cerrado formation is structurally and physiognomically heterogeneous, varying from grasslands (campo limpo) to arboreal structures (cerradão) (Coutinho 1978). In São Paulo State, cerrado vegetation originally occupied 20% of the territory, but at present only ca. 1% of the original area remains (Zorzetto et al. 2003). In an ongoing effort to describe and document the biodiversity of the lichenized mycota, a survey of Parmeliaceae in remnant cerradoes in inland São Paulo State was performed (Jungbluth 2006). Several new species were recognized, as expected in such a diverse biome (Jungbluth et al. 2008). Thirty species of Punctelia are known worldwide (Egan & Aptroot 2004), sixteen of which are recorded for Brazil (Marcelli 2004). -
Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating. -
Diversidad Y Aspectos Microevolutivos En Cosimbiontes Liquénicos Microevolutive Aspects and Diversity in Lichen Co-Symbionts
UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE FARMACIA Departamento de Biología Vegetal II TESIS DOCTORAL Diversidad y aspectos microevolutivos en cosimbiontes liquénicos Microevolutive aspects and diversity in lichen co-symbionts MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR David Alors Rodríguez Directores Ana Mª Crespo de las Casas Pradeep K. Divakar Madrid, 2018 © David Alors Rodríguez, 2017 Universidad Complutense de Madrid, Facultad de Farmacia Departamento de Biología Vegetal II DIVERSIDAD Y ASPECTOS MICROEVOLUTIVOS EN COSIMBIONTES LIQUÉNICOS MICROEVOLUTIVE ASPECTS AND DIVERSITY IN LICHEN CO-SYMBIONTS MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR: David Alors Rodríguez Bajo la dirección de los doctores: Ana Mª Crespo de las Casas y Pradeep K. Divakar Madrid, 2017 Dedicatoria Dedico esta tesis a mi familia por su apoyo incondicional desde mi más tierna infancia. Siempre estuvieron a mi lado y yo al suyo. Y solo en los años de esta tesis y con mis estancias en el extranjero me alejé físicamente de ellos y no pude darles el tiempo que se merecían. Dedico esta tesis a toda mi familia, en especial a esas dos personas tan importantes e influyentes para mí que se han marchado en estos años, pero no del todo porque siguen en nuestra memoria. Agradecimientos En primer lugar agradezco mi educación científica desde la licenciatura en CC. Biológicas en la UA, a mi paso por el instituto Torre de la Sal-CSIC, bajo la supervisión de la Dra. Ana Mª Gomez-Peris. Agradezco la oportunidad que me dio la catedrática Ana Mª Crespo de las Casas, asesorada por el Dr. C. -
Gymnosperms) of New York State
QK 129 . C667 1992 Pinophyta (Gymnosperms) of New York State Edward A. Cope The L. H. Bailey Hortorium Cornell University Contributions to a Flora of New York State IX Richard S. Mitchell, Editor 1992 Bulletin No. 483 New York State Museum The University of the State of New York THE STATE EDUCATION DEPARTMENT Albany, New York 12230 V A ThL U: ESTHER T. SVIERTZ LIBRARY THI-: ?‘HW YORK BOTANICAL GARDEN THE LuESTHER T. MERTZ LIBRARY THE NEW YORK BOTANICAL GARDEN Pinophyta (Gymnosperms) of New York State Edward A. Cope The L. H. Bailey Hortorium Cornell University Contributions to a Flora of New York State IX Richard S. Mitchell, Editor 1992 Bulletin No. 483 New York State Museum The University of the State of New York THE STATE EDUC ATION DEPARTMENT Albany, New York 12230 THE UNIVERSITY OF THE STATE OF NEW YORK Regents of The University Martin C. Barell, Chancellor, B.A., I.A., LL.B. Muttontown R. Carlos Carballada, Vice Chancellor, B.S. Rochester Willard A. Genrich, LL.B. Buffalo Emlyn I. Griffith. A.B.. J.D. Rome Jorge L. Batista, B.A.. J.D. Bronx Laura Bradley Chodos, B.A., M.A. Vischer Ferry Louise P. Matteoni, B.A., M.A., Ph.D. Bayside J. Edward Meyer, B.A., LL.B. Chappaqua FloydS. Linton, A.B., M.A., M.P.A. Miller Place Mimi Levin Lif.ber, B.A., M.A. Manhattan Shirley C. Brown, B.A., M.A., Ph.D. Albany Norma Gluck, B.A., M.S.W. Manhattan Adelaide L. Sanford, B.A., M.A., P.D. -
Download Brochure
Sensitive Species # of Lichens Lichen, it’s a Lifestyle Lichens get their food from light, air and rain so they are easily damaged by pollutants in the 0 1-4 5-9 10-19 20-29 30-39 40+ Although lichens are diverse, lichens can be found in three major forms. air. Scientists study lichens to learn about air pollution. The healthier the air, the more species of lichen there will be. 1) On your hike, count how many different lichens you can find. Check the box next to each lichen form you find on your hike. 2) Based on your findings, would you consider the area to have good or bad air quality? Air Quality: Crustose Foliose Fruticose Crustose lichens are thin like crust. The lichen’s edges stay flat Foliose lichens look like dry, wavy foliage (leaves). The Fruticose lichens are the most three-dimensional against the object it is growing on. Crustose lichens grow slowly edges curl off the surface the lichen is growing on. lichens. Some look like mini fruit trees without and some are among the oldest living organisms on Earth! leaves while others hang down from branches like hair. Porpidia Porpidia cf. albocaerulescens Ramalina Punctelia Ramalina culbersoniorum Punctelia rudecta Many lichens don’t have a common name. What What would you would you name this lichen? James Lendemer name this lichen? _________________________ ______________ Andy Moroz Powdered Ruffle Lichen Script Lichen Parmotrema hypotropum Erin Tripp Andy Moroz Graphis scripta Look for little black Pixie Cup Lichen ‘hairs’ called cilia! Cladonia chlorophaea James Lendemer Kate Deregibus Kate Erin Tripp Old Man’s Beard Gold Dust Lichen Lungwort Lichen Usnea dasaea Chrysothryix xanthina Lobaria pulmonaria Lichens come in many shapes, sizes and.. -
Supplement of Ice Nucleation by Fungal Spores from the Classes Agaricomycetes, Ustilagi- Nomycetes, and Eurotiomycetes, And
Supplement of Atmos. Chem. Phys., 14, 8611–8630, 2014 http://www.atmos-chem-phys.net/14/8611/2014/ doi:10.5194/acp-14-8611-2014-supplement © Author(s) 2014. CC Attribution 3.0 License. Supplement of Ice nucleation by fungal spores from the classes Agaricomycetes, Ustilagi- nomycetes, and Eurotiomycetes, and the effect on the atmospheric trans- port of these spores D. I. Haga et al. Correspondence to: A. K. Bertram ([email protected]) and S. M. Burrows ([email protected]) 15 Table S1. List of the fungal spores studied here and previous studies that have identified these spores in the atmosphere.1 Species studied Studies that have identified this species in the Studies that have identified this genus in the atmosphere atmosphere Agaricus bisporus Morales et al. (2006) Calderon et al. (1995); De Antoni Zoppas et al. (2006); Mallo et al. (2011); Oliveira et al. (2009) Amanita muscaria Li (2005) Magyar et al. (2009) Boletus zelleri - Calderon et al. (1995); Magyar et al. (2009) Lepista nuda - - Trichaptum abietinum - - Ustilago nuda Calderon et al. (1995); Magyar et al. (2009) De Antoni Zoppas et al. (2006); Herrero et al. Ustilago nigra - (2006); Hirst (1953); Morales et al. (2006); Ustilago avenae Gregory (1952) Oliveira et al. (2005); Pady and Kelly (1954); Sabariego et al. (2000); Waisel et al. (2008); Garcia et al. (2012) Aspergillus brasiliensis - Abu-Dieyeh et al. (2010); Adhikari et al. Aspergillus niger Abu-Dieyeh et al. (2010); Grishkan et al. (2012); Li (2004); Chakraborty et al. (2003); Crawford (2005); Mishra and Srivastava (1971, 1972); Nayar et al. (2009); De Antoni Zoppas et al. -
Opuscula Philolichenum, 6: 1-XXXX
Opuscula Philolichenum, 15: 56-81. 2016. *pdf effectively published online 25July2016 via (http://sweetgum.nybg.org/philolichenum/) Lichens, lichenicolous fungi, and allied fungi of Pipestone National Monument, Minnesota, U.S.A., revisited M.K. ADVAITA, CALEB A. MORSE1,2 AND DOUGLAS LADD3 ABSTRACT. – A total of 154 lichens, four lichenicolous fungi, and one allied fungus were collected by the authors from 2004 to 2015 from Pipestone National Monument (PNM), in Pipestone County, on the Prairie Coteau of southwestern Minnesota. Twelve additional species collected by previous researchers, but not found by the authors, bring the total number of taxa known for PNM to 171. This represents a substantial increase over previous reports for PNM, likely due to increased intensity of field work, and also to the marked expansion of corticolous and anthropogenic substrates since the site was first surveyed in 1899. Reexamination of 116 vouchers deposited in MIN and the PNM herbarium led to the exclusion of 48 species previously reported from the site. Crustose lichens are the most common growth form, comprising 65% of the lichen diversity. Sioux Quartzite provided substrate for 43% of the lichen taxa collected. Saxicolous lichen communities were characterized by sampling four transects on cliff faces and low outcrops. An annotated checklist of the lichens of the site is provided, as well as a list of excluded taxa. We report 24 species (including 22 lichens and two lichenicolous fungi) new for Minnesota: Acarospora boulderensis, A. contigua, A. erythrophora, A. strigata, Agonimia opuntiella, Arthonia clemens, A. muscigena, Aspicilia americana, Bacidina delicata, Buellia tyrolensis, Caloplaca flavocitrina, C. lobulata, C. -
Monitoring Air Quality in Class I Wilderness Areas of the Northeastern United States Using Lichens and Bryophytes Alison C
United States Department of Agriculture Monitoring Air Quality in Class I Wilderness Areas of the Northeastern United States Using Lichens and Bryophytes Alison C. Dibble, James W. Hinds, Ralph Perron, Natalie Cleavitt, Richard L. Poirot, and Linda H. Pardo Forest Service Northern Research Station General Technical Report NRS-165 December 2016 1 Abstract To address a need for air quality and lichen monitoring information for the Northeast, we compared bulk chemistry data from 2011-2013 to baseline surveys from 1988 and 1993 in three Class I Wilderness areas of New Hampshire and Vermont. Plots were within the White Mountain National Forest (Presidential Range—Dry River Wilderness and Great Gulf Wilderness, New Hampshire) and the Green Mountain National Forest (Lye Brook Wilderness, Vermont). We sampled epiphyte communities and found 58 macrolichen species and 55 bryophyte species. We also analyzed bulk samples for total N, total S, and 27 additional elements. We detected a decrease in Pb at the level of the National Forest and in a subset of plots. Low lichen richness and poor thallus condition at Lye Brook corresponded to higher N and S levels at these sites. Lichen thallus condition was best where lichen species richness was also high. Highest Hg content, from a limited subset, was on the east slope of Mt. Washington near the head of Great Gulf. Most dominant lichens in good condition were associated with conifer boles or acidic substrates. The status regarding N and S tolerance for many lichens in the northeastern United States is not clear, so the influence of N pollution on community data cannot be fully assessed. -
What's Important in Getting on the Destination Wish List
Ontario RTO7 Image Study Final Report February, 2011 Table of Contents Background and Purpose 3 Research Objectives 4 Method 5 Executive Summary 7 Conclusions & Implications 52 Detailed Findings 66 Destination Awareness and Visitation 67 Awareness, Past Visitation and Interest in Local Attractions 159 Awareness/Experience with Grey County Places/Attractions 160 Awareness/Experience with Bruce County Places/Attractions 178 Awareness/Experience with Simcoe County Places/Attractions 199 Interest in Types of Activities/Attractions/Events 220 Image Hot Buttons 243 RTO7’s Image vs. Competitors 246 Image Strengths & Weaknesses vs. Individual Competitors 280 Image Strengths & Weaknesses vs. Individual Competitors — Ontario Residents 320 RTO7’s Competitive Image in Each Region 355 RTO7’s Image by Region of Residence and Demographics 361 RTO7’s Product Delivery 382 Appendix: Questionnaire 389 2 Background & Purpose The Government of Ontario has recently realigned the province’s tourism regions. The new RTO7 region consists of Grey, Bruce and Simcoe Counties. The Region 7 RTO recognizes the importance of tourism to the welfare of the area and has expressed interest in development of a comprehensive strategic plan. As part of this process, Longwoods was engaged to carry out consumer research designed to provide Region 7 with market insights to inform brand strategy development aimed at increasing demand for the region among leisure visitors: Measuring familiarity and experience with the region/its attractions Measuring the region’s image and -
New Data on the Occurence of an Element Both
Analele UniversităĠii din Oradea, Fascicula Biologie Tom. XVI / 2, 2009, pp. 53-59 CONTRIBUTIONS TO THE KNOWLEDGE DIVERSITY OF LIGNICOLOUS MACROMYCETES (BASIDIOMYCETES) FROM CĂ3ĂğÂNII MOUNTAINS Ioana CIORTAN* *,,Alexandru. Buia” Botanical Garden, Craiova, Romania Corresponding author: Ioana Ciortan, ,,Alexandru Buia” Botanical Garden, 26 Constantin Lecca Str., zip code: 200217,Craiova, Romania, tel.: 0040251413820, e-mail: [email protected] Abstract. This paper presents partial results of research conducted between 2005 and 2009 in different forests (beech forests, mixed forests of beech with spruce, pure spruce) in CăSăĠânii Mountains (Romania). 123 species of wood inhabiting Basidiomycetes are reported from the CăSăĠânii Mountains, both saprotrophs and parasites, as identified by various species of trees. Keywords: diversity, macromycetes, Basidiomycetes, ecology, substrate, saprotroph, parasite, lignicolous INTRODUCTION MATERIALS AND METHODS The data presented are part of an extensive study, The research was conducted using transects and which will complete the PhD thesis. The CăSăĠânii setting fixed locations in some vegetable formations, Mountains are a mountain group of the ùureanu- which were visited several times a year beginning with Parâng-Lotru Mountains, belonging to the mountain the months April-May until October-November. chain of the Southern Carpathians. They are situated in Fungi were identified on the basis of both the SE parth of the Parâng Mountain, between OlteĠ morphological and anatomical properties of fruiting River in the west, Olt River in the east, Lotru and bodies and according to specific chemical reactions LaroriĠa Rivers in the north. Our area is 900 Km2 large using the bibliography [1-8, 10-13]. Special (Fig. 1). The vegetation presents typical levers: major presentation was made in phylogenetic order, the associations characteristic of each lever are present in system of classification used was that adopted by Kirk this massif. -
Tremella Macrobasidiata and Tremella Variae Have Abundant and Widespread Yeast Stages in Lecanora Lichens
Environmental Microbiology (2021) 00(00), 00–00 doi:10.1111/1462-2920.15455 Tremella macrobasidiata and Tremella variae have abundant and widespread yeast stages in Lecanora lichens Veera Tuovinen ,1,2* Ana Maria Millanes,3 3 1 2 Sandra Freire-Rallo, Anna Rosling and Mats Wedin Introduction 1Department of Ecology and Genetics, Uppsala University, Uppsala, Norbyvägen 18D, 752 36, Sweden. The era of molecular studies has shown that most of the 2Department of Botany, Swedish Museum of Natural diversity of life is microbial (Pace, 1997; Castelle and History, Stockholm, P.O. Box 50007, SE-104 05, Banfield, 2018). Lichens, symbiotic consortia formed by Sweden. at least two different microorganisms, are a great mani- 3Departamento de Biología y Geología, Física y Química festation of microbial diversity in a unique package; sev- Inorgánica, Universidad Rey Juan Carlos, Móstoles, eral studies in the last decade have continued to E-28933, Spain. demonstrate the since long recognized presence of diverse fungal communities within lichen thalli (U’Ren et al., 2010, 2012; Fleischhacker et al., 2015; Grube and Summary Wedin, 2016; Noh et al., 2020). In recent years, attention Dimorphism is a widespread feature of tremellalean has been drawn especially to the presence of previously fungi in general, but a little-studied aspect of the biol- undetected basidiomycete yeasts in different ogy of lichen-associated Tremella. We show that macrolichens (Spribille et al., 2016; Cernajovᡠand Tremella macrobasidiata and Tremella variae have an Škaloud, 2019, 2020; Tuovinen et al., 2019; Mark abundant and widespread yeast stage in their life et al., 2020). However, little is still known about the ubiq- cycles that occurs in Lecanora lichens. -
Land Information Ontario Data Description OTN Trailhead
Unclassified Land Information Ontario Data Description OTN Trailhead Disclaimer This technical documentation has been prepared by the Ministry of Natural Resources (the “Ministry”), representing Her Majesty the Queen in right of Ontario. Although every effort has been made to verify the information, this document is presented as is, and the Ministry makes no guarantees, representations or warranties with respect to the information contained within this document, either express or implied, arising by law or otherwise, including but not limited to, effectiveness, completeness, accuracy, or fitness for purpose. The Ministry is not liable or responsible for any loss or harm of any kind arising from use of this information. For an accessible version of this document, please contact Land Information Ontario at (705) 755 1878 or [email protected] ©Queens Printer for Ontario, 2012 LIO Class Catalogue OTN Trailhead Class Short Name: OTNTHD Version Number: 1 Class Description: The point at which the trail starts. A trailhead exists for each trail. A trail may consist of one or more trail segments. Abstract Class Name: SPSPNT Abstract Class Description: Spatial Single-Point: An object is represented by ONE and ONLY ONE point. Examples: A cabin, bird nest, tower. Tables in LIO Class: OTN Trailhead OTN_TRAILHEAD_FT The point at which the trail starts. A trailhead exists for each trail. A trail may consist of one or more trail segments. Column Name Column Mandatory Short Name Valid Values Type OGF_ID NUMBER Yes OGF_ID (13,0) A unique numeric provincial identifier assigned to each object. TRAIL_NAME VARCHAR2 Yes TRAIL_NAME (200) The name that the trail is most commonly known as.