Opuscula Philolichenum, 6: 1-XXXX

Total Page:16

File Type:pdf, Size:1020Kb

Opuscula Philolichenum, 6: 1-XXXX Opuscula Philolichenum, 15: 56-81. 2016. *pdf effectively published online 25July2016 via (http://sweetgum.nybg.org/philolichenum/) Lichens, lichenicolous fungi, and allied fungi of Pipestone National Monument, Minnesota, U.S.A., revisited M.K. ADVAITA, CALEB A. MORSE1,2 AND DOUGLAS LADD3 ABSTRACT. – A total of 154 lichens, four lichenicolous fungi, and one allied fungus were collected by the authors from 2004 to 2015 from Pipestone National Monument (PNM), in Pipestone County, on the Prairie Coteau of southwestern Minnesota. Twelve additional species collected by previous researchers, but not found by the authors, bring the total number of taxa known for PNM to 171. This represents a substantial increase over previous reports for PNM, likely due to increased intensity of field work, and also to the marked expansion of corticolous and anthropogenic substrates since the site was first surveyed in 1899. Reexamination of 116 vouchers deposited in MIN and the PNM herbarium led to the exclusion of 48 species previously reported from the site. Crustose lichens are the most common growth form, comprising 65% of the lichen diversity. Sioux Quartzite provided substrate for 43% of the lichen taxa collected. Saxicolous lichen communities were characterized by sampling four transects on cliff faces and low outcrops. An annotated checklist of the lichens of the site is provided, as well as a list of excluded taxa. We report 24 species (including 22 lichens and two lichenicolous fungi) new for Minnesota: Acarospora boulderensis, A. contigua, A. erythrophora, A. strigata, Agonimia opuntiella, Arthonia clemens, A. muscigena, Aspicilia americana, Bacidina delicata, Buellia tyrolensis, Caloplaca flavocitrina, C. lobulata, C. soralifera, Candelariella antennaria, Dermatocarpon arenosaxi, Diplotomma subdispersa, Endocarpon pallidulum, Enterographa osagensis, Pseudosagedia chlorotica, Psoroglaena dictyospora, Punctelia missouriensis, Verrucaria calkinsiana, V. furfuracea, and V. sphaerospora. In addition, we report Acarospora erythrophora new for Kansas and Oklahoma, Enterographa osagensis new for Nebraska and South Dakota, and Pseudosagedia chlorotica new for Oklahoma. KEYWORDS. – Great Plains, floristic change, lichen community structure, Northern Glaciated Plains Ecoregion. INTRODUCTION Pipestone National Monument (PNM) encompasses 122 hectares (301 acres) in the Northern Glaciated Plains Ecoregion (Omernik & Griffith 2008), on the Prairie Coteau of southwestern Minnesota. Designated a national monument in 1937, PNM is located in Pipestone County, at the northwest edge of the town of Pipestone (44.041N, 96.325W; figure 1). Between 1975–2015, annual temperatures at PNM averaged 6.5C (43.7F), with mean monthly temperatures ranging from –11.1C (12.1F) in January to 21.8C (71.3F) in July. Average annual precipitation was 67.8 cm (26.7 inches), with most precipitation occurring between April and September (NOAA 2016). Between 1956–1970, average annual growing season open pan evaporation in the region was approximately 106.7 cm (42.0 inches) (Farnsworth et al. 1982), resulting in a negative net evaporation value (open pan evaporation minus annual precipitation) of approximately 38.9 cm (15.3 inches) and a precipitation to evaporation ratio of 0.63, within the 0.3–1.0 range typically attributed to temperate grasslands (Transeau 1905). 1CALEB A. MORSE – Biodiversity Institute, R.L. McGregor Herbarium, University of Kansas, 2045 Constant Ave., Lawrence, KS 66047, U.S.A – e-mail: [email protected] 2CORRESPONDING AUTHOR 3DOUGLAS LADD – The Nature Conservancy, 2800 S. Brentwood Blvd., St. Louis, MO 63144, U.S.A. – e- mail: [email protected] 56 Figure 1. Location of Pipestone National Monument, Pipestone Co., Minnesota (top right and left). Map of the the study area (bottom) with Sioux Quartzite outcrops indicated in orange, and sampling transects indicated in blue (1, Flats transect, 2, Upper Cliff, Mid-Cliff, and Lower Cliff transects; scale = 250 m). 57 The site is geologically and historically significant for its numerous high-quality pipestone (catlinite) quarries, which were developed and continuously worked by Native Americans from about 1200 CE (Corbett 1980) to the present day. Catlinite is a red metamorphic claystone that can be hand-carved into ceremonial pipes. This soft claystone is sandwiched between thicker layers of Precambrian Sioux Quartzite bedrock (Southwick et al. 1986). In addition to the subsurface quarries, three parallel north–south ridges of Sioux Quartzite form flat, low outcrops and a low line of cliffs at PNM (figure 2). The sheer red cliffs have a western exposure and rise up to five meters. A massive, abandoned sandstone railroad trestle stands over an ephemeral wetland toward the eastern boundary of the monument. Historically, the vegetation of PNM would have been dominated by tallgrass prairie, with rare woody vegetation restricted to sheltered sites and stream courses. During his 1835 expedition to the site, the painter George Catlin noted of the surrounding prairie that for “…a distance of forty or fifty miles, there was not a tree or a bush to be seen in any direction…” (Catlin 1839, p. 140), although his painting of the pipestone quarries shows a few shrubs or small trees (Catlin 1836–1837). When Bruce Fink visited the site in 1899, he observed that “…the few young trees found, though large enough to bear the foliaceous lichens which commonly migrate to rocks... scarcely bear a lichen of any kind…” (Fink 1902, p. 284). Over the past 115 years there has been a significant increase of trees and shrubs at PNM, probably due primarily to fire suppression and altered grazing and browsing regimes (Samson et al. 2004, Fuhlendorf et al. 2008, van Auken 2009). Deciduous trees and scattered shrub thickets have grown up along Pipestone Creek and the quartzite ridges. Today, vegetation at PNM includes remnant and replanted tallgrass prairie, bur oak (Quercus macrocarpa) woodland along the ridges, a narrow riparian woodland of boxelder (Acer negundo), common hackberry (Celtis occidentalis), green ash (Fraxinus pennsylvanica), and plains cottonwood (Populus deltoides subsp. monilifera) along the perennial Pipestone Creek, and Sioux Quartzite prairie— which develops over thin, seasonally saturated soils over quartzite bedrock (MDNR 2003). Scattered thickets of redosier dogwood (Cornus sericea subsp. sericea), Tatarian honeysuckle (Lonicera tatarica), and American plum (Prunus americana) are found in areas protected from fire. Tree ring analysis suggests that many of the bur oaks date to ca. 1880–1885 (Landers 1979) and as we document these trees now provide ample habitat for a rich corticolous lichen community. The land comprising PNM has a long history of lichenological study, beginning with the work of Bruce Fink, who gathered 5,500 specimens in Minnesota between 1896 and 1902 for his Ph.D. dissertation and as part of the Botanical Survey of Minnesota (Wetmore 1978). During the summer of 1899, he collected approximately 30 numbers at or near the site that is now PNM, and published the results in a preliminary report (Fink 1902). The site was resurveyed by Timothy Vinyard, who reportedly collected some 350 specimens during the field seasons of 1983–1984 in support of an update of the flora of PNM (Willson & Vinyard 1986). Finally, Gerald Wheeler collected 23 lichens from PNM on May 13, 1999. In light of the substantial floristic and management changes that PNM has undergone since Fink first visited the site, and as part of a larger effort to document the lichen flora of the Great Plains, we re-inventoried the lichens of PNM and report our results here. MATERIALS AND METHODS Field work for this project consisted of 28 field days between 2004 and 2015. Efforts were made to survey all habitats and substrates on the site. In all, 368 collections were obtained, principally by MKA; these have been deposited in the R.L. McGregor Herbarium at the University of Kansas (KANU). In addition, we reviewed 65 specimens deposited by Vinyard in the herbarium of PNM (hereafter, hb. PNM). We assume that the Vinyard specimens were deposited in hb. PNM as a synoptic collection representing the diversity of the 65 species reported in Willson and Vinyard (1986). The remaining 285 specimens collected by Vinyard in preparation for those authors’ report could not be located and are assumed to have been lost. Finally, we reviewed 51 specimens from MIN, representing the bulk of Fink’s collections from Pipestone, and a handful of specimens gathered by Wheeler and other collectors. Specimens were studied using dissecting and compound microscopes, and subjected to chemical analysis using standard spot tests (Brodo et al. 2001). Where it was required for positive identification, Thin Layer Chromatography (TLC) was conducted at KANU using solvent systems A and C following the methods of Orange et al. (2001). To assess patterns of saxicolous lichen inhabitancy at the site, and to develop a baseline for future monitoring and assessment, two transects were established on Sioux Quartzite exposures at PNM (figure 1): 58 Figure 2. Rock formations and bur oak woods of Pipestone National Monument. A, west-facing Sioux Quartzite cliffs, with bur oak woods in the foreground; B, wooded cliff and float rock below cliff; C, wooded cliff with abundant bur oak; D, boulders below cliffs; E, saxicolous lichen community including Acarospora contigua, Dimelaena oreina, and Physcia subtilis. (Photographs by Nickolee Larson.) 59 State/Province, Unit name Area Taxa included No. Reference
Recommended publications
  • Lichenicolous Biota (Nos 201–230)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Fritschiana Jahr/Year: 2015 Band/Volume: 80 Autor(en)/Author(s): Hafellner Josef Artikel/Article: Lichenicolous Biota (Nos 201-230) 21-41 - 21 - Lichenicolous Biota (Nos 201–230) Josef HAFELLNER* HAFELLNER Josef 2015: Lichenicolous Biota (Nos 201–230). – Frit- schiana (Graz) 80: 21–41. - ISSN 1024-0306. Abstract: The 9th fascicle (30 numbers) of the exsiccata 'Lichenicolous Biota' is published. The issue contains ma- terial of 20 non-lichenized fungal taxa (14 teleomorphs of ascomycetes, 4 anamorphic states of ascomycetes, 2 an- amorphic states of basidiomycetes) and 9 lichenized as- comycetes, including paratype material of Dimelaena li- chenicola K.Knudsen et al. (no 223), Miriquidica invadens Hafellner et al. (no 226, 227), and Stigmidium xantho- parmeliarum Hafellner (no 210). Furthermore, collections of the type species of the following genera are distributed: Illosporiopsis (I. christiansenii), Illosporium (I. carneum), Marchandiomyces (M. corallinus), Marchandiobasidium (M. aurantiacum, sub Erythricium aurantiacum), Micro- calicium (M. disseminatum), Nigropuncta (N. rugulosa), Paralecanographa (P. grumulosa), Phaeopyxis (P. punc- tum), Placocarpus (P. schaereri), Rhagadostoma (R. li- chenicola), and Stigmidium (S. schaereri). *Institut für Pflanzenwissenschaften, NAWI Graz, Karl-Franzens-Universität, Holteigasse 6, 8010 Graz, AUSTRIA e-mail: [email protected] Introduction The exsiccata 'Lichenicolous Biota' is continued with fascicle 9, containing 30 numbers. The exsiccata covers all lichenicolous biota, i.e., it is open not only to non- lichenized and lichenized fungi, but also to myxomycetes, bacteria, and even animals, whenever they cause a characteristic symptom on their host (e.g. discoloration or galls).
    [Show full text]
  • Cuivre Bryophytes
    Trip Report for: Cuivre River State Park Species Count: 335 Date: Multiple Visits Lincoln County Agency: MODNR Location: Lincoln Hills - Bryophytes Participants: Bryophytes from Natural Resource Inventory Database Bryophyte List from NRIDS and Bruce Schuette Species Name (Synonym) Common Name Family COFC COFW Acarospora unknown Identified only to Genus Acarosporaceae Lichen Acrocordia megalospora a lichen Monoblastiaceae Lichen Amandinea dakotensis a button lichen (crustose) Physiaceae Lichen Amandinea polyspora a button lichen (crustose) Physiaceae Lichen Amandinea punctata a lichen Physiaceae Lichen Amanita citrina Citron Amanita Amanitaceae Fungi Amanita fulva Tawny Gresette Amanitaceae Fungi Amanita vaginata Grisette Amanitaceae Fungi Amblystegium varium common willow moss Amblystegiaceae Moss Anisomeridium biforme a lichen Monoblastiaceae Lichen Anisomeridium polypori a crustose lichen Monoblastiaceae Lichen Anomodon attenuatus common tree apron moss Anomodontaceae Moss Anomodon minor tree apron moss Anomodontaceae Moss Anomodon rostratus velvet tree apron moss Anomodontaceae Moss Armillaria tabescens Ringless Honey Mushroom Tricholomataceae Fungi Arthonia caesia a lichen Arthoniaceae Lichen Arthonia punctiformis a lichen Arthoniaceae Lichen Arthonia rubella a lichen Arthoniaceae Lichen Arthothelium spectabile a lichen Uncertain Lichen Arthothelium taediosum a lichen Uncertain Lichen Aspicilia caesiocinerea a lichen Hymeneliaceae Lichen Aspicilia cinerea a lichen Hymeneliaceae Lichen Aspicilia contorta a lichen Hymeneliaceae Lichen
    [Show full text]
  • A New Species of Aspicilia (Megasporaceae), with a New Lichenicolous Sagediopsis (Adelococcaceae), from the Falkland Islands
    The Lichenologist (2021), 53, 307–315 doi:10.1017/S0024282921000244 Standard Paper A new species of Aspicilia (Megasporaceae), with a new lichenicolous Sagediopsis (Adelococcaceae), from the Falkland Islands Alan M. Fryday1 , Timothy B. Wheeler2 and Javier Etayo3 1Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 2Division of Biological Sciences, University of Montana, Missoula, Montana 59801, USA and 3Navarro Villoslada 16, 3° dcha., 31003 Pamplona, Navarra, Spain Abstract The new species Aspicilia malvinae is described from the Falkland Islands. It is the first species of Megasporaceae to be discovered on the islands and only the seventh to be reported from South America. It is distinguished from other species of Aspicilia by the unusual secondary metabolite chemistry (hypostictic acid) and molecular sequence data. The collections of the new species support two lichenicolous fungi: Endococcus propinquus s. lat., which is new to the Falkland Islands, and a new species of Sagediopsis with small perithecia and 3-septate ascospores c. 18–20 × 4–5 μm, which is described here as S. epimalvinae. A total of 60 new DNA sequences obtained from species of Megasporaceae (mostly Aspicilia) are also introduced. Key words: DNA sequences, Endococcus, Lecanora masafuerensis, lichen, southern South America, southern subpolar region (Accepted 18 March 2021) Introduction Materials and Methods Species of Megasporaceae Lumbsch et al. are surprisingly scarce Morphological methods in the Southern Hemisphere. Whereas 97 species are known Gross morphology was examined under a dissecting microscope from North America (Esslinger 2019), 104 from Russia and apothecial characteristics by light microscopy (compound (Urbanavichus 2010), 40 from Svalbard (Øvstedal et al.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae – Frank Bungartz, PhD– Date & Place of Birth October 26 Rheinbach, Germany Nationality 1967 German Marital Status Married Schools 1974 - 1978 Franziskusschule, Euskirchen, Germany 1978 - 1987 Marienschule, Euskirchen, Germany Languages German (native language), English (fluent), Spanish (fluent), French, Botanical Latin Military Service 1987 - 1988 In Achern and Andernach, Germany June 5, 1990 Granted the Status of a Conscientious Objector Bonn University 1988 - 1991 Bachelor’s Program, Biology (Grundstudium) January 1991 Bachelor’s Degree, Biology (Vordiplom) University of East Anglia 1992 - 1993 Ecology Program, Research Project: Lichen communities on tombstones along a Norwich, U.K. (ERASMUS) transect of six Norfolk Churchyards Bonn University 1993 - 1996 Master’s Program (Hauptstudium) Major: Biology, Minor: Geography Spring 1995 Final Exams: Botany, Zoology, Geography 1995 - 1996 Thesis: Distribution and phytosociology of the vascular plants, bryophytes and lichens in the Brodenbach Valley, Mosel Spring 1996 Optional Exam: Geobotany and Conservation April 26, 1996 Master of Science, Biology (Biologie Diplom) Professional Experience 1996 - 1999 Field Studies Center Eifel, Nettersheim, Germany: Guided Tours, Field Trips, Workshops 1997 - 1998 State Institute of Ecology (LÖBF), Germany: Long-term monitoring of bryophyte and lichen vegetation in unmanaged (non-interventional) woodlands in Nordrhein- Westfalen, Germany 2001 - 2003 USDA Forest Service Inventory and Analysis (FIA): Teaching workshops on species identification
    [Show full text]
  • 1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families ⇑ Jolanta Miadlikowska A, , Frank Kauff B,1, Filip Högnabba C, Jeffrey C
    Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10, Soili Stenroos c,10 a Department of Biology, Duke University, Durham, NC 27708-0338, USA b FB Biologie, Molecular Phylogenetics, 13/276, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany c Botanical Museum, Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland d Department of Ecology and Evolutionary Biology, Yale University, 358 ESC, 21 Sachem Street, New Haven, CT 06511, USA e Institut für Botanik, Karl-Franzens-Universität, Holteigasse 6, A-8010 Graz, Austria f Department of Plant Taxonomy and Nature Conservation, University of Gdan´sk, ul. Wita Stwosza 59, 80-308 Gdan´sk, Poland g Science and Education, The Field Museum, 1400 S.
    [Show full text]
  • Lichen Functional Trait Variation Along an East-West Climatic Gradient in Oregon and Among Habitats in Katmai National Park, Alaska
    AN ABSTRACT OF THE THESIS OF Kaleigh Spickerman for the degree of Master of Science in Botany and Plant Pathology presented on June 11, 2015 Title: Lichen Functional Trait Variation Along an East-West Climatic Gradient in Oregon and Among Habitats in Katmai National Park, Alaska Abstract approved: ______________________________________________________ Bruce McCune Functional traits of vascular plants have been an important component of ecological studies for a number of years; however, in more recent times vascular plant ecologists have begun to formalize a set of key traits and universal system of trait measurement. Many recent studies hypothesize global generality of trait patterns, which would allow for comparison among ecosystems and biomes and provide a foundation for general rules and theories, the so-called “Holy Grail” of ecology. However, the majority of these studies focus on functional trait patterns of vascular plants, with a minority examining the patterns of cryptograms such as lichens. Lichens are an important component of many ecosystems due to their contributions to biodiversity and their key ecosystem services, such as contributions to mineral and hydrological cycles and ecosystem food webs. Lichens are also of special interest because of their reliance on atmospheric deposition for nutrients and water, which makes them particularly sensitive to air pollution. Therefore, they are often used as bioindicators of air pollution, climate change, and general ecosystem health. This thesis examines the functional trait patterns of lichens in two contrasting regions with fundamentally different kinds of data. To better understand the patterns of lichen functional traits, we examined reproductive, morphological, and chemical trait variation along precipitation and temperature gradients in Oregon.
    [Show full text]
  • <I>Lichenostigma Epirupestre</I> a New Lichenicolous Species On
    MYCOTAXON Volume 107, pp. 189–195 January–March 2009 Lichenostigma epirupestre, a new lichenicolous species on Pertusaria from Spain Sergio Pérez-Ortega1 & Vicent Calatayud2 [email protected] Departamento de Biología Vegetal II, Facultad de Farmacia Universidad Complutense de Madrid Plaza Ramón y Cajal, Ciudad Universitaria, ES-28040 Madrid, SPAIN 2Fundación CEAM C/ Charles R. Darwin 14, Parc Tecnològic, E–46980 Paterna, València, Spain Abstract—The new species Lichenostigma epirupestre is described from three localities in Central Spain, growing on Pertusaria pertusa var. rupestris. Remarks on its taxonomy and closely related species are made and a key to the species of Lichenostigma subgenus Lichenostigma is also included. Key words—Iberian Peninsula, lichenicolous fungi, lichens Introduction The genus Lichenostigma was introduced for L. maureri Hafellner (Hafellner 1982) and, since then, a total of 21 species (after www.indexfungorum.org) have been referred to it. Two subgenera are recognized: Lichenostigma and Lichenogramma (Navarro-Rosinés & Hafellner 1996, Calatayud et al. 2002). Species belonging to subgenus Lichenostigma are characterized by having cushion-like ascomata and by the absence of visible vegetative hyphae or strands connecting several ascomata on the surface of the thallus. Taxa included in subgenus Lichenogramma show rounded or elongate ascomata that are interconnected by brown hyphae or pluricellular strands. While most species can easily be referred to one of these two subgenera, a few species show some intermediate features. This is the case of species in which the rounded shape of the ascomata is typical of subgenus Lichenostigma, but developing immersed (not visible on the host thallus) brown vegetative hyphae, or others that only occasionally develop superficial hyphal strands but only occasionally (Calatayud & Barreno 2003, Halıcı & Hawksworth 2007).
    [Show full text]
  • One Hundred New Species of Lichenized Fungi: a Signature of Undiscovered Global Diversity
    Phytotaxa 18: 1–127 (2011) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Monograph PHYTOTAXA Copyright © 2011 Magnolia Press ISSN 1179-3163 (online edition) PHYTOTAXA 18 One hundred new species of lichenized fungi: a signature of undiscovered global diversity H. THORSTEN LUMBSCH1*, TEUVO AHTI2, SUSANNE ALTERMANN3, GUILLERMO AMO DE PAZ4, ANDRÉ APTROOT5, ULF ARUP6, ALEJANDRINA BÁRCENAS PEÑA7, PAULINA A. BAWINGAN8, MICHEL N. BENATTI9, LUISA BETANCOURT10, CURTIS R. BJÖRK11, KANSRI BOONPRAGOB12, MAARTEN BRAND13, FRANK BUNGARTZ14, MARCELA E. S. CÁCERES15, MEHTMET CANDAN16, JOSÉ LUIS CHAVES17, PHILIPPE CLERC18, RALPH COMMON19, BRIAN J. COPPINS20, ANA CRESPO4, MANUELA DAL-FORNO21, PRADEEP K. DIVAKAR4, MELIZAR V. DUYA22, JOHN A. ELIX23, ARVE ELVEBAKK24, JOHNATHON D. FANKHAUSER25, EDIT FARKAS26, LIDIA ITATÍ FERRARO27, EBERHARD FISCHER28, DAVID J. GALLOWAY29, ESTER GAYA30, MIREIA GIRALT31, TREVOR GOWARD32, MARTIN GRUBE33, JOSEF HAFELLNER33, JESÚS E. HERNÁNDEZ M.34, MARÍA DE LOS ANGELES HERRERA CAMPOS7, KLAUS KALB35, INGVAR KÄRNEFELT6, GINTARAS KANTVILAS36, DOROTHEE KILLMANN28, PAUL KIRIKA37, KERRY KNUDSEN38, HARALD KOMPOSCH39, SERGEY KONDRATYUK40, JAMES D. LAWREY21, ARMIN MANGOLD41, MARCELO P. MARCELLI9, BRUCE MCCUNE42, MARIA INES MESSUTI43, ANDREA MICHLIG27, RICARDO MIRANDA GONZÁLEZ7, BIBIANA MONCADA10, ALIFERETI NAIKATINI44, MATTHEW P. NELSEN1, 45, DAG O. ØVSTEDAL46, ZDENEK PALICE47, KHWANRUAN PAPONG48, SITTIPORN PARNMEN12, SERGIO PÉREZ-ORTEGA4, CHRISTIAN PRINTZEN49, VÍCTOR J. RICO4, EIMY RIVAS PLATA1, 50, JAVIER ROBAYO51, DANIA ROSABAL52, ULRIKE RUPRECHT53, NORIS SALAZAR ALLEN54, LEOPOLDO SANCHO4, LUCIANA SANTOS DE JESUS15, TAMIRES SANTOS VIEIRA15, MATTHIAS SCHULTZ55, MARK R. D. SEAWARD56, EMMANUËL SÉRUSIAUX57, IMKE SCHMITT58, HARRIE J. M. SIPMAN59, MOHAMMAD SOHRABI 2, 60, ULRIK SØCHTING61, MAJBRIT ZEUTHEN SØGAARD61, LAURENS B. SPARRIUS62, ADRIANO SPIELMANN63, TOBY SPRIBILLE33, JUTARAT SUTJARITTURAKAN64, ACHRA THAMMATHAWORN65, ARNE THELL6, GÖRAN THOR66, HOLGER THÜS67, EINAR TIMDAL68, CAMILLE TRUONG18, ROMAN TÜRK69, LOENGRIN UMAÑA TENORIO17, DALIP K.
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • Huneckia Pollinii </I> and <I> Flavoplaca Oasis
    MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2017 October–December 2017—Volume 132, pp. 895–901 https://doi.org/10.5248/132.895 Huneckia pollinii and Flavoplaca oasis newly recorded from China Cong-Cong Miao 1#, Xiang-Xiang Zhao1#, Zun-Tian Zhao1, Hurnisa Shahidin2 & Lu-Lu Zhang1* 1 Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, 250014, P. R. China 2 Lichens Research Center in Arid Zones of Northwestern China, College of Life Science and Technology, Xinjiang University, Xinjiang , 830046 , P. R. China * Correspondence to: [email protected] Abstract—Huneckia pollinii and Flavoplaca oasis are described and illustrated from Chinese specimens. The two species and the genus Huneckia are recorded for the first time from China. Keywords—Asia, lichens, taxonomy, Teloschistaceae Introduction Teloschistaceae Zahlbr. is one of the larger families of lichenized fungi. It includes three subfamilies, Caloplacoideae, Teloschistoideae, and Xanthorioideae (Gaya et al. 2012; Arup et al. 2013). Many new genera have been proposed based on molecular phylogenetic investigations (Arup et al. 2013; Fedorenko et al. 2012; Gaya et al. 2012; Kondratyuk et al. 2013, 2014a,b, 2015a,b,c,d). Currently, the family contains approximately 79 genera (Kärnefelt 1989; Arup et al. 2013; Kondratyuk et al. 2013, 2014a,b, 2015a,b,c,d; Søchting et al. 2014a,b). Huneckia S.Y. Kondr. et al. was described in 2014 (Kondratyuk et al. 2014a) based on morphological, anatomical, chemical, and molecular data. It is characterized by continuous to areolate thalli, paraplectenchymatous cortical # Cong-Cong Miao & Xiang-Xiang Zhao contributed equally to this research.
    [Show full text]
  • A Provisional Checklist of the Lichens of Belarus
    Opuscula Philolichenum, 17: 374-479. 2018. *pdf effectively published online 31December2018 via (http://sweetgum.nybg.org/philolichenum/) A Provisional Checklist of the Lichens of Belarus ANDREI TSURYKAU1 ABSTRACT. – A total of 606 species and five subspecific taxa of lichens and allied fungi are documented from Belarus based on combined historical (pre-1980) and modern (post-1980) records. Of these, 50 (8.3%) are represented by only historical reports, 235 (38.8%) are represented by only modern vouchers, and 310 (51.2%) are represented by both historical and modern records. Eleven species are known only from generalized published reports that lacked specific location data. Eighty-eight species are excluded as erroneous reports, or considered as doubtful records. KEYWORDS. – Biodiversity, distribution, lichenized fungi, historical baseline. INTRODUCTION Published accounts of the lichens of Belarus date to the end of the 18th century (Gilibert 1781). In the first phase of lichenological discovery in the country (1780–1900) lichens did not attract special attention and were reported among the general lists of vascular plants and fungi. However, 49 species were reported by the French botanist J.E. Gilibert, the Russian ethnographer of Belarusian origin N. Downar (Dovnar-Zapol'skiy) and Polish botanists K. Filipowicz and F. Błoński (Błoński 1888, 1889; Downar 1861; Filipowicz 1881; Gilibert 1781, 1792). In the early 20th century (1900–1925), there was a second phase of lichenological discovery in Belarus. During that time, Belarusian pioneer lichenologist V.P. Savicz and his wife L.I. Ljubitzkaja (later Savicz-Ljubitzkaja) reported 91 species new to the country (Ljubitzkaja 1914; Savicz 1909, 1910, 1911, 1925; Savicz & Savicz 1924; Wyssotzky et al.
    [Show full text]
  • Lichens and Lichenicolous Fungi of Yosemite National Park, California
    North American Fungi Volume 8, Number 11, Pages 1-47 Published September 9, 2013 Lichens and Lichenicolous Fungi of Yosemite National Park, California M. Hutten1, U. Arup2, O. Breuss3, T. L. Esslinger4, A. M. Fryday5, K. Knudsen6, J. C. Lendemer7, C. Printzen8, H. T. Root9, M. Schultz10, J. Sheard11, T. Tønsberg12, and B. McCune9 1Lassen Volcanic National Park, P.O. Box 100, Mineral, CA 96063 USA. 2Botanical Museum, Lund University, Box 117, 221 00 Lund, Sweden 3Naturhistorisches Museum Wien, Botanische Abteilung, Burgring 7, A-1010 Wien, Austria 4Dept. of Biological Sciences #2715, P.O. Box 6050, North Dakota State University, Fargo ND 58108, U.S.A. 5Dept. of Plant Biology, Michigan State University, East Lansing, MI 48824, U.S.A. 6Dept. of Botany & Plant Sciences, University of California, Riverside, CA 92521, U.S.A. 7New York Botanical Garden, Bronx, NY 10458-5126, U.S.A. 8Abt. Botanik & Molek. Evol., Forschungsinstitut Senckenberg, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany 9Dept. Botany and Plant Pathology, Oregon State University, Corvallis OR 97331, U.S.A. 10Biocenter Klein Flottbek, University of Hamburg, Ohnhorststr. 18, D-22609 Hamburg, Germany 11Dept. of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada 12Museum of Natural History, University of Bergen, Allégaten 41, N-5007 Bergen, Norway Hutten, M., U. Arup, O. Breuss, T. L. Esslinger, A. M. Fryday, K. Knudsen, J. C. Lendemer, C. Printzen, H. T. Root, M. Schultz, J. Sheard, T. Tønsberg, and B. McCune. 2013. Lichens and Lichenicolous Fungi of Yosemite National Park, California. North American Fungi 8(11): 1-47.
    [Show full text]