Sequence Stratigraphy Basics, Concepts & Applications

Total Page:16

File Type:pdf, Size:1020Kb

Sequence Stratigraphy Basics, Concepts & Applications Sequence Stragraphy - Basics, Concepts & Applicaons Sequence Stratigraphy Basics, Concepts & Applications 07.-09.03.2016 Dr. Hartmut Jäger Sequence Stragraphy - Basics, Concepts & Applicaons Introduction Books Posamen(er , H.W. & Weimer, P . (eds), 1994: Siliciclas/c Sequence Stragraphy: Recent Developments and Applicaons. (AAPG Memoir) Loucks, R.G. & Sarg, J.F., 1994: Carbonate Sequence Stragraphy: Recent Developments and Applicaons. (AAPG Memoir) Emery, D. & Myers, K., 1996: Sequence Stragraphy. Blackwell Science Catuneanu, O., 2006: Principles of Sequence Stragraphy (Developments in Sedimentology). Elsevier Haq, B.U., 2013: Sequence Stragraphy and Deposi/onal Response to Eustac, Tectonic and Climac Forcing. (Coastal Systems and Con/nental Margins). Springer Sequence Stragraphy - Basics, Concepts & Applicaons Introduction Stragraphy “the science of strafied (layered) rocks in terms of /me and space” (Oxford Dic/onary of Earth Sciences, 2003) Sequence "A chronologic succession of sedimentary rocks from older below to younger above, essen/ally without interrup/on, bounded by unconformi/es.” (Glossary of Geology, 1987) Sequence Stragraphy - Basics, Concepts & Applicaons Introduction Sequence stratigraphy is one type of lithostratigraphy • used for subdivision of the sedimentary basin fll by a framework of major depositional and erosional surfaces • creates units of contemporaneous accumulated strata bounded by these surfaces (=sequences) • developed for clastic and carbonate sediments from continental, marginal marine, basin margins and down-slope settings of basins. The • surfaces often generated during changes in relative sea level and formed during associated deposition and erosion. Sequence Stragraphy - Basics, Concepts & Applicaons Introduction - basic principles Sequence Stratigraphy is based on Steno's principles of sediment accumulation Sequence Stragraphy - Basics, Concepts & Applicaons Introduction - basic principles Sequence Stratigraphy is based on Walther's Facies Law – vertical and lateral equivalence of sediments Only those facies types and lithologies can be deposited on top of each other, which can be observed beside each other at one time level fluvial sands silty clay coastal plain terrigeneous muds coal swamp brackish muds shallow marine marine Limestones carbonates brackish mudstone coal lacustrine lagoon mudstone lacustrine limestone silty claystone sandstone Sequence Stragraphy - Basics, Concepts & Applicaons Introduction - Lithostratigraphy Lithostratigraphic units recognized and defned by lithic characteristics only, not by age. Hierarchy: Supergroup – Group – Formation – Member - Bed/Bed sets 2 types of contacts between units: conformable and unconformable. Conformable: continuous deposition, no break or hiatus (surface = conformity) Unconformable: period of erosion/non-deposition (surface = unconformity) Lithostratigraphical correlation based on lithofacies (using key beds or sequences) based on lithology, color, structure, thickness… Sequence Stragraphy - Basics, Concepts & Applicaons Lithostratigraphy Different types of lithostratigraphical frameworks conficting with sequence stratigraphy: • Lithostratigraphy (sensu strictu) • Allostratigraphy • Trangression-Regression Cycles • Stratigraphic Sequences • Seismo-Stratigraphy • Sequence Stratigraphy Sequence Stragraphy - Basics, Concepts & Applicaons Lithostratigraphy - Allostratigraphy Time dependent stragraphic framework Subdivision by /me equivalent surfaces/ layers: Transgressive/ regressive surfaces (erosional & marine flooding surfaces) also tuffites, tempes/tes, turbidites .... (marker beds) Sequence Stragraphy - Basics, Concepts & Applicaons Lithostratigraphy vs. Allostratigraphy Lithostratigraphic correlation – correlation of similar lithologies Allostratigraphic correlation – correlation of timelines but different lithologies (facies) Sequence Stragraphy - Basics, Concepts & Applicaons Lithostratigraphy - Transgressive-Regressive Cycles Time dependent stratigraphic framework organized by transgressive / regressive surfaces Sequence Stragraphy - Basics, Concepts & Applicaons Lithostratigraphy - Stratigraphic sequences Stratigraphic Sequences - assemblage of strata and formations bounded by prominent interregional unconformities Sloss et al. 1949 Subdivision of the Phanerozoic succession (blue) of N-America into six sequences (blue), limited by mes of non-deposion or erosion (yellow) Sloss 1963 Stragraphic sequences are based on transgressive / regressive cycles Sequence Stragraphy - Basics, Concepts & Applicaons Sedimentary Cycles Lithostragraphical correlaons are based on sedimentary cycles Several orders of sedimentary cycles – 0.01 to >100 my 1st-order cycles: Con/nental sequence 2nd-order cycles: Transgressive/regressive cycle 3rd-order cycles: Sequence cycle 4/5th order cycles: Parasequence cycle Sequence Stragraphy - Basics , Concepts & Applicaons Sedimentary Cycles Sedimentary Cycles Continental break-up Sea-floor spreading Eustatic (melting ice caps) Orogenesis and Rifting Local tectonical developments Milankovich cyclicity Climatic cycle Sequence Stragraphy - Basics, Concepts & Applicaons Sedimentary Cycles - 1st order cycles Con)nental-Cycle > 100 My Controlled by con/nental break up and formaon Phanerozoic 1st order eustac cycle linked to Precambrian (Rodinia or Proto-Pangea) and Permo-Triassic (Pangea) supercon/nents. 1st order eustac cycles are directly related to the volume of oceanic basins Cambrian Sequence Stragraphy - Basics, Concepts & Applicaons Sedimentary Cycles - 2nd order cycles Transgressive – regressive Cycle 10-100 My Mainly controlled by sea-floor spreading Sequence Stragraphy - Basics, Concepts & Applicaons Sedimentary Cycles - 3rd order cycles Sequence Cycle 1-10 My Regression Based on eustac sea-level changes Local to regional volcanic and tectonic events – riing, orogenesis, freezing/ melng of ice caps Changes to earth's shape, producing Transgression "bulges" or "sags" = ocean level fluctuaons. Sequence well logs iden/fied in lithological succession or shallowing Most and their correlave surfaces. bounded by marine flooding surfaces gene/cally related beds or relavely conformable succession of Parasequences ( the Caused by high-frequency changes in Parasequence Milankovich realitve Stragraphy parasequences -upward sedimentary cycles sea-level cycles - are defined as a Basics Cycle , climate , Sedimentary -4-5 Cycles Concepts are ) asymme/cal 0,01-1 & bedsets Applicaons My th order cycles ordercycles B ACHMANN nach nach & TST mfs HST A IGNER (1992) Sequenzen 3.Ordnung HST TST TST mfs mfs nach (1999) HST S HST ZUL C nach nach TST HST HST TST LST K (1999) HST HST Ę DZIERSK ( mf-Zone TST mfs LST mfs TST ) sb sb sb mfs I Sets Parasequenzen 6 7 8 4 3 5 1 2 so,m mu1 mu2 mu3 mu4 Steudnitz Gernrode Rüdersdorf Raciboro. St. Opolski Płaza Myophorien-Schichten/ Unterer Wellenkalk/ Oolithbänke - Mittlerer Wellenkalk/ Terebratelbänke Schaumkalkbänke/ Untere Gogolin-Sch. Obere Gogolin-Schichten Górażdże-Schichten - Oberer Wellenkalk Karchowice-Sch. Sequence Stragraphy - Basics, Concepts & Applicaons Sedimentary Cycles - 4-5th order cycles Parasequences Parasequence: A rela/vely conformable succession of gene/cally related beds or bedsets (within a parasequence set) bounded by marine flooding surfaces (Van Wagoner 1985). Paerns of the stacking of parasequence sets are used in conjunc/on with bounding surfaces and their posi/on within a sequence to define systems tracts (Van Wagoner et al. 1988). Sequence Stragraphy - Basics, Concepts & Applicaons Sedimentary Cycles - 4-5th order cycles Parasequences Sand-rich shoreline (deltaic systems): Muddy coastline: coarsening-upward succession, mud/sand cross-bedded sub/dal sands to mixed sediments (offshore) to sand mudstone/rippled sands alternaons dominated lower shoreface to pure sands (inter/dal) to en/rely bioturbated (coaly) of upper shoreface/foreshore mudstones (supradal). Sequence Stragraphy - Basics, Concepts & Applicaons Sedimentary Cycles - 4-5th order cycles shallowing upward cycle shallowing upward cycle shallowing upward cycle Sequence Stragraphy - Basics, Concepts & Applicaons Sedimentary Cycles - 4-5th order cycles shallowing upwards flooding surface shallowing upwards Camarillas, Maestrat Basin Sequence Stragraphy - Basics, Concepts & Applicaons An Online Guide to Sequence Stratigraphy Sedimentary Cycles - 4-5th order cycleshttp://strata.uga.edu/sequence/parasequences.html Parasequences figure adapted from Van Wagoner et al. (1990) - faciesBecause within a shallowparasequences water facies changes laterally, therefore a single within a parasequence will pinchparasequence out laterally will in a not be composed of the same downdip direction and deeperfacies water everywhere facies within a parasequence will pinch - composed of deeper water out in an updip direction,facies the facies downdip composition and shallower water of a single faciesparasequence updip - parasequencechanges predictably boundaries may become obscure in coastal plain sengs and in deep updip and downdip. Thus, a single parasequence will not marine sengs due to the lack of be composed of the same faciesfacies everywhere, contrast indicang flooding surfaces but will be composed of deeper water facies downdip and shallower water facies updip, as would be expected. Because parasequence boundaries represent a primary depositional surface, that is, topography at the time of deposition, flooding surfaces will tend to be relatively flat but dip slightly seaward at angles typical of continental shelves. Finally, parasequence
Recommended publications
  • Stratigraphy, Sedimentary Structures, and Textures of the Late Neoproterozoic Doushantuo Cap Carbonate in South China
    Journal of Sedimentary Research, 2006, v. 76, 978–995 Research Article DOI: 10.2110/jsr.2006.086 STRATIGRAPHY, SEDIMENTARY STRUCTURES, AND TEXTURES OF THE LATE NEOPROTEROZOIC DOUSHANTUO CAP CARBONATE IN SOUTH CHINA 1 2 3 4 4 GANQING JIANG, MARTIN J. KENNEDY, NICHOLAS CHRISTIE-BLICK, HUAICHUN WU, AND SHIHONG ZHANG 1Department of Geoscience, University of Nevada, Las Vegas, Nevada 89154-4010, U.S.A. , 2Department of Earth Sciences, University of California, Riverside, California 92521, U.S.A. , 3Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964-8000, U.S.A. 4School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China e-mail: [email protected] ABSTRACT: The 3- to 5-m-thick Doushantuo cap carbonate in south China overlies the glaciogenic Nantuo Formation (ca. 635 Ma) and consists of laterally persistent, thinly laminated and normally graded dolomite and limestone indicative of relatively deep-water deposition, most likely below storm wave base. The basal portion of this carbonate contains a distinctive suite of closely associated tepee-like structures, stromatactis-like cavities, layer-parallel sheet cracks, and cemented breccias. The cores of tepees are composed of stacked cavities lined by cements and brecciated host dolomicrite. Onlap by laminated sediment indicates synsedimentary disruption of bedding that resulted in a positive seafloor expression. Cavities and sheet cracks contain internal sediments, and they are lined by originally aragonitic isopachous botryoidal cements with acicular radiating needles, now replaced by dolomite and silica. Pyrite and barite are common, and calcite is locally retained as a primary mineral.
    [Show full text]
  • The Cretaceous-Tertiary Boundary Interval in Badlands National Park, South Dakota
    The Cretaceous-Tertiary Boundary Interval in Badlands National Park, South Dakota Philip W. Stoffer1 Paula Messina John A. Chamberlain, Jr. Dennis O. Terry, Jr. U.S. Geological Survey Open-File Report 01-56 2001 U.S. DEPARTMENT OF THE INTERIOR Gale A. Norton, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director The Cretaceous/Tertiary (K-T) boundary study interval at the Rainbow Colors Overlook along Badlands Loop Road, North Unit of Badlands National Park. This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey (USGS) editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1345 Middlefield Road, Menlo Park, CA 94025 http://geopubs.wr.usgs.gov/open-file/of01-056/ ABSTRACT A marine K-T boundary interval has been identified throughout the Badlands National Park region of South Dakota. Data from marine sediments suggest that deposits from two asteroid impacts (one close, one far away) may be preserved in the Badlands. These impact- generated deposits may represent late Maestrichtian events or possibly the terminal K-T event. Interpretation is supported by paleontological correlation, sequence stratigraphy, magnetostratigraphy, and strontium isotope geochronology. This research is founded on nearly a decade of NPS approved field work in Badlands National Park and a foundation of previously published data and interpretations. The K-T boundary occurs within
    [Show full text]
  • Carbonates Versus Siliciclastics in Sequence Stratigraphy
    SEDIMENTOLOGY AND SEQUENCE STRATIGRAPHY OF REEFS AND CARBONATE PLATFORMS A Short Course by Wolfgang Schlager Free University, Amsterdam Continuing Education Course Note Series #34 Published by The American Association of Petroleum Geologists Tulsa, Oklahoma U.S.A. PREFACE Classical sequence stratigraphy has been developed primarily from siliciclastic systems. Application of the concept to carbonates has not been as straightforward as was originally expected even though the basic tenets of sequence stratigraphy are supposed to be applicable to all depositional systems. Rather than force carbonate platforms into the straightjacket of a concept derived from another sediment family, this course takes a different tack. It starts out from the premise that sequence stratigraphy is a modern and sophisticated version of lithostratigraphy and as such is a sedimentologic concept. "More sedimentology into sequence stratigraphy" is the motto of the course and the red line that runs through the chapters of this booklet. The course sets out with a review of sedimentologic principles governing the large-scale anatomy of reefs and platforms. It then looks at sequences and systems tracts from a sedimentologic point of view, assesses the differences between siliciclastics and carbonates in their response to sea level, evaluates processes that compete with sea level for control on carbonate sequences, and finally presents a set of guidelines for application of sequence stratigraphy to reefs and carbonate platforms. In compiling these notes, I have drawn not only on literature but also on as yet unpublished materials from my associates in the sedimentology group at the Free University, Amsterdam. I acknowledge in particular Hemmo Bosscher, Ewan Campbell, Juul Everaars, Arnout Everts, Jeroen Kenter, Henk van de Poel, John Reijmer, Jan Stafleu, and Flora Vijn.
    [Show full text]
  • Sequence Stratigraphy of a Mesozoic Carbonate Platform-To-Basin System in Western Sicily
    Cent. Eur. J. Geosci. • 1(3) • 2009 • 251-273 DOI: 10.2478/v10085-009-0021-8 Central European Journal of Geosciences Sequence stratigraphy of a Mesozoic carbonate platform-to-basin system in western Sicily Research Article Luca Basilone∗ Dipartimento di Geologia e Geodesia, Palermo University, via Archirafi 20-22, 90123 Palermo, Italy Received 15 April 2009; accepted 9 June 2009 Abstract: Sequence stratigraphic studies of the Triassic through Paleogene carbonate successions of platform, slope and basin in western Sicily (Palermo and Termini Imerese Mountains) have identified a sedimentary cyclicity mostly caused by relative oscillations of sea level. The stratigraphic successions of the Imerese and Panormide palaeo- geographic domains of the southern Tethyan continental margin were studied with physical-stratigraphy and facies analysis to reconstruct the sedimentary evolution of this platform-to-basin system. The Imerese Basin is characterized by a carbonate and siliceous-calcareous succession, 1200-1400 m thick, Late Triassic to Eocene in age. The strata display a typical example of a carbonate platform margin, characterized by resedimented facies with progradational stacking patterns. The Panormide Carbonate Platform is characterized by a carbonate succession, 1000-1200 m thick, Late Triassic to Late Eocene, mostly consisting of shallow-water facies with periodic subaerial exposure. The cyclic arrangement has been obtained by the study of the stratigraphic signatures (unconformities, facies sequences, erosional surfaces and stratal geometries) found in the slope successions. The recognized pattern has been compared with coeval facies of the shelf. This correlation provided evidence of sedimentary evolution, influenced by progradation and backstepping of the shelf deposits. The stratigraphic architecture of the platform-to-basin system is characterized by four major transgres- sive/regressive cycles during the late Triassic to late Eocene.
    [Show full text]
  • Mid-Depth Calcareous Contourites in the Latest Cretaceous of Caravaca (Subbetic Zone, SE Spain)
    Mid-depth calcareous contourites in the latest Cretaceous of Caravaca (Subbetic Zone, SE Spain). Origin and palaeohydrological significance Javier Martin-Chivelet*, Maria Antonia Fregenal-Martinez, Beatriz Chac6n Departamento de 8stratigrajia. institute de Geologia Economica (CSiC-UCM). Facultad de Ciencias Geologicas. Universidad Complutense. 28040 Madrid, Spain Abstract Deep marine carbonates of Late Campanian to Early Maastrichtian age that crop out in the Subbetic Zone near Caravaca (SE Spain) contain a thick succession of dm-scale levels of calcareous contourites, alternating with fine-grained pelagitesl hemipelagites. These contourites, characterised by an abundance and variety of traction structures, internal erosive surfaces and inverse and nOlmal grading at various scales, were interpreted as having been deposited under the influence of relatively deep ocean CUlTents. Based on these contourites, a new facies model is proposed. The subsurface currents that generated the contourites of Caravaca were probably related to the broad circumglobal, equatorial current system, the strongest oceanic feature of Cretaceous times. These deposits were formed in the mid-depth (200-600 m), hemipelagic environments at the ancient southern margin of Iberia. This palaeogeographic setting was susceptible to the effects of these currents because of its position close to the narrowest oceanic passage, through which the broad equatorial cun'ent system flowed in the westemmost area of the Tethys Seaway. Regional uplift, related to the onset of convergence between Iberia and Africa, probably favoured the generation of the contourites during the Late Campanian to the Early Maastrichtian. Keyword\': Contourites; Palaeoceanography; Late Cretaceous; Caravaca; Betics; SE Spain 1. Introduction aI., 1996; Stow and Faugeres, 1993, 1998; Stow and Mayall, 2000a; Shanmugam, 2000).
    [Show full text]
  • Paleoecology of Late Cretaceous Methane Cold-Seeps of the Pierre Shale, South Dakota
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 10-2014 Paleoecology of Late Cretaceous methane cold-seeps of the Pierre Shale, South Dakota Kimberly Cynthia Handle Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/355 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Paleoecology of Late Cretaceous methane cold-seeps of the Pierre Shale, South Dakota by Kimberly Cynthia Handle A dissertation submitted to the Graduate Faculty in Earth and Environmental Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2014 i © 2014 Kimberly Cynthia Handle All Rights Reserved ii This manuscript has been read and accepted for the Graduate Faculty in Earth and Environmental Sciences in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Neil H. Landman____________________________ __________________ __________________________________________ Date Chair of Examining Committee Harold C. Connolly, Jr.___ ____________________ __________________ __________________________________________ Date Deputy - Executive Officer Supervising Committee Harold C. Connolly, Jr John A. Chamberlain Robert F. Rockwell The City University of New York iii ABSTRACT The Paleoecology of Late Cretaceous methane cold-seeps of the Pierre Shale, South Dakota By Kimberly Cynthia Handle Adviser: Neil H. Landman Most investigations of ancient methane seeps focus on either the geologic or paleontological aspects of these extreme environments.
    [Show full text]
  • Depositional Controls and Sequence Stratigraphy of Lacustrine to Marine
    DEPOSITIONAL CONTROLS AND SEQUENCE STRATIGRAPHY OF LACUSTRINE TO MARINE TRANSGRESSIVE DEPOSITS IN A RIFT BASIN, LOWER CRETACEOUS BLUFF MESA, INDIO MOUNTAINS, WEST TEXAS ANDREW ANDERSON Master’s Program in Geology APPROVED: Katherine Giles, Ph.D., Chair Richard Langford, Ph.D. Vanessa Lougheed, Ph.D. Charles Ambler, Ph.D. Dean of the Graduate School Copyright © by Andrew Anderson 2017 DEDICATION To my parents for teaching me to be better than I was the day before. DEPOSITIONAL CONTROLS AND SEQUENCE STRATIGRAPHY OF LACUSTRINE TO MARINE TRANSGRESSIVE DEPOSITS IN A RIFT BASIN, LOWER CRETACEOUS BLUFF MESA, INDIO MOUNTAINS, WEST TEXAS by ANDREW ANDERSON, B.S. THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Geological Sciences THE UNIVERSITY OF TEXAS AT EL PASO December 2017 ProQuest Number:10689125 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ProQuest 10689125 Published by ProQuest LLC ( 2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 ACKNOWLEDGEMENTS In the Fall of 2014, Dr.
    [Show full text]
  • Diagenesis and Sequence Stratigraphy
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 762 _____________________________ _____________________________ Diagenesis and Sequence Stratigraphy An Integrated Approach to Constrain Evolution of Reservoir Quality in Sandstones BY JOÃO MARCELO MEDINA KETZER ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2002 Dissertation for the Degree of Doctor of Philosophy in Mineral Chemistry, Petrology and Tectonics at the Department of Earth Sciences, Uppsala University, 2002 Abstract Ketzer, J. 2002. Diagenesis and Sequence Stratigraphy. an integrated approach to constrain evolution of reservoir quality in sandstones. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 762. 30 pp. Uppsala. ISBN 91-554-5439-9 Diagenesis and sequence stratigraphy have been formally treated as two separate disciplines in sedimentary petrology. This thesis demonstrates that synergy between these two subjects can be used to constrain evolution of reservoir quality in sandstones. Such integrated approach is possible because sequence stratigraphy provides useful information on parameters such as pore water chemistry, residence time of sediments under certain geochemistry conditions, and detrital composition, which ultimately control diagenesis of sandstones. Evidence from five case studies and from literature, enabled the development of a conceptual model for the spatial and temporal distribution of diagenetic alterations and related evolution of reservoir quality
    [Show full text]
  • Practical Application of Sequence Stratigraphy and Risk Analysis for Stratigraphic Trap Exploration
    t2.o Practical Application of Sequence Stratigraphy and Risk Analysis for Stratigraphic Trap Exploration Takeshi Nakanishi B.Sc. Geology - Osaka City University (Japan) M.Sc. Geology - Osaka Cþ University (Japan) National Centre for Petroleum Geology and Geophysics The University of Adelaide This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Science, The Universþ of Adelaide September 2002 THE UNIVERSITY OF ADELAIDE AUSTRALIA (Dr. g. llo Çeorge Affen. Table of Contents Table of Contents Abstract .. vllr I)eclaration x Acknowledgments xl Chapter l-Introduction I 1.1 Risk analysis inthe petroleum exploration business ........ 1 1.2 Stratigraphic traps: the targets to diversiff exploration risk .. 5 1.3 Sequence stratigraphy and stratigraphic trap exploration - l5 1.4 Designing an evaluationprocedure for stratigraphic trap exploration . .-...... 18 1.5 Publications t9 Chapter 2 - Methodology 20 2.1 Quantitative geologic risk evaluation and ENPV evaluation in JNOC's projects ... 20 2.1.1 Introduction 20 2.1.2 ENPV: Expected Net Present Value ... 20 2.1.3 Geologic risk evaluation ...... 29 2.1.4 Consistency - the challenge for the future 36 2.2lntegration of sequence stratigraphy and 3D seismic dat¿ visualisation 37 2.2.1 Sequence stratigraphy 37 2.2.2 3D seismic data visualisation ...... 47 2.23lnfegration of sequence stratigraphic concept and 3D seismic data visualisation. 52 Chapter 3 - Case Study Areas and Available Data 55 Chapter 4 - General Geologic Setting and Petroleum Systems of the Southern Cooper-Eromanga Basin 64 4.1 Stratigraphic and tectonic setting 64 4.2 Petroleum systems 68 4.2.1 Source rocks and migration..
    [Show full text]
  • Sedimentological Signatures of Extreme Marine Inundations
    Universidade de Lisboa Faculdade de Ciências Departamento de Geologia Sedimentological signatures of extreme marine inundations Pedro José Miranda da Costa Doutoramento em Geologia Especialidade em Geologia Económica e do Ambiente 2012 I Universidade de Lisboa Faculdade de Ciências Departamento de Geologia Sedimentological signatures of extreme marine inundations Pedro José Miranda da Costa Doutoramento em Geologia Especialidade em Geologia Económica e do Ambiente Tese orientada pelo Prof. Doutor César Augusto Canelhas Freire de Andrade e pelo Prof. Doutor Alastair George Dawson, especialmente elaborada para a obtenção do grau de doutor em Geologia, especialidade em Geologia Económica e do Ambiente 2012 II Sedimentological signatures of extreme marine inundations Resumo A identificação e diferenciação de depósitos de invasões marinhas extremas (i.e. tsunamis e tempestades), é essencial para a reconstrução da sua distribuição espacial e para a determinação de tempos de recorrência de eventos desta natureza. As características de depósitos de paleotsunamis podem variar de local para local com as características geomorfológicas e sedimentológicas do sector costeiro em análise, bem como, com a deposição e/ou erosão associadas à inundação e ao retorno das ondas. Estes factores tornam o reconhecimento de paleotsunamis, numa sequência sedimentar, uma tarefa ousada. Além de que, existem também variadíssimas similaridades entre depósitos sedimentares de tsunamis e de tempestades, o que pode restringir de sobremaneira a precisão no seu reconhecimento e, consequentemente, na determinação de períodos de retorno para invasões marinhas extremas. Esta trabalho tem como objectivo fundamental contribur para mitigar estas dificuldades, focando-se sobre a aplicação de análise litoestratigráfica, textural, morfoscópica, microtextural e de composição mineralógica, para identificar depósitos de inundações marinhas extremas e determinar as suas prováveis fontes sedimentares.
    [Show full text]
  • 174Ax Leg Summary: Sequences, Sea Level, Tectonics, and Aquifer Resources: Coastal Plain Drilling1
    Miller, K.G., Sugarman, P.J., Browning, J.V., et al. Proceedings of the Ocean Drilling Program, Initial Reports Volume 174AX (Suppl.) 174AX LEG SUMMARY: SEQUENCES, SEA LEVEL, TECTONICS, AND AQUIFER RESOURCES: COASTAL PLAIN DRILLING1 Kenneth G. Miller, James V. Browning, Peter J. Sugarman, Peter P. McLaughlin, Michelle A. Kominz, Richard K. Olsson, James D. Wright, Benjamin S. Cramer, Stephen J. Pekar, William Van Sickel2 SUMMARY This chapter provides the background, objectives, and major scien- tific accomplishments of Ocean Drilling Program (ODP) Leg 174AX/ 174AXS, during which four boreholes were drilled onshore in the New Jersey (NJ) and Delaware (DE) Coastal Plains. These boreholes not only targeted the onshore equivalents of Miocene sequences drilled offshore during Leg 174AX with holes at Ocean View, NJ, and Bethany Beach, DE, but also provided an unprecedented sampling of marine Upper Cre- taceous–Paleogene onshore sequences with holes at Bass River and Ancora, NJ. Major scientific accomplishments of Leg 174AX include evaluating controls on sea level and sequences and global events in Earth history. Sea Level We established that eustasy is the dominant process that determines the template for potential sequences and their general architecture (stacking patterns and preservation of stratal surfaces) on the U.S. Mid- Atlantic margin. Leg 150X and 174AX onshore cores yielded a high- 1Examples of how to reference the resolution (1-m.y. resolution) chronology of ~30 Cenozoic and 11–14 whole or part of this volume. Late Cretaceous sequences by integrating Sr isotopic stratigraphy and 2 Shipboard Scientific Party biostratigraphy. Sequence boundaries (from 42 to 8 Ma) correlate with addresses.
    [Show full text]
  • Back to Basics of Sequence Stratigraphy: Early Miocene and Mid-Cretaceous Examples from the New Jersey Paleoshelf
    Journal of Sedimentary Research, 2018, v. 88, 148–176 Perspectives DOI: http://dx.doi.org/10.2110/jsr.2017.73 BACK TO BASICS OF SEQUENCE STRATIGRAPHY: EARLY MIOCENE AND MID-CRETACEOUS EXAMPLES FROM THE NEW JERSEY PALEOSHELF KENNETH G. MILLER, CHRISTOPHER J. LOMBARDI, JAMES V.BROWNING, WILLIAM J. SCHMELZ, GABRIEL GALLEGOS, GREGORY S. MOUNTAIN, AND KIMBERLY E. BALDWIN Department of Earth and Planetary Sciences and Institute of Earth, Oceans, and Atmospheric Sciences, Rutgers University, Piscataway, New Jersey 08854, U.S.A. ABSTRACT: Many sequence stratigraphic approaches have used relative sea-level curves that are dependent on models or preconceived notions to recognize depositional sequences, key stratal surfaces, and systems tracts, leading to contradictory interpretations. Here, we urge following basic sequence stratigraphic principles independent of sea-level curves using seismic terminations, facies successions and stacking patterns from well logs and sections, and chronostratigraphic data to recognize sequence boundaries, other stratal surfaces, parasequences, and systems tracts. We provide examples from the New Jersey siliciclastic paleoshelf from the: 1) early Miocene using academic-based chronostratigraphic, seismic, core, downhole, and core log data, and 2) mid-Cretaceous using commercial well-log, seismic, and biostratigraphic data. We use classic criteria to identify sequence boundaries on seismic profiles by reflection terminations (onlap, downlap, erosional truncation, and toplap), in cores by surfaces of erosion associated with hiatuses detected using biostratigraphy and Sr-isotope stratigraphy and changes in stacking patterns, and in logs by changes in stacking patterns. Maximum flooding surfaces (MFSs) are major seismic downlap surfaces associated with changes from retrogradational to progradational parasequence stacking patterns. Systems tracts are identified by their bounding surfaces and fining- (generally deepening) and coarsening- (generally shallowing) upward trends in cores and well-log stacking patterns.
    [Show full text]