An Efficient Reconciliation Algorithm for Social Networks

Total Page:16

File Type:pdf, Size:1020Kb

An Efficient Reconciliation Algorithm for Social Networks An efficient reconciliation algorithm for social networks Nitish Korula Silvio Lattanzi Google Inc. Google Inc. 76 Ninth Ave, 4th Floor 76 Ninth Ave, 4th Floor New York, NY New York, NY [email protected] [email protected] ABSTRACT user, but probably a poor representation of her working People today typically use multiple online social networks contacts, while LinkedIn is a good representation of work (Facebook, Twitter, Google+, LinkedIn, etc.). Each online contacts but not a very good representation of personal re- network represents a subset of their \real" ego-networks. An lationships. Therefore, analyzing social behaviors in any of interesting and challenging problem is to reconcile these on- these networks has the drawback that the results would only line networks, that is, to identify all the accounts belonging be partial. Furthermore, even if certain behavior can be ob- to the same individual. Besides providing a richer under- served in several networks, there are still serious problems standing of social dynamics, the problem has a number of because there is no systematic way to combine the behavior practical applications. At first sight, this problem appears of a specific user across different social networks and be- algorithmically challenging. Fortunately, a small fraction cause some social relationships will not appear in any social of individuals explicitly link their accounts across multiple network. For these reasons, identifying all the accounts be- networks; our work leverages these connections to identify a longing to the same individual across different social services very large fraction of the network. is a fundamental step in the study of social science. Our main contributions are to mathematically formalize Interestingly, the problem has also very important prac- the problem for the first time, and to design a simple, lo- tical implications. First, having a deeper understanding of cal, and efficient parallel algorithm to solve it. We are able the characteristics of a user across different networks helps to prove strong theoretical guarantees on the algorithm's to construct a better portrait of her, which can be used to performance on well-established network models (Random serve personalized content or advertisements. In addition, Graphs, Preferential Attachment). We also experimentally having information about connections of a user across mul- confirm the effectiveness of the algorithm on synthetic and tiple networks would make it easier to construct tools such real social network data sets. as \friend suggestion" or \people you may want to follow". The problem of identifying users across online social net- works (also referred to as the social network reconciliation 1. INTRODUCTION problem) has been studied extensively using machine learn- The advent of online social networks has generated a re- ing techniques; several heuristics have been proposed to naissance in the study of social behaviors and in the un- tackle it. However, to the best of our knowledge, it has derstanding of the topology of social interactions. For the not yet been studied formally and no rigorous results have first time, it has become possible to analyze networks and been proved for it. One of the contributions of our work is social phenomena on a world-wide scale and to design large- to give a formal definition of the problem, which is a precur- scale experiments on them. This new evolution in social sor to mathematical analysis. Such a definition requires two science has been the center of much attention, but has also key components: A model of the \true" underlying social attracted a lot of critiques; in particular, a longstanding network, and a model for how each online social network is problem in the study of online social networks is to under- formed as a subset of this network. We discuss details of stand the similarity between them and \real" underlying our models in Section 3. social networks [29]. Another possible reason for the lack of mathematical anal- This question is particularly challenging because online ysis is that natural definitions of the problem are demotivat- 1 social networks are often just a realization of a subset of ingly similar to the graph isomorphism problem. In addi- real social networks. For example, Facebook \friends" are tion, at first sight the social network reconciliation problem a good representation of the personal acquaintances of a seems even harder because we are not looking just for iso- morphism but for similar structures, as distinct social net- works are not identical. Fortunately, when reconciling so- This work is licensed under the Creative Commons Attribution- 1 NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li- In graph theory, an isomorphism between two graphs G cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per- and H is a bijection, f(∗), between the vertex sets of G and mission prior to any use beyond those covered by the license. Contact H such that any two vertices u and v of G are adjacent in G if and only if f(u) and f(v) are adjacent in H. The graph copyright holder by emailing [email protected]. Articles from this volume 0 were invited to present their results at the 40th International Conference on isomorphism problem is: Given two graphs G and G find Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China. an isomorphism between them or determine that there is no Proceedings of the VLDB Endowment, Vol. 7, No. 5 isomorphism. The graph isomorphism problem is considered Copyright 2014 VLDB Endowment 2150-8097/14/01. very hard, and no polynomial algorithms are known for it. 377 cial networks, we have two advantages over general graph find the corresponding names. To improve on these first isomorphism: First, real social networks are not the adver- naive approaches, several machine learning models were de- sarially designed graphs which are hard instances of graph veloped [3, 17, 20, 25, 28], all of which collect several features isomorphism, and second, a small fraction of social network of the users (name, location, image, connections topology), users explicitly link their accounts across multiple networks. based on which they try to identify users across networks. The main goal of this paper is to design an algorithm with These techniques may be very fragile with respect to ma- provable guarantees that is simple, parallelizable and robust licious users, as it is not hard to create a fake profile with to malicious users. For real applications, this last prop- similar characteristics. Furthermore, they get lower preci- erty is fundamental, and often underestimated by machine sion experimentally than our algorithm achieves. However, learning models.2 In fact, the threat of malicious users is we note that these techniques can be combined with ours, so prominent that large social networks (Twitter, Google+, both to validate / increase the number of initial trusted Facebook) have introduced the notion of `verification’ for links, and to further improve the performance of our algo- celebrities. rithm. Our first contribution is to give a formal model for the A different approach was studied in [22], where the au- graph reconciliation problem that captures the hardness of thors infer missing attributes of a user in an online social the problem and the notion of an initial set of trusted links network from the attribute information provided by other identifying users across different networks. Intuitively, our users in the network. To achieve their results, they retrieve model postulates the existence of a true underlying graph, communities, identify the main attribute of a community then randomly generates 2 realizations of it which are per- and then spread this attribute to all the user in the commu- turbations of the initial graph, and a set of trusted links for nity. Though it is interesting, this approach suffers from the some users. Given this model, our next significant contri- same limitations of the learning techniques discussed above. bution is to design a simple, parallelizable algorithm (based Recently, Henderson et al. [14] studied which are the most on similar intuition to the algorithm in [23]) and to prove important features to identify a node in a social network, formally that our algorithm solves the graph reconciliation focusing only on graph structure information. They ana- problem if the underlying graph is generated by well estab- lyzed several features of each ego-network, and also added lished network models. It is important to note that our al- the notion of recursive features on nodes at distance larger gorithm relies on graph structure and the initial set of links than 1 from a specific node. It is interesting to notice that of users across different networks in such a way that in order their recursive features are more resilient to attack by ma- to circumvent it, an attacker must be able to have a lot of licious users, although they can be easily circumvented by friends in common with the user under attack. Thus it is the attacker typically assumed in the social network security more resilient to attack than much of the previous work on literature [32], who can create arbitrarily many nodes. this topic. Finally, we note that any mathematical model The problem of reconciling social networks is closely con- is, by necessity, a simplification of reality, and hence it is nected to the problem of de-anonymizing social networks. important to empirically validate the effectiveness of our ap- Backstrom et al. introduced the problem of deanonymiz- proach when the assumptions of our models are not satisfied. ing social networks in [4]. In their paper, they present 2 In Section 5, we measure the performance of our algorithm main techniques: An active attack (nodes are added to the on several synthetic and \real" data sets.
Recommended publications
  • Simulating Quantum Field Theory with a Quantum Computer
    Simulating quantum field theory with a quantum computer John Preskill Lattice 2018 28 July 2018 This talk has two parts (1) Near-term prospects for quantum computing. (2) Opportunities in quantum simulation of quantum field theory. Exascale digital computers will advance our knowledge of QCD, but some challenges will remain, especially concerning real-time evolution and properties of nuclear matter and quark-gluon plasma at nonzero temperature and chemical potential. Digital computers may never be able to address these (and other) problems; quantum computers will solve them eventually, though I’m not sure when. The physics payoff may still be far away, but today’s research can hasten the arrival of a new era in which quantum simulation fuels progress in fundamental physics. Frontiers of Physics short distance long distance complexity Higgs boson Large scale structure “More is different” Neutrino masses Cosmic microwave Many-body entanglement background Supersymmetry Phases of quantum Dark matter matter Quantum gravity Dark energy Quantum computing String theory Gravitational waves Quantum spacetime particle collision molecular chemistry entangled electrons A quantum computer can simulate efficiently any physical process that occurs in Nature. (Maybe. We don’t actually know for sure.) superconductor black hole early universe Two fundamental ideas (1) Quantum complexity Why we think quantum computing is powerful. (2) Quantum error correction Why we think quantum computing is scalable. A complete description of a typical quantum state of just 300 qubits requires more bits than the number of atoms in the visible universe. Why we think quantum computing is powerful We know examples of problems that can be solved efficiently by a quantum computer, where we believe the problems are hard for classical computers.
    [Show full text]
  • Geometric Algorithms
    Geometric Algorithms primitive operations convex hull closest pair voronoi diagram References: Algorithms in C (2nd edition), Chapters 24-25 http://www.cs.princeton.edu/introalgsds/71primitives http://www.cs.princeton.edu/introalgsds/72hull 1 Geometric Algorithms Applications. • Data mining. • VLSI design. • Computer vision. • Mathematical models. • Astronomical simulation. • Geographic information systems. airflow around an aircraft wing • Computer graphics (movies, games, virtual reality). • Models of physical world (maps, architecture, medical imaging). Reference: http://www.ics.uci.edu/~eppstein/geom.html History. • Ancient mathematical foundations. • Most geometric algorithms less than 25 years old. 2 primitive operations convex hull closest pair voronoi diagram 3 Geometric Primitives Point: two numbers (x, y). any line not through origin Line: two numbers a and b [ax + by = 1] Line segment: two points. Polygon: sequence of points. Primitive operations. • Is a point inside a polygon? • Compare slopes of two lines. • Distance between two points. • Do two line segments intersect? Given three points p , p , p , is p -p -p a counterclockwise turn? • 1 2 3 1 2 3 Other geometric shapes. • Triangle, rectangle, circle, sphere, cone, … • 3D and higher dimensions sometimes more complicated. 4 Intuition Warning: intuition may be misleading. • Humans have spatial intuition in 2D and 3D. • Computers do not. • Neither has good intuition in higher dimensions! Is a given polygon simple? no crossings 1 6 5 8 7 2 7 8 6 4 2 1 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 2 18 4 18 4 19 4 19 4 20 3 20 3 20 1 10 3 7 2 8 8 3 4 6 5 15 1 11 3 14 2 16 we think of this algorithm sees this 5 Polygon Inside, Outside Jordan curve theorem.
    [Show full text]
  • Introduction to Computational Social Choice
    1 Introduction to Computational Social Choice Felix Brandta, Vincent Conitzerb, Ulle Endrissc, J´er^omeLangd, and Ariel D. Procacciae 1.1 Computational Social Choice at a Glance Social choice theory is the field of scientific inquiry that studies the aggregation of individual preferences towards a collective choice. For example, social choice theorists|who hail from a range of different disciplines, including mathematics, economics, and political science|are interested in the design and theoretical evalu- ation of voting rules. Questions of social choice have stimulated intellectual thought for centuries. Over time the topic has fascinated many a great mind, from the Mar- quis de Condorcet and Pierre-Simon de Laplace, through Charles Dodgson (better known as Lewis Carroll, the author of Alice in Wonderland), to Nobel Laureates such as Kenneth Arrow, Amartya Sen, and Lloyd Shapley. Computational social choice (COMSOC), by comparison, is a very young field that formed only in the early 2000s. There were, however, a few precursors. For instance, David Gale and Lloyd Shapley's algorithm for finding stable matchings between two groups of people with preferences over each other, dating back to 1962, truly had a computational flavor. And in the late 1980s, a series of papers by John Bartholdi, Craig Tovey, and Michael Trick showed that, on the one hand, computational complexity, as studied in theoretical computer science, can serve as a barrier against strategic manipulation in elections, but on the other hand, it can also prevent the efficient use of some voting rules altogether. Around the same time, a research group around Bernard Monjardet and Olivier Hudry also started to study the computational complexity of preference aggregation procedures.
    [Show full text]
  • Randnla: Randomized Numerical Linear Algebra
    review articles DOI:10.1145/2842602 generation mechanisms—as an algo- Randomization offers new benefits rithmic or computational resource for the develop ment of improved algo- for large-scale linear algebra computations. rithms for fundamental matrix prob- lems such as matrix multiplication, BY PETROS DRINEAS AND MICHAEL W. MAHONEY least-squares (LS) approximation, low- rank matrix approxi mation, and Lapla- cian-based linear equ ation solvers. Randomized Numerical Linear Algebra (RandNLA) is an interdisci- RandNLA: plinary research area that exploits randomization as a computational resource to develop improved algo- rithms for large-scale linear algebra Randomized problems.32 From a foundational per- spective, RandNLA has its roots in theoretical computer science (TCS), with deep connections to mathemat- Numerical ics (convex analysis, probability theory, metric embedding theory) and applied mathematics (scientific computing, signal processing, numerical linear Linear algebra). From an applied perspec- tive, RandNLA is a vital new tool for machine learning, statistics, and data analysis. Well-engineered implemen- Algebra tations have already outperformed highly optimized software libraries for ubiquitous problems such as least- squares,4,35 with good scalability in par- allel and distributed environments. 52 Moreover, RandNLA promises a sound algorithmic and statistical foundation for modern large-scale data analysis. MATRICES ARE UBIQUITOUS in computer science, statistics, and applied mathematics. An m × n key insights matrix can encode information about m objects ˽ Randomization isn’t just used to model noise in data; it can be a powerful (each described by n features), or the behavior of a computational resource to develop discretized differential operator on a finite element algorithms with improved running times and stability properties as well as mesh; an n × n positive-definite matrix can encode algorithms that are more interpretable in the correlations between all pairs of n objects, or the downstream data science applications.
    [Show full text]
  • Mechanism, Mentalism, and Metamathematics Synthese Library
    MECHANISM, MENTALISM, AND METAMATHEMATICS SYNTHESE LIBRARY STUDIES IN EPISTEMOLOGY, LOGIC, METHODOLOGY, AND PHILOSOPHY OF SCIENCE Managing Editor: JAAKKO HINTIKKA, Florida State University Editors: ROBER T S. COHEN, Boston University DONALD DAVIDSON, University o/Chicago GABRIEL NUCHELMANS, University 0/ Leyden WESLEY C. SALMON, University 0/ Arizona VOLUME 137 JUDSON CHAMBERS WEBB Boston University. Dept. 0/ Philosophy. Boston. Mass .• U.S.A. MECHANISM, MENT ALISM, AND MET AMA THEMA TICS An Essay on Finitism i Springer-Science+Business Media, B.V. Library of Congress Cataloging in Publication Data Webb, Judson Chambers, 1936- CII:J Mechanism, mentalism, and metamathematics. (Synthese library; v. 137) Bibliography: p. Includes indexes. 1. Metamathematics. I. Title. QA9.8.w4 510: 1 79-27819 ISBN 978-90-481-8357-9 ISBN 978-94-015-7653-6 (eBook) DOl 10.1007/978-94-015-7653-6 All Rights Reserved Copyright © 1980 by Springer Science+Business Media Dordrecht Originally published by D. Reidel Publishing Company, Dordrecht, Holland in 1980. Softcover reprint of the hardcover 1st edition 1980 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any informational storage and retrieval system, without written permission from the copyright owner TABLE OF CONTENTS PREFACE vii INTRODUCTION ix CHAPTER I / MECHANISM: SOME HISTORICAL NOTES I. Machines and Demons 2. Machines and Men 17 3. Machines, Arithmetic, and Logic 22 CHAPTER II / MIND, NUMBER, AND THE INFINITE 33 I. The Obligations of Infinity 33 2. Mind and Philosophy of Number 40 3. Dedekind's Theory of Arithmetic 46 4.
    [Show full text]
  • A Mathematical Analysis of Student-Generated Sorting Algorithms Audrey Nasar
    The Mathematics Enthusiast Volume 16 Article 15 Number 1 Numbers 1, 2, & 3 2-2019 A Mathematical Analysis of Student-Generated Sorting Algorithms Audrey Nasar Let us know how access to this document benefits ouy . Follow this and additional works at: https://scholarworks.umt.edu/tme Recommended Citation Nasar, Audrey (2019) "A Mathematical Analysis of Student-Generated Sorting Algorithms," The Mathematics Enthusiast: Vol. 16 : No. 1 , Article 15. Available at: https://scholarworks.umt.edu/tme/vol16/iss1/15 This Article is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in The Mathematics Enthusiast by an authorized editor of ScholarWorks at University of Montana. For more information, please contact [email protected]. TME, vol. 16, nos.1, 2&3, p. 315 A Mathematical Analysis of student-generated sorting algorithms Audrey A. Nasar1 Borough of Manhattan Community College at the City University of New York Abstract: Sorting is a process we encounter very often in everyday life. Additionally it is a fundamental operation in computer science. Having been one of the first intensely studied problems in computer science, many different sorting algorithms have been developed and analyzed. Although algorithms are often taught as part of the computer science curriculum in the context of a programming language, the study of algorithms and algorithmic thinking, including the design, construction and analysis of algorithms, has pedagogical value in mathematics education. This paper will provide an introduction to computational complexity and efficiency, without the use of a programming language. It will also describe how these concepts can be incorporated into the existing high school or undergraduate mathematics curriculum through a mathematical analysis of student- generated sorting algorithms.
    [Show full text]
  • A History of Modern Numerical Linear Algebra
    Gene Golub, Stanford University 1 A History of Modern Numerical Linear Algebra Gene H. Golub Stanford University Gene Golub, Stanford University 2 What is Numerical Analysis? (a.k.a Scientific Computing) The definitions are becoming shorter... Webster’s New Collegiate Dictionary (1973): • ”The study of quantitative approximations to the solutions of mathematical problems including consideration of the errors and bounds to the errors involved.” The American Heritage Dictionary (1992): • ”The study of approximate solutions to mathematical problems, taking into account the extent of possible errors.” L. N. Trefethen, Oxford University (1992): • ”The study of algorithms for the problems of continuous mathematics.” Gene Golub, Stanford University 3 Numerical Analysis: How It All Started Numerical analysis motivated the development of the earliest computers. Ballistics • Solution of PDE’s • Data Analysis • Early pioneers included: J. von Neumann, A. M. Turing In the beginning... von Neumann & Goldstine (1947): ”Numerical Inversion of Matrices of High Order” Gene Golub, Stanford University 4 Numerical Linear Algebra Numerical Linear Algebra (NLA) is a small but active area of research: Less than 200 active, committed persons. But the community involves many scientists. Gene Golub, Stanford University 5 Top Ten Algorithms in Science (Jack Dongarra, 2000) 1. Metropolis Algorithm for Monte Carlo 2. Simplex Method for Linear Programming 3. Krylov Subspace Iteration Methods 4. The Decompositional Approach to Matrix Computations 5. The Fortran Optimizing Compiler 6. QR Algorithm for Computing Eigenvalues 7. Quicksort Algorithm for Sorting 8. Fast Fourier Transform 9. Integer Relation Detection 10. Fast Multipole Method Red: Algorithms within the exclusive domain of NLA research. • Blue: Algorithms strongly (though not exclusively) connected to NLA research.
    [Show full text]
  • Complexity of Some Problems from the Theory of Automata
    INFORMATION AND CONTROL 66, 163-176 (1985) Complexity of Some Problems from the Theory of Automata JACQUES STERN DOpartement de Mathdmatiques, UniversitO de Caen, Caen, France INTRODUCTION 1.1. Given a finite alphabet L', the regular events over X are those accepted by a finite-state automaton. By Kleene's theorem, a subset W of S* is a regular event if and only if it can be constructed from the finite- word sets by boolean operations together with concatenation and *- operation. In some sense, the regular events are quite simple because they are accepted by a machine with no storage capacity. Nevertheless, in recent years, much attention has been paid to special subclasses of the class of regular events; in this paper, we shall be concerned with star-free events, events of dot-depth one and piecewise testable events. Star-free events are constructed like regular events from the finite-word sets but with the restriction that the *-operation is not allowed; .events of dot-depth one and piecewise testable events are star free of a very simple form and will be defined below; star-free events have been characterized in the work of Schiitzenberger (1965) in terms of their syntactic monoid; algebraic characterizations of the other two classes have been given (Simon, 1975; Knast, 1983). From an algorithmic point of view, these algebraic characterizations do not yield efficient procedures because computing the syntactic monoid of a regular event given, e.g., by an automaton is obviously time consuming. In this paper, we investigate the complexity of three problems which we now describe in the style of (Garey and Johnson, 1979).
    [Show full text]
  • Introduction to the Theory of Computation Some Notes for CIS262
    Introduction to the Theory of Computation Some Notes for CIS262 Jean Gallier Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA e-mail: [email protected] c Jean Gallier Please, do not reproduce without permission of the author December 26, 2017 2 Contents 1 Introduction 7 2 Basics of Formal Language Theory 9 2.1 Alphabets,Strings,Languages . .. 9 2.2 OperationsonLanguages. .. .. 15 3 DFA’s, NFA’s, Regular Languages 19 3.1 Deterministic Finite Automata (DFA’s) . 20 3.2 The“Cross-product”Construction . ... 25 3.3 Nondeteterministic Finite Automata (NFA’s) . .. 27 3.4 ǫ-Closure...................................... 30 3.5 ConvertinganNFAintoaDFA ......................... 32 3.6 Finite State Automata With Output: Transducers . .... 36 3.7 An Application of NFA’s: Text Search . 40 4 Hidden Markov Models (HMMs) 45 4.1 HiddenMarkovModels(HMMs). 45 4.2 The Viterbi Algorithm and the Forward Algorithm . 58 5 Regular Languages, Minimization of DFA’s 67 5.1 DirectedGraphsandPaths ........................... 67 5.2 LabeledGraphsandAutomata ......................... 70 5.3 The Closure Definition of the Regular Languages . .. 72 5.4 RegularExpressions ............................... 75 5.5 RegularExpressionsandRegularLanguages . ... 76 5.6 RegularExpressionsandNFA’s . .. .. 78 5.7 Applications of Regular Expressions . 86 5.8 Summary of Closure Properties of the Regular Languages . ...... 87 5.9 Right-Invariant Equivalence Relations on Σ∗ .................. 88 5.10 Finding minimal DFA’s . 98 5.11 State Equivalence and Minimal DFA’s . 100 5.12ThePumpingLemma............................... 111 5.13 A Fast Algorithm for Checking State Equivalence . 115 3 4 CONTENTS 6 Context-Free Grammars And Languages 127 6.1 Context-FreeGrammars . .. .. 127 6.2 DerivationsandContext-FreeLanguages .
    [Show full text]
  • Warren Goldfarb, Notes on Metamathematics
    Notes on Metamathematics Warren Goldfarb W.B. Pearson Professor of Modern Mathematics and Mathematical Logic Department of Philosophy Harvard University DRAFT: January 1, 2018 In Memory of Burton Dreben (1927{1999), whose spirited teaching on G¨odeliantopics provided the original inspiration for these Notes. Contents 1 Axiomatics 1 1.1 Formal languages . 1 1.2 Axioms and rules of inference . 5 1.3 Natural numbers: the successor function . 9 1.4 General notions . 13 1.5 Peano Arithmetic. 15 1.6 Basic laws of arithmetic . 18 2 G¨odel'sProof 23 2.1 G¨odelnumbering . 23 2.2 Primitive recursive functions and relations . 25 2.3 Arithmetization of syntax . 30 2.4 Numeralwise representability . 35 2.5 Proof of incompleteness . 37 2.6 `I am not derivable' . 40 3 Formalized Metamathematics 43 3.1 The Fixed Point Lemma . 43 3.2 G¨odel'sSecond Incompleteness Theorem . 47 3.3 The First Incompleteness Theorem Sharpened . 52 3.4 L¨ob'sTheorem . 55 4 Formalizing Primitive Recursion 59 4.1 ∆0,Σ1, and Π1 formulas . 59 4.2 Σ1-completeness and Σ1-soundness . 61 4.3 Proof of Representability . 63 3 5 Formalized Semantics 69 5.1 Tarski's Theorem . 69 5.2 Defining truth for LPA .......................... 72 5.3 Uses of the truth-definition . 74 5.4 Second-order Arithmetic . 76 5.5 Partial truth predicates . 79 5.6 Truth for other languages . 81 6 Computability 85 6.1 Computability . 85 6.2 Recursive and partial recursive functions . 87 6.3 The Normal Form Theorem and the Halting Problem . 91 6.4 Turing Machines .
    [Show full text]
  • Finite-State Automata and Algorithms
    Finite-State Automata and Algorithms Bernd Kiefer, [email protected] Many thanks to Anette Frank for the slides MSc. Computational Linguistics Course, SS 2009 Overview . Finite-state automata (FSA) – What for? – Recap: Chomsky hierarchy of grammars and languages – FSA, regular languages and regular expressions – Appropriate problem classes and applications . Finite-state automata and algorithms – Regular expressions and FSA – Deterministic (DFSA) vs. non-deterministic (NFSA) finite-state automata – Determinization: from NFSA to DFSA – Minimization of DFSA . Extensions: finite-state transducers and FST operations Finite-state automata: What for? Chomsky Hierarchy of Hierarchy of Grammars and Languages Automata . Regular languages . Regular PS grammar (Type-3) Finite-state automata . Context-free languages . Context-free PS grammar (Type-2) Push-down automata . Context-sensitive languages . Tree adjoining grammars (Type-1) Linear bounded automata . Type-0 languages . General PS grammars Turing machine computationally more complex less efficient Finite-state automata model regular languages Regular describe/specify expressions describe/specify Finite describe/specify Regular automata recognize languages executable! Finite-state MACHINE Finite-state automata model regular languages Regular describe/specify expressions describe/specify Regular Finite describe/specify Regular grammars automata recognize/generate languages executable! executable! • properties of regular languages • appropriate problem classes Finite-state • algorithms for FSA MACHINE Languages, formal languages and grammars . Alphabet Σ : finite set of symbols Σ . String : sequence x1 ... xn of symbols xi from the alphabet – Special case: empty string ε . Language over Σ : the set of strings that can be generated from Σ – Sigma star Σ* : set of all possible strings over the alphabet Σ Σ = {a, b} Σ* = {ε, a, b, aa, ab, ba, bb, aaa, aab, ...} – Sigma plus Σ+ : Σ+ = Σ* -{ε} Strings – Special languages: ∅ = {} (empty language) ≠ {ε} (language of empty string) .
    [Show full text]
  • Mathematics 1
    Mathematics 1 MATH 1109. Math for Business: Calculus. (3 Credits) MATHEMATICS This course provides business majors with an introduction to differential and integral calculus. Topics include differentiation, integration, and their applications, in particular derivatives of polynomials, rational, exponential Courses and logarithmic functions; curve sketching, optimization problems; Our Courses and the definite integral. Applications are drawn from business and economics. This course is open only to students in the Gabelli School of MATH 1000. Precalculus. (3 Credits) Business. In this course, students will be introduced to a rigorous treatment of the mathematics necessary to succeed in calculus. Topics include intervals, MATH 1198. Honors Business Math. (4 Credits) equations, inequalities, functions, operations on functions, inverse Topics covered in this course include elements of multivariable calculus, functions, graphing polynomial functions, exponential and logarithmic solutions of systems of linear equations, discrete and continuous functions, trigonometric functions, and identities. This course does not probability, and applications to business. Note: Four-credit courses that fulfill the mathematical/computational reasoning core requirement. meet for 150 minutes per week require three additional hours of class preparation per week on the part of the student in lieu of an additional MATH 1001. Math for Business: Precalculus. (3 Credits) hour of formal instruction. This course is designed to prepare students in the Gabelli School of Business for Math for Business: Calculus. Topics include inequalities; MATH 1200. Topics in Finite Mathematics. (1 Credit) linear, polynomial, rational, exponential, logarithm and inverse functions This course covers basic concepts of finite mathematics: counting and their graphs; distance, lengths, and area of simple regions. This techniques including Venn diagrams, permutations, combinations, course does not satisfy the mathematical/computation reasoning core probability, and Bayes' theorem.
    [Show full text]