Iden\Fying Pro\Sts in NYC Subway Samples

Total Page:16

File Type:pdf, Size:1020Kb

Iden\Fying Pro\Sts in NYC Subway Samples Iden%fying pro%sts in NYC subway samples Julia Maritz Carlton Lab New York University Center for Genomics and Systems Biology An NYU Grand Challenge Project: Mapping the New York City “MetaGenome” coronavirus Lactobacillus Bacillus cereus Methanosarcina Cryptosporidium Stachybotrys Pro?sts are found through out the eukaryo?c tree of life Focusing on one parasi%c disease today: • Single-celled eukaryotes malaria • Free-living environmental pro%sts Blastocystis • Human/animal commensals and Toxoplasma parasites SAR Cryptosporidium Rhizaria Stramenopiles Cercozoa Radiolaria Foraminifera Alveolates Centrohelid Glaucophytes Red algae Haptophytes Green algae & land plants Cryptophytes Entamoeba Apusoza Breviata Discoba Oxymonads Trimasx Malawimonas Excavata Diplomonads Retortamonads Parabasalids Collodictyonids Eukaryotes Giardia Prokaryotes Trichomonas Bacteria Archaea (aer Roger & Simpson, 2009. Current Biology 19: R165-167.) Many pro?sts are zoono?c • Transmissible between humans, domes%c animals and wildlife • 16-20% of emerging zoonoses • Many are diges%ve and reproduc%ve parasites • Cause global poor health and economic losses Blastocystis Giardia intestinalis Cryptosporidium Entamoeba histolytica Trichomonads Toxoplasma gondii Tritrichomonas foetus • Despite this, emerging parasi%c zoonoses are neglected diseases Animal Disease Incidence Consequences • Few studies have inves%gated their emergence and spread in Cats Diahrrea ~1/3 of cats worldwide Non-fatal Cale Vaginosis, Unknown but Spontaneous abor%on, urban environments endometri%s worldwide infer%lity, herd loss Pigs Commensal 68-98% domesc pigs NA Humans Pulmonary infec%ons Unknown Exacerbate symptoms, prolong illness Project goals • Inves%gate populaon dynamics and gene%c diversity of zoono%c pro%sts present in New York City – Use NGS methods to iden%fy, track, and characterize zoono%c pro%st communi%es in NYC – Associate their presence with local wildlife and domes%c animal populaons. Blastocystis Giardia intestinalis Cryptosporidium Entamoeba histolytica Trichomonads Toxoplasma gondii How to idenfy prosts in environmental samples? • 18S rRNA amplicon sequencing – Small subunit of rRNA – Present in all eukaryotes – Has 9 variable regions • V9 and V4 are good candidates – Illumina sequencing technology – V9 • Vertebrate blocking primer • Three domain primers – V4 • Largest variable region • Eukaryote specific Ueda-Nishimura and Mikata 2000 18S protocol tesng and data analysis • DNA from four subway swabs Borough $Microbial$analyses$Collecon site – July 2013 Brooklyn Bedford Ave Turnsle Brooklyn Bedford Ave wooden bench DNA$extracOon$ th • Amplicon PCR Manhaan 8 Ave wooden bench Manhaan 6th Ave turns%le – V9 and V4 regions • 18S paired-end sequencing – Illumina Miseq 16S$/$18S$ribosomal$~200bp ~500bp • Compare results RNA$$ – QIIME based pipeline – de novo OTUs at 98% iden%ty – Curated SILVA reference database community$ structure$ Majority of eukaryotes iden?fied were fungi • 9 major clades, 33 genera Unassigned • Dominated by fungi SAR;__Stramenopiles – 50-90% of each sample SAR;__Rhizaria SAR;__Alveolata • Less metazoan DNA than Opisthokonta;__Metazoa might expected Opisthokonta;__Fungi – Mostly insects and mice Excavata;__Metamonada • Manhaan samples have Excavata;__Discoba higher diversity ArchaeplasFda;__ChloroplasFda Amoebozoa;__Conosa • Numerous pro%sts detected as well Brooklyn ManhaVan Several parasic prosts are present • Zoono%c taxa of interest – BlastocysFs • Gut parasite Unassigned – Toxoplasma gondii SAR;__Stramenopiles • Toxoplasmosis – Trichomonas vaginalis SAR;__Rhizaria • Most common human non-viral STD SAR;__Alveolata – Tritrichomonas foetus Excavata;__Metamonada • Parasite of cats & dogs & humans Excavata;__Discoba • Human/animal commensals Amoebozoa;__Conosa – Entamoeba dispar • Commensal gut taxa • Many unassigned taxa Brooklyn ManhaVan Summary and future work • Pro%sts can be iden%fied in environmental samples with the 18S rRNA gene – Diverse communies – Including many taxa of interest • Lots of uniden%fied sequences – Need be^er databases for iden%ficaon • Collect and sequence other NYC environments: ATMS$in$NYC$ • Sewage • Soil • ATMs Acknowledgements Advisor: Visionaire Staff: DEP Staff: Jane Carlton Dennis Keefe Peter Williamsen Ed Quinones Abeba Negatu Carlton Lab: Michael Gubbins William Kelley Susan Joseph Zach Gallager Trikam Patel Steven Sullivan Manu Patel Theresa Ten Eyck Patrick Jagessar Commiee: Diane Hammerman Genomics Core: Elodie Ghedin Tara Moran Patrick Eichenberger Theresa Ten Eyck Kae Schneider Christopher Mason University of the Pacific: Kirkwood Land .
Recommended publications
  • Download This Publication (PDF File)
    PUBLIC LIBRARY of SCIENCE | plosgenetics.org | ISSN 1553-7390 | Volume 2 | Issue 12 | DECEMBER 2006 GENETICS PUBLIC LIBRARY of SCIENCE www.plosgenetics.org Volume 2 | Issue 12 | DECEMBER 2006 Interview Review Knight in Common Armor: 1949 Unraveling the Genetics 1956 An Interview with Sir John Sulston e225 of Human Obesity e188 Jane Gitschier David M. Mutch, Karine Clément Research Articles Natural Variants of AtHKT1 1964 The Complete Genome 2039 Enhance Na+ Accumulation e210 Sequence and Comparative e206 in Two Wild Populations of Genome Analysis of the High Arabidopsis Pathogenicity Yersinia Ana Rus, Ivan Baxter, enterocolitica Strain 8081 Balasubramaniam Muthukumar, Nicholas R. Thomson, Sarah Jeff Gustin, Brett Lahner, Elena Howard, Brendan W. Wren, Yakubova, David E. Salt Matthew T. G. Holden, Lisa Crossman, Gregory L. Challis, About the Cover Drosophila SPF45: A Bifunctional 1974 Carol Churcher, Karen The jigsaw image of representatives Protein with Roles in Both e178 Mungall, Karen Brooks, Tracey of various lines of eukaryote evolution Splicing and DNA Repair Chillingworth, Theresa Feltwell, refl ects the current lack of consensus as Ahmad Sami Chaouki, Helen K. Zahra Abdellah, Heidi Hauser, to how the major branches of eukaryotes Salz Kay Jagels, Mark Maddison, fi t together. The illustrations from upper Sharon Moule, Mandy Sanders, left to bottom right are as follows: a single Mammalian Small Nucleolar 1984 Sally Whitehead, Michael A. scale from the surface of Umbellosphaera; RNAs Are Mobile Genetic e205 Quail, Gordon Dougan, Julian Amoeba, the large amoeboid organism Elements Parkhill, Michael B. Prentice used as an introduction to protists for Michel J. Weber many school children; Euglena, the iconic Low Levels of Genetic 2052 fl agellate that is often used to challenge Soft Sweeps III: The Signature 1998 Divergence across e215 ideas of plants (Euglena has chloroplasts) of Positive Selection from e186 Geographically and and animals (Euglena moves); Stentor, Recurrent Mutation Linguistically Diverse one of the larger ciliates; Cacatua, the Pleuni S.
    [Show full text]
  • A Revised Classification of Naked Lobose Amoebae (Amoebozoa
    Protist, Vol. 162, 545–570, October 2011 http://www.elsevier.de/protis Published online date 28 July 2011 PROTIST NEWS A Revised Classification of Naked Lobose Amoebae (Amoebozoa: Lobosa) Introduction together constitute the amoebozoan subphy- lum Lobosa, which never have cilia or flagella, Molecular evidence and an associated reevaluation whereas Variosea (as here revised) together with of morphology have recently considerably revised Mycetozoa and Archamoebea are now grouped our views on relationships among the higher-level as the subphylum Conosa, whose constituent groups of amoebae. First of all, establishing the lineages either have cilia or flagella or have lost phylum Amoebozoa grouped all lobose amoe- them secondarily (Cavalier-Smith 1998, 2009). boid protists, whether naked or testate, aerobic Figure 1 is a schematic tree showing amoebozoan or anaerobic, with the Mycetozoa and Archamoe- relationships deduced from both morphology and bea (Cavalier-Smith 1998), and separated them DNA sequences. from both the heterolobosean amoebae (Page and The first attempt to construct a congruent molec- Blanton 1985), now belonging in the phylum Per- ular and morphological system of Amoebozoa by colozoa - Cavalier-Smith and Nikolaev (2008), and Cavalier-Smith et al. (2004) was limited by the the filose amoebae that belong in other phyla lack of molecular data for many amoeboid taxa, (notably Cercozoa: Bass et al. 2009a; Howe et al. which were therefore classified solely on morpho- 2011). logical evidence. Smirnov et al. (2005) suggested The phylum Amoebozoa consists of naked and another system for naked lobose amoebae only; testate lobose amoebae (e.g. Amoeba, Vannella, this left taxa with no molecular data incertae sedis, Hartmannella, Acanthamoeba, Arcella, Difflugia), which limited its utility.
    [Show full text]
  • Tritrichomonas Foetus in Purebred Cats in Germany: Prevalence, Association with Clinical Signs, and Determinants of Infection
    Aus dem Zentrum für klinische Tiermedizin der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Arbeit angefertigt unter der Leitung von Univ.-Prof. Dr. med. vet. Katrin Hartmann Tritrichomonas foetus in purebred cats in Germany: Prevalence, association with clinical signs, and determinants of infection Inaugural-Dissertation zur Erlangung der tiermedizinischen Doktorwürde der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München vorgelegt von Kirsten Alice Kühner aus Boston, USA München 2012 Gedruckt mit der Genehmigung der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Dekan: Univ.-Prof. Dr. Braun Referent: Univ.-Prof. Dr. Hartmann Korreferent: Univ.-Prof. Dr. Zerbe Tag der Promotion: 11. Februar 2012 To my parents, with love and gratitude, for believing in me and teaching me to always reach for my dreams. To my beloved dogs Tris and Lizzy, for faithfully accompanying me throughout the long years of my veterinary education. Table of contents IV TABLE OF CONTENTS I. INTRODUCTION ...................................................................................... 1 II. LITERATURE REVIEW .......................................................................... 2 1. Tritrichomonas foetus ................................................................................2 1.1. Evolutionary background and taxonomic classification .......................2 1.2. Morphology ...........................................................................................3 1.3. Living environment and
    [Show full text]
  • A Free-Living Protist That Lacks Canonical Eukaryotic DNA Replication and Segregation Systems
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.14.435266; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A free-living protist that lacks canonical eukaryotic DNA replication and segregation systems 2 Dayana E. Salas-Leiva1, Eelco C. Tromer2,3, Bruce A. Curtis1, Jon Jerlström-Hultqvist1, Martin 3 Kolisko4, Zhenzhen Yi5, Joan S. Salas-Leiva6, Lucie Gallot-Lavallée1, Geert J. P. L. Kops3, John M. 4 Archibald1, Alastair G. B. Simpson7 and Andrew J. Roger1* 5 1Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of 6 Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2 2 7 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 8 3Oncode Institute, Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences) 9 and University Medical Centre Utrecht, Utrecht, The Netherlands 10 4Institute of Parasitology Biology Centre, Czech Acad. Sci, České Budějovice, Czech Republic 11 5Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, 12 South China Normal University, Guangzhou 510631, China 13 6CONACyT-Centro de Investigación en Materiales Avanzados, Departamento de medio ambiente y 14 energía, Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chih., México 15 7Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of 16 Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2 17 *corresponding author: [email protected] 18 D.E.S-L ORCID iD: 0000-0003-2356-3351 19 E.C.T.
    [Show full text]
  • Evolution: Revisiting the Root of the Eukaryote Tree
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Dispatch R165 cytokinesis and are enhanced by Rho 18. Yamada, T., Hikida, M., and Kurosaki, T. (2006). and RGA-4 in the germ line and in the early and suppressed by Rac. J. Cell Biol. 166, Regulation of cytokinesis by mgcRacGAP in B embryo of C. elegans. Development 134, 61–71. lymphocytes is independent of GAP activity. 3495–3505. 16. Severson, A.F., Baillie, D.L., and Bowerman, B. Exp. Cell Res. 312, 3517–3525. (2002). A formin homology protein and a 19. Schonegg, S., Constantinescu, A.T., Hoege, C., profilin are required for cytokinesis and and Hyman, A.A. (2007). The Rho GTPase- Department of Molecular Genetics and Cell Arp2/3-independent assembly of cortical activating proteins RGA-3 and RGA-4 are Biology, University of Chicago, Chicago, microfilaments in C. elegans. Curr. Biol. 12, required to set the initial size of PAR domains IL 60637, USA. 2066–2075. in Caenorhabditis elegans one-cell E-mail: [email protected] 17. Zhang, W., and Robinson, D.N. (2005). Balance embryos. Proc. Natl. Acad. Sci. USA of actively generated contractile and resistive 104, 14976–14981. forces controls cytokinesis dynamics. Proc. 20. Schmutz, C., Stevens, J., and Spang, A. (2007). Natl. Acad. Sci. USA 102, 7186–7191. Functions of the novel RhoGAP proteins RGA-3 DOI: 10.1016/j.cub.2008.12.028 Evolution: Revisiting the Root of the been controversial since they were first proposed [6]. Now, with the Eukaryote Tree rapid accumulation of genome-scale data for diverse protist species, a flurry of phylogenomic analyses A recent phylogenomic investigation shows that the enigmatic flagellate [7–9] are putting these hypotheses Breviata is a distinct anaerobic lineage within the eukaryote super-group to the test.
    [Show full text]
  • Next Generation Sequencing, Assembly, and Analysis of Bovine
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2018 Next Generation Sequencing, Assembly, and Analysis of Bovine and Feline Tritrichomonas foetus Genomes Toward Taxonomic Clarification And Improved Therapeutic and Preventive Targets Ellen Ann Fleetwood University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Fleetwood, Ellen Ann, "Next Generation Sequencing, Assembly, and Analysis of Bovine and Feline Tritrichomonas foetus Genomes Toward Taxonomic Clarification And Improved Therapeutic and Preventive Targets. " PhD diss., University of Tennessee, 2018. https://trace.tennessee.edu/utk_graddiss/4925 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Ellen Ann Fleetwood entitled "Next Generation Sequencing, Assembly, and Analysis of Bovine and Feline Tritrichomonas foetus Genomes Toward Taxonomic Clarification And Improved Therapeutic and Preventive Targets." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the
    [Show full text]
  • Diversity, Phylogeny and Phylogeography of Free-Living Amoebae
    School of Doctoral Studies in Biological Sciences University of South Bohemia in České Budějovice Faculty of Science Diversity, phylogeny and phylogeography of free-living amoebae Ph.D. Thesis RNDr. Tomáš Tyml Supervisor: Mgr. Martin Kostka, Ph.D. Department of Parasitology, Faculty of Science, University of South Bohemia in České Budějovice Specialist adviser: Prof. MVDr. Iva Dyková, Dr.Sc. Department of Botany and Zoology, Faculty of Science, Masaryk University České Budějovice 2016 This thesis should be cited as: Tyml, T. 2016. Diversity, phylogeny and phylogeography of free living amoebae. Ph.D. Thesis Series, No. 13. University of South Bohemia, Faculty of Science, School of Doctoral Studies in Biological Sciences, České Budějovice, Czech Republic, 135 pp. Annotation This thesis consists of seven published papers on free-living amoebae (FLA), members of Amoebozoa, Excavata: Heterolobosea, and Cercozoa, and covers three main topics: (i) FLA as potential fish pathogens, (ii) diversity and phylogeography of FLA, and (iii) FLA as hosts of prokaryotic organisms. Diverse methodological approaches were used including culture-dependent techniques for isolation and identification of free-living amoebae, molecular phylogenetics, fluorescent in situ hybridization, and transmission electron microscopy. Declaration [in Czech] Prohlašuji, že svoji disertační práci jsem vypracoval samostatně pouze s použitím pramenů a literatury uvedených v seznamu citované literatury. Prohlašuji, že v souladu s § 47b zákona č. 111/1998 Sb. v platném znění souhlasím se zveřejněním své disertační práce, a to v úpravě vzniklé vypuštěním vyznačených částí archivovaných Přírodovědeckou fakultou elektronickou cestou ve veřejně přístupné části databáze STAG provozované Jihočeskou univerzitou v Českých Budějovicích na jejích internetových stránkách, a to se zachováním mého autorského práva k odevzdanému textu této kvalifikační práce.
    [Show full text]
  • The Dancing Star: Reinvestigation of Artodiscus Saltans (Variosea, Amoebozoa) Penard 1890
    Protist, Vol. 170, 349–357, August 2019 http://www.elsevier.de/protis Published online date 21 June 2019 ORIGINAL PAPER The Dancing Star: Reinvestigation of Artodiscus saltans (Variosea, Amoebozoa) Penard 1890 a b a a,1 Efthymia Ntakou , Ferry Siemensma , Michael Bonkowski , and Kenneth Dumack a University of Cologne, Terrestrial Ecology, Institute of Zoology, Zülpicher Str. 47b, 50674 Köln, Germany b Julianaweg 10, 1241VW Kortenhoef, Netherlands Submitted November 12, 2018; Accepted June 13, 2019 Monitoring Editor: Alastair Simpson Artodiscus saltans, first described by Penard (1890), has a unique morphology. Without genetic data it could not yet been reliably placed into a wider taxonomical context. We present morphological data for A. saltans from different aquatic habitats of four European countries. We subjected three cells of one strain from Germany to molecular analyses and, interestingly, obtained six different rDNA sequences. Phylogenetic analyses of these SSU rDNA sequences revealed that A. saltans branches close to the amoebozoan Multicilia marina (Variosea, Amoebozoa). © 2019 Elsevier GmbH. All rights reserved. Key words: Ribosomal genes; amoebae; Conosa; Multicilia; flagellate; Paramphitrema. Introduction 2016, Spain, as well as the records that are the subject of this publication (Table 1)). Penard (1890) described A. saltans as a reddish, Artodiscus saltans was discovered and described spherical cell, being very plastic (hence its generic by Penard in 1890 after he collected some spec- name; the prefix arto is derived from the Greek word imens from a flooded pasture near Wiesbaden, ␣␳␶ o for a piece of dough) with fast and contin- Germany. He found similar specimens in subse- uous changes of its shape during locomotion.
    [Show full text]
  • Evolution of the Eukaryotic Membrane-Trafficking System
    Downloaded from http://cshperspectives.cshlp.org/ on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Missing Pieces of an Ancient Puzzle: Evolution of the Eukaryotic Membrane-Trafficking System Alexander Schlacht1, Emily K. Herman1, Mary J. Klute1, Mark C. Field2, and Joel B. Dacks1 1Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada 2Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, Scotland DD1 5EH, United Kingdom Correspondence: [email protected] The membrane-trafficking system underpins cellular trafficking of material in eukaryotes and its evolution would have been a watershed in eukaryogenesis. Evolutionary cell biological studies have been unraveling the history of proteins responsible for vesicle transport and organelle identity revealing both highly conserved components and lineage-specific inno- vations. Recently, endomembrane components with a broad, but patchy, distribution have been observed as well, pieces that are missing from our cell biological and evolutionary models of membrane trafficking. These data together allow for new insights into the history and forces that shape the evolution of this critical cell biological system. major feature of eukaryotic cells is subcom- hanced the ability of even the earliest eukaryotes Apartmentalization. Specific components are to remodel their cell surface, export proteins concentrated within restricted regions of the to modify their external environment by exocy- cell, necessitating the presence of one or more tosis, as well as acquire nutrients by endocyto- targeting mechanisms. The eukaryotic mem- sis. Subcompartmentalization of the cell and brane-trafficking system facilitates intracellular the ability to direct material to specific com- transport of proteins and lipids between organ- partments would have allowed for intracellular elles and further acts to build the interface be- specializations, for example, the sequestration tween the cell and external environment.
    [Show full text]
  • Inferring Ancestry
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1176 Inferring Ancestry Mitochondrial Origins and Other Deep Branches in the Eukaryote Tree of Life DING HE ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9031-7 UPPSALA urn:nbn:se:uu:diva-231670 2014 Dissertation presented at Uppsala University to be publicly examined in Fries salen, Evolutionsbiologiskt centrum, Norbyvägen 18, 752 36, Uppsala, Friday, 24 October 2014 at 10:30 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Andrew Roger (Dalhousie University). Abstract He, D. 2014. Inferring Ancestry. Mitochondrial Origins and Other Deep Branches in the Eukaryote Tree of Life. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1176. 48 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9031-7. There are ~12 supergroups of complex-celled organisms (eukaryotes), but relationships among them (including the root) remain elusive. For Paper I, I developed a dataset of 37 eukaryotic proteins of bacterial origin (euBac), representing the conservative protein core of the proto- mitochondrion. This gives a relatively short distance between ingroup (eukaryotes) and outgroup (mitochondrial progenitor), which is important for accurate rooting. The resulting phylogeny reconstructs three eukaryote megagroups and places one, Discoba (Excavata), as sister group to the other two (neozoa). This rejects the reigning “Unikont-Bikont” root and highlights the evolutionary importance of Excavata. For Paper II, I developed a 150-gene dataset to test relationships in supergroup SAR (Stramenopila, Alveolata, Rhizaria). Analyses of all 150-genes give different trees with different methods, but also reveal artifactual signal due to extremely long rhizarian branches and illegitimate sequences due to horizontal gene transfer (HGT) or contamination.
    [Show full text]
  • Marine Biological Laboratory) Data Are All from EST Analyses
    TABLE S1. Data characterized for this study. rDNA 3 - - Culture 3 - etK sp70cyt rc5 f1a f2 ps22a ps23a Lineage Taxon accession # Lab sec61 SSU 14 40S Actin Atub Btub E E G H Hsp90 M R R T SUM Cercomonadida Heteromita globosa 50780 Katz 1 1 Cercomonadida Bodomorpha minima 50339 Katz 1 1 Euglyphida Capsellina sp. 50039 Katz 1 1 1 1 4 Gymnophrea Gymnophrys sp. 50923 Katz 1 1 2 Cercomonadida Massisteria marina 50266 Katz 1 1 1 1 4 Foraminifera Ammonia sp. T7 Katz 1 1 2 Foraminifera Ovammina opaca Katz 1 1 1 1 4 Gromia Gromia sp. Antarctica Katz 1 1 Proleptomonas Proleptomonas faecicola 50735 Katz 1 1 1 1 4 Theratromyxa Theratromyxa weberi 50200 Katz 1 1 Ministeria Ministeria vibrans 50519 Katz 1 1 Fornicata Trepomonas agilis 50286 Katz 1 1 Soginia “Soginia anisocystis” 50646 Katz 1 1 1 1 1 5 Stephanopogon Stephanopogon apogon 50096 Katz 1 1 Carolina Tubulinea Arcella hemisphaerica 13-1310 Katz 1 1 2 Cercomonadida Heteromita sp. PRA-74 MBL 1 1 1 1 1 1 1 7 Rhizaria Corallomyxa tenera 50975 MBL 1 1 1 3 Euglenozoa Diplonema papillatum 50162 MBL 1 1 1 1 1 1 1 1 8 Euglenozoa Bodo saltans CCAP1907 MBL 1 1 1 1 1 5 Alveolates Chilodonella uncinata 50194 MBL 1 1 1 1 4 Amoebozoa Arachnula sp. 50593 MBL 1 1 2 Katz lab work based on genomic PCRs and MBL (Marine Biological Laboratory) data are all from EST analyses. Culture accession number is ATTC unless noted. GenBank accession numbers for new sequences (including paralogs) are GQ377645-GQ377715 and HM244866-HM244878.
    [Show full text]
  • Soil Protists in Three Neotropical Rainforests Are Hyperdiverse And
    bioRxiv preprint doi: https://doi.org/10.1101/050997; this version posted November 3, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Soil Protists in Three Neotropical Rainforests are Hyperdiverse and Dominated by Parasites Fred´ eric´ Mahe´ 1, Colomban de Vargas 2;3, David Bass 4;5, Lucas Czech 6, Alexandros Stamatakis 6;7, Enrique Lara 8, David Singer 8, Jordan Mayor 9, John Bunge 10, Sarah Sernaker 11, Tobias Siemensmeyer 1, Isabelle Trautmann 1, Sarah Romac 2;3,Cedric´ Berney 2;3, Alexey Kozlov 6, Edward A. D. Mitchell 8;12, Christophe V. W. Seppey 8, Elianne Egge 13, Guillaume Lentendu 1, Rainer Wirth 14, Gabriel Trueba 15 and Micah Dunthorn 1∗ 1Department of Ecology, University of Kaiserslautern, Erwin-Schrodinger-Straße,¨ 67663 Kaiserslautern, Germany. 2CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. 3Sorbonne Universites,´ UPMC Univ Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. 4Department of Life Sciences, The Natural History Museum London, Cromwell Road, London SW7 5BD, United Kingdom. 5Centre for Environment, Fisheries & Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, United Kingdom. 6Heidelberg Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg, 69118 Heidelberg, Germany. 7Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Am Fasanengarten, 76128 Karlsruhe, Germany. 8Laboratory of Soil Biodiversity, Universite´ de Neuchatel,ˆ Rue Emile-Argand, 2000 Neuchatel,ˆ Switzerland.
    [Show full text]