José Luis LOUSADA1 Thermochemical Maria Emília SILVA1 properties of several Rafael SCHMITZ2 1Center for the Reserch and Technology of Agro-Environmental and Biological Sciences (CITAB) / UTAD – Vila Real, Portugal Portuguese and exotic 2Instituto Federal de Santa Catarina IF-SC, São Miguel do Oeste, Santa Catarina, Brasil. and shrubs

1 Background

In recent years it has been attended in Portugal a constant increase in demand for forest biomass for energy purposes, which may lead to an overexploitation of these resources. Only an efficient management of biomass can ensure the sustainability of the Portuguese Forest. This can be achieved by the use of biomass resources yet unexplored (shrubs) or by producing more biomass (energy crops). The aim of this study was to evaluate the thermochemical properties of various national species, exotic species, and shrubs, most representative of Portugal .

2 Methods The study assessed in national , national and tropical and shrub species. For each species it was determined the gross calorific value-GCV (or higher heating value-HHV) and the following chemical properties: ash content, chemical composition (C, H, O, N, S), Micro and Macroelements (Na, K, Ca, Mg, Mn, Fe, Zn, Ni, Cr, Cd, Cu, P) and halogens (F, Br, Cl).

3 Results

Ulex europaeus Ulex europaeus Ulex europaeus Tojo Tojo Ulex europaeus Cytisus striatus Cytisus striatus Cytisus striatusTojo Tojo GROSS CALORIFIC VALUE ASH CONTENT Giesta Giesta Giesta Cytisus striatusGiesta Hakea sericea Hakea Hsericeaaquea Hakea Hsericeaaquea Hakea Hsericeaaquea Haquea Erica sp EricaErica s spp. Erica sp. EEricarica s spp. EEricarica s spp. Erica arborea Erica arborea Erica arborea Erica arborea EricaErica aarborearborea EricaErica aarborearborea PterospartumCarq utrid.eja PterospartumCarqu trid.eja PterospartumCarq utrid.eja PterospartumCarq utrid.eja Hymenaea Softwoods GCV (kJ/kg) Softwoods Ash(%) HHymenaeaymenaea c. Hymenaea c. HyHymenaeamenaea c. HyHymenaeamenaea c. BBowdichiaowdichia n. BoBowdichiawdichia n. BoBowdichiawdichia n. BoBowdichiawdichia n. GossweilerodendronGossweilerodendron b. GoGossweilerodendronssweilerodendron b. GoGossweilerodendronssweilerodendron b. GoGossweilerodendronssweilerodendron b. Pinus pinaster 20237.9 Pinus pinaster 0.2 EntandrophragmaEntandrophragma c. EnEntandrophragmatandrophragma c. EnEntandrophragmatandrophragma c. EnEntandrophragmatandrophragma c. CChlorophorahlorophora e. ChChlorophoralorophora e. ChChlorophoralorophora e. ChChlorophoralorophora e. AAcercer p. AcAcerer p. AcAcerer p. AcAcerer p. Pseudotsuga menziesii 19660.0 Pseudotsuga menziesii 0.4 PPopulusopulus e. PoPopuluspulus e. PoPopuluspulus e. PPopulusopulus e. SSalixalix b. SaSalixlix b. SaSalixlix b. SaSalixlix b. atlantica 20360.5 Cedrus atlantica 0.4 PPrunusrunus a. PrPrunusunus a. PrPrunusunus a. PrPrunusunus a. FFraxinusraxinus a. FraFraxinusxinus a. FrFraxinusaxinus a. FrFraxinusaxinus a. QQuercusuercus r. QuQuercusercus r. QQuercusuercus r. QQuercusuercus r. FFagusagus s. FaFagusgus s. FaFagusgus s. FaFagusgus s. EEucalyptusucalyptus g. EuEucalyptuscalyptus g. EuEucalyptuscalyptus g. EuEucalyptuscalyptus g. CCastaneaastanea s. CaCastaneastanea s. CaCastaneastanea s. CCastaneaastanea s. Shrubs GCV (kJ/kg) Shrubs Ash(%) CCedrusedrus a. Na CeCedrusdrus a. CeCedrusdrus a. CeCedrusdrus a. PPseudotsuga seudotsuga m. 200 PsePseudotsuga udotsuga m. 1500 K PsPseudotsuga eudotsuga m. Ca Ps eudotsuga m. 200 Pseudotsuga P Pterospartum tridentatum 20910.3 Pterospartum tridentatum 1.5 PiPinusnus p. PinPinusus p. PinPinusus p. PiPinusnus p. Erica arborea 21372.5 Erica arborea 2.3 0 500 1000 1500 2000 2500 0 2000 4000 6000 8000 10000 12000 14000 0 1000 2000 3000 4000 5000 0 500 1000 1500 2000 2500 Erica sp. 20922.3 Erica sp. 2.2 mg/kg mg/kg mg/kg mg/kg Haquea sericea 20334.8 Haquea sericea 1.9 Cytisus striatus 20203.5 Cytisus striatus 1.8 Ulex europaeusTojo Ulex europaeusTojo Ulex europaeusTojo Ulex europaeus Cytisus striatus Tojo Cytisus striatusGiesta Cytisus striatusGiesta Giesta Cytisus striatus Hakea sericea Giesta Ulex europaeus 19474.8 Ulex europaeus 2.8 HakeaH sericeaaquea Hakea Hsericeaaquea Haquea Hakea Hsericeaaquea EEricarica s psp. EEricarica s spp. EEricarica sspp. EricaErica s spp. Erica arborea EEricarica aarborearborea EricaErica aarborearborea Erica arborea EricaErica arboreaarborea Pterospartum trid. PterospartumCarqu trid.eja PterospartumCarq utrid.eja Carqueja PterospartumCarq utrid.eja Hymenaea HyHymenaeamenaea c. Hymenaea Hymenaea MICROELEMENTS Hymenaea c. Hymenaea c. Hymenaea c. Hardwoods PCS (kJ/kg) Hardwoods Ash(%) BoBowdichiawdichia n. BoBowdichiawdichia n. BoBowdichiawdichia n. BBowdichiaowdichia n. GoGossweilerodendronssweilerodendron b. GoGossweilerodendronssweilerodendron b. GoGossweilerodendronssweilerodendron b. GGossweilerodendronossweilerodendron b. EnEntandrophragmatandrophragma c. EnEntandrophragmatandrophragma c. EnEntandrophragmatandrophragma c. EEntandrophragmantandrophragma c. Castanea sativa 18754.9 Castanea sativa 0.1 ChChlorophoralorophora e. ChChlorophoralorophora e. ChChlorophoralorophora e. CChlorophorahlorophora e. AcAcerer p. AcAcerer p. AcAcerer p. AAcercer p. PoPopuluspulus e. PoPopuluspulus e. PoPopuluspulus e. PPopulusopulus e. globulus 17631.7 Eucalyptus globulus 0.5 SaSalixlix b. SaSalixlix b. SaSalixlix b. SaSalixlix b. PrPrunusunus a. PrPrunusunus a. PrPrunusunus a. PPrunusrunus a. Fagus sylvatica 19132.5 Fagus sylvatica 0.5 FraFraxinusxinus a. FrFraxinusaxinus a. FrFraxinusaxinus a. FFraxinusraxinus a. QuQuercusercus r. QQuercusuercus r. QQuercusuercus r. QQuercusuercus r. Quercus robur 18696.8 Quercus robur 0.3 FaFagusgus s. FaFagusgus s. FaFagusgus s. FFagusagus s. EuEucalyptuscalyptus g. EuEucalyptuscalyptus g. EuEucalyptuscalyptus g. EEucalyptusucalyptus g. CaCastaneastanea s. CCastaneaastanea s. CCastaneaastanea s. CCastaneaastanea s. Fraxinus angustifolia 19090.9 Fraxinus angustifolia 0.4 CeCedrusdrus a. CeCedrusdrus a. CeCedrusdrus a. CCedrusedrus a. Mg Pse udotsuga m. 83 Pseudotsuga Zn PsePseudotsugaudotsuga m. 400 Pseudotsuga Mn Pseudotsuga m. 100 Fe PsPseudotsugaeudotsuga m. 100 avium 18256.5 Prunus avium 0.1 PinPinusus p. PinPinusus p. PiPinusnus p. PiPinusnus p. Salix babilonica 18279.4 Salix babilonica 2.4 0 200 400 600 800 1000 1200 1400 1600 0 1000 2000 3000 4000 5000 0 200 400 600 800 1000 0 20 40 60 80 100 120 140 160 mg/kg mg/kg mg/kg euro-america. 18791.2 Populus euro-america. 0.5 mg/kg Acer pseudoplatanus 18637.9 Acer pseudoplatanus 1.0 Chlorophora excelsa 20314.7 Chlorophora excelsa 2.8 Ulex europaeus Ulex europaeusTojo Ulex europaeus Ulex europaeus Cytisus striatusTojo Cytisus striatus Cytisus striatusTojo Cytisus striatusTojo Entandrophragma cyli. 19053.9 Entandrophragma cyli. 1.0 Giesta Giesta Giesta Giesta Hakea sericea 10 Hakea sericea Hakea sericea Hakea sericea Haquea Haquea Haquea Haquea Erica sp EricaErica s spp. Erica sp Erica sp Gossweilerodendron b. 20499.8 Gossweilerodendron b. 0.4 Erica arboreaErica sp. Erica arborea Erica arboreaErica sp. Erica arboreaErica sp. Erica arborea Erica arborea Erica arborea Erica arborea Pterospartum trid. PterospartumCarq trid.ueja Pterospartum trid. Pterospartum trid. Carqueja Carqueja HymenaeaCarqueja Bowdichia nitida 20809.5 Bowdichia nitida 0.1 HHymenaeaymenaea c. HymenaeaHymenaea c. HHymenaeaymenaea c. Hymenaea c. Bowdichia Bowdichia Bowdichia Bowdichia Bowdichia n. Bowdichia n. Bowdichia n. Bowdichia n. GossweilerodendronGossweilerodendron b. GossweilerodendronGossweilerodendron b. GossweilerodendronGossweilerodendron b. GossweilerodendronGossweilerodendron b. Hymenaea courbaril 19296.4 Hymenaea courbaril 0.7 Entandrophragma EntandrophragmaEntandrophragma c. EntandrophragmaEntandrophragma c. EntandrophragmaEntandrophragma c. Entandrophragma c. CChlorophorahlorophora e. ChlorophoraChlorophora e. CChlorophorahlorophora e. CChlorophorahlorophora e. AAcercer p. AAcercer p. AAcercer p. AAcercer p. PPopulusopulus e. PopulusPopulus e. PPopulusopulus e. PPopulusopulus e. Salix SSalixalix b. Salix Salix Salix b. 10 Salix b. Salix b. PPrunusrunus a. PrunusPrunus a. PPrunusrunus a. PPrunusrunus a. FFraxinusraxinus a. FraxinusFraxinus a. FFraxinusraxinus a. FFraxinusraxinus a. QQuercusuercus r. QuercusQuercus r. QQuercusuercus r. 0.5 QQuercusuercus r. FFagusagus s. FagusFagus s. FFagusagus s. FFagusagus s. CHEMICAL ELEMENTARY COMPOSITIONS EEucalyptusucalyptus g. EucalyptusEucalyptus g. EEucalyptusucalyptus g. EEucalyptusucalyptus g. Castanea s. CCastaneaastanea s. Castanea CCastaneaastanea s. CCastaneaastanea s. 10 MICROELEMENTS CCedrusedrus a. CedrusCedrus a. CCedrusedrus a. CCedrusedrus a. Species %C %H %O %N %S PPseudotsuga seudotsuga m. Pseudotsuga Pseudotsuga m. Cr PPseudotsuga seudotsuga m. PPseudotsuga seudotsuga m. PPinusinus p. Ni PPinusinus p. PPinusinus p. Cd PPinusinus p. Cu

Hardwoods 48.2 5.8 45.0 0.2 0.02 0,0 0,5 1,0 1,5 2,0 2,5 0 1 2 3 4 5 6 0,00 0,05 0,10 0,15 0,20 0,25 0 2 4 6 8 10 12 National 47.3 5.7 46.2 0.2 0.03 mg/kg mg/kg mg/kg mg/kg Tropical 49.9 5.9 42.9 0.3 0.02

Softwoods 48.8 5.8 44.9 0.2 0.01 Legend Ulex europaeus Tojo Ulex europaeusTojo Ulex europaeusTojo Shrubs 47.7 6.4 45.0 0.8 0.07 Cytisus striatus Cytisus striatus Cytisus striatus Giesta Giesta Giesta Ulex europaeus Hakea sericeaHaquea Hakea sericeaHaquea Hakea sericeaHaquea Erica sp Erica sp Erica sp Cytisus striatus Erica sp. Erica sp. Erica sp. Hakea sericea Erica arborea Erica arborea Erica arborea Shrubs Erica arborea Erica arborea Erica arborea Erica sp PterospartumCarq utrid.eja PterospartumCarq utrid.eja PterospartumCarq utrid.eja Hymenaea Hymenaea Erica arborea Hymenaea c. Hymenaea c. HHymenaeaymenaea c. Pterospartum trid. Bowdichia Bowdichia Bowdichia Bowdichia n. Bowdichia n. Bowdichia n. Hymenaea Gossweilerodendron Gossweilerodendron Gossweilerodendron Gossweilerodendron b. Gossweilerodendron b. Gossweilerodendron b. Bowdichia EntandrophragmaEntandrophragma c. EEntandrophragmantandrophragma c. EntandrophragmaEntandrophragma c. Tropical Chlorophora Chlorophora Gossweilerodendron Chlorophora e. Chlorophora e. CChlorophorahlorophora e. Entandrophragma Hardwods AAcercer p. AAcercer p. AAcercer p. Populus Populus Populus Chlorophora Populus e. Populus e. Populus e. Acer Salix Salix Salix Salix b. Salix b. Salix b. Populus PPrunusrunus a. PPrunusrunus a. PPrunusrunus a. 5 Fraxinus Fraxinus Salix Fraxinus a. Fraxinus a. FFraxinusraxinus a. Prunus QQuercusuercus r. QQuercusuercus r. QQuercusuercus r. National

HALOGENS Fraxinus FFagusagus s. FFagusagus s. FFagusagus s. 4 Quercus Hardwods Conclusion EEucalyptusucalyptus g. EEucalyptusucalyptus g. EEucalyptusucalyptus g. Fagus CCastaneaastanea s. 5 CCastaneaastanea s. 300 CCastaneaastanea s. CCedrusedrus a. CCedrusedrus a. CCedrusedrus a. Eucalyptus PPseudotsuga seudotsuga m. PsPseudotsuga eudotsuga m. PPseudotsuga seudotsuga m. Castanea Cedrus PiPinusnus p. F PPinusinus p. Cl PPinusinus p. Br Pseudotsuga Softwods Pinus 0 5 10 15 20 25 0 100 200 300 400 0,0 0,2 0,4 0,6 0,8 1,0 Tropical hardwoods, national softwoods and mg/kg mg/kg mg/kg shrubs have higher calorific value than the national hardwoods. The different species present very similar chemical elementary compositions. The shrubs present levels of Na, Ca, Mg, Mn, Fe, Cr, Cd and Cu much higher than woods (sometimes more than 40X). In turn the K, P, Zn, Ni are identical between shrubs and woods. The shrubs present levels of F and Cl much higher than woods, but identical values of Br. Although the shrubs show high calorific value, its use as an energy source can give rise to corrosion and accumulation of ash in burning equipment, as well as the emission of toxic compounds. tars, and other constituents that may exceed the specified limits tions are the national hardwoods with lower levels of C, compared for intending purposes. The research and development on effective to the tropical hardwoods and the softwoods. The national hard- and efficient gas cleaning processes for removal of these contami- woods also present higher levels of O comparatively the tropical nants as well as high efficient reliable gasifiers is essential for home hardwoods. The fact that hardwoods have less C and more O, can and industrial applications especially in developing countries. It is explain its lower calorific value, in relation to other species. For micro imperative to know that principles of gasification along with gasifier and macro elements, the shrubs present levels of Na, Ca, Mg, Mn, Fe, designs will play important roles on the quality of product gases. Cr, Cd and Cu much higher than woods (sometimes more than 40X). The review provides in-depth information on the various designs In turn the K, P, Zn, Ni are identical between shrubs and woods. As of gasifiers and principles of gasification as a major factor in deter- regards the halogens, it is clear that shrubs present levels of F and Cl mining the calorific value of product gas. This paper also focuses on much higher than woods, but identical values of Br. the recent trend in gas cleaning technologies. Applications of wet It should be noted that although the shrubs show high calorific scrubbing technology, hot gas cleanup technology, catalysts and value, its use as an energy source can give rise to corrosion and ac- activated adsorbents to remove tar, ammonia and other contami- cumulation of ash in burning equipment, as well as the emission of nants are discussed. toxic compounds. Keywords: Biomass, gasification, gasifier, gas cleaning technology, tar Keywords: Utilization, Forestry biomass, energy, chemical properties. PP182 Thermochemical properties of PP183 several Portuguese and exotic Solvent Extraction of Oil from Bani woods and shrubs (Pongamia pinnata (l.) Pierre) José Luis LOUSADA1, Maria Emília SILVA1, Rafael SCHMITZ2 Ramon A. RAZAL1, Vivian C. DARACAN1, Rosalie M. CALAPIS1, Chenee 1Center for the Reserch and Technology of Agro-Environmental and Biological Sciences Marie M. ANGON2 and Rex B. DEMAFELIS2 (CITAB) / University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal 1 Forest Products and Paper Science Department 2Instituto Federal de Santa Catarina IF-SC, São Miguel do Oeste, Santa Catarina, Brazil. College of Forestry and Natural Resources, University of the Philippines Los Baños, College, [email protected] Laguna, Philippines 4031 I 2 Chemical Engineering Department College of Engineering and Agro-Industrial Technology, University of the Philippines, Los n recent years it has been attended in Portugal a constant increase Baños, College, Laguna, Philippines 4031 in demand for forest biomass for energy purposes, which may lead [email protected] to an overexploitation of these resources. Only an efficient manage- ment of biomass can ensure the sustainability of the Portuguese Pongamia pinnata (L.) Pierre seeds were extracted using Soxhlet Forest. This can be achieved by the use of biomass resources yet apparatus to determine which among hexane, cyclohexane, and unexplored (shrub component) or by producing more biomass (en- petroleum ether would be practical to use for solvent extraction ergy crops). The aim of this study was to evaluate the thermochemi- of pongam oil. The effects of moisture content, seed coat and cal properties of various national wood species, exotic species, and grinding on oil yield were evaluated. Hexane proved to be a practi- shrubs, most representative of Portugal. cal solvent choice with its high yield and lower cost per liter for sun- dried uncoated ground seeds. Hexane provided an average of 56% With regard to the species, the study assessed the following oil yield. An increasing trend in %oil yield with time was observed national softwoods: Pinus pinaster, Pseudotsuga menziesii, and Ce- until such a point where further increase in the soaking time result- drus atlantica; in the national hardwoods: Eucalyptus globulus, Pop- ed to insignificant changes in the %oil yield. The favorable soaking ulus euro-americana (cl. I-214), Salix alba, Quercus robur, Castanea time was 8 hours for hexane extraction (corresponding to 22% oil sativa, Acer pseudoplatanus, Fraxinus angustifolia, Prunus avium, yield). Oil yield increased as the amount of solvent increased until and Fagus sylvatica; and in the tropical hardwoods: Chlorophora equilibrium was reached at a seed (mass) to solvent (volume) ratio excelsa, Entandrophragma cylindricum, Gossweilerodendron bal- of about 1:6 beyond which changes in oil yield were insignificant. samiferum, Bowdichia nítida, and Hymenaea courbaril. As regards The physico-chemical properties of the solvent-extracted oil, such the shrub species (bushes), have been studied the Ulex europaeus, as specific gravity, saponification number, iodine value, and acid val- Cytisus striatus, Pterospartum tridentatum, Erica arborea, Erica sp., ue were determined, showing a specific gravity of 0.92764 ± 0.0052 and Hakea sericea. For each species it was determined the gross at 250C, saponification value of 441.8316 mg KOH/g oil, iodine value calorific value-GCV (or higher heating value-HHV) and the following of 151.4766 mg I/g oil, and an acid value of 80.7292. chemical properties: ash content, chemical composition (C, H, O, N, S), Micro and Macroelements (Na, K, Ca, Mg, Mn, Fe, Zn, Ni, Cr, Cd, Cu, Keywords: biodiesel, Pongamia pinnata, solvent extraction P) and halogens (F, Br, Cl). For the Calorific Value, the tropical hardwoods, national softwoods and shrubs have higher calorific value than the national hardwoods. In general it was found that tree species have low ash content (0.1% - 0.5%). The shrubs have much higher values (1.5% - 2.8%) as well as the Acer p. (1.0%), Entandrophragma c. (1.0%), and the Chlorophora e. (2.8%). Concerning the elementary chemical composition, the different species present very similar chemical compositions. The only excep-

249