Preflight Inspection

Total Page:16

File Type:pdf, Size:1020Kb

Preflight Inspection Beech Baron N8960M Beech Baron N8960M KSPG Frequencies: Preflight Inspection ASOS 118.87 Pre taxi / Taxi Cruise Cockpit Ground 121.80 Seat Belts On Fuel Proper tanks Flaps Up Throttle Set for cruise Airplane Documents On Board Tower 127.40 Avionics On Propeller 2200rpm - 2400rpm Ignition Key pulled out Departure/ Approach 119.65 ATIS/AWOS Obtain Mixture Lean for best power Electrical Equipment Off Altimeter Set Fuel Pump off Magnetos Off Taxi lights as req Trim Set Alternator Switches Off Brakes release / test Mixture and Throttle Idle Cutoff Xfeed test both main and aux Propeller Full FWD AI Check Pre-landing checklist Gear Selector Down HSI / Compass Check Fuel selector Fullest tank Circuit Breakers Check Turn Coordinator Check Mixture Full Rich below 5000' Battery Switch Key On Flight Controls Free and Correct Fuel Selector Valves Main Fuel Pump Off Annunciator Panel Lights Check If 90 degrees OAT fuel pump low Fuel Quantity Check Engine Instruments Green Flaps Extend to Ldg ATIS/AWOS/ASOS Checked Lights, Pitot heat, stall vane Check Altimeter Set Lights, Pitot heat Off Run Up Battery Switch Key Off Brakes Set Elevator Trim Set for TAKEOFF Final Approach Flight Controls Free and Correct Exterior Check Fuel Selector Valves Main Tanks Flight instruments Checked & Set Surfaces & Controls Inspect Mixture Rich Radios Set Fuel Quantity and Quality check Propeller Full FWD Autopilot Off Caps, Drains, Vents Inspect Throttle 2200RPM cycle Props GUMPS Check Engines, Oil, Belts Inspect Throttle 1700 RPM check magnetos Landing light On (IFR or Night) Propellers Inspect Engine Gauges Check (Green) Flaps as required Throttle 1500 RPM Air Intakes Inspect Feather test Airspeed 90-95 kts Exhaust System Inspect Gyro Pressure Check (Green) Gear Double check Amps / Volts/ Alternators Check Cowl Flaps Check open Starting Engine Throttle Idle, then 1000rpm Gear, Tires, Brakes Inspect Seats Locked Circuit Breakers In Antennas Check Security Circuit Breakers In After landing Auto Pilot Test and Off Rudder Pedals Set Flaps Up Baggage Door Inspect Friction Lock Adjust Avionics Off Cowl Flaps Open Fianl Walk Around Visual check Autopilot Off Fuel Pump as required Cowl Flaps Open Strobe light Off Interior Check Beacon On Normal Takeoff Mixture Lean for taxi Brakes Set Passenger Brief Inspect Departure Brief Briefed 1st Engine start (left) Hobbs Flaps Up record on hobbs sheet Mixture Rich Cowl Flaps Open Fuel Selector Test all positions Prop full fwd Props full fwd Shut Down Fuel Mains Left Throttle 1/4" (if hot -full) Mixture Best power Avionics Off Alternate Static Off Prop Clear Fuel Pumps Off Lights Off Flap Inspect Battery Key On If 90 degrees OAT Fuel pups low Fuel Pumps Off Emergency Gear Crank Free Left Fuel Pump Hi for 4 / Off Doors/Windows Closed Throttle 1000 RPM Pitot-Static Probe Inspect Left (top) Magneto Start Lights As required Mixture Cut-off Stall warning Check Unblocked Throttle set 1000rpm Throttle 2000 rpm - check all green Mags Landing/Taxi Light(s) Inspect Oil Pressure Check Throttle Full Off Left Alternator Alternators and Battery Off On Rotate 84kts 2nd Engine Start Key Remove Mixture Rich Hobbs Record Prop full fwd Right Throttle 1/4" (if hot -full) Climb Prop Clear Gear tab brakes, then Up Right Fuel Pump Hi for 4 / Off Oil Temp and Pressure Green Right (bottom) Magneto Start Fuel Pump as req Right Throttle set 1000rpm Throttle Oil Pressure Check 25 MP Props Right Alternator On 2500 RPM Lights As required Beech Baron N8960M Beech Baron N8960M V-Speeds Engine Failure High Manifold Rotate Vr 59 Throttle reduce Normal Climb V 107-122 Mixture Adjust Out ON TAKEOFF Best angle Power IDLE Vx 84 (Sea Level) Brakes APPLY Engine Roughness Best rate Centerline MAINTAIN Vy 107 Mixture Magnetos Check (Sea Level) CUT OFF if necessary Mags OFF Mixture Rich Maneuver Va 157 Ignition OFF Throttle Full Fuel Pump On Norm. oper. range 52-129 One Engine AFTER TAKEOFF Yoke push forward Engine Fire on ground Power up / Clean Up Flaps Vfe 113 Mixture Idle Cutoff Airspeed 100kts (blue line) Continue cranking affected engine Maneuver Directional Control Maintain with rudder Vno 181 Fuel Selector Off (step on the ball) max Battery / Alternator Off Never Flaps Up Vne 224 Other Engine Shut Down exceed Gear Up Airplane Evacuate Stall (clean) Vs 78 Landing Straight ahead if possible Stall (landing Vso 68 configuration) If you can maintain positive control of the airplane, stay in the pattern and do a normal Engine Fire during flight Final Flaps 90 landing without feathering… if you can not Fuel selector Off to affected engine Approach maintain blue line: Mixture Idle Cutoff No flaps 97 Prop Feather Min Control Identify Dead foot, dead engine Aux Fuel Pump Off VMCA 78 Alternator, Magneto Speed Verify Close proper throttle Off One engine Airspeed Pitch to 153 to VSSE 84 Prop Feather inop speed 5 degree bank into good engine, ½ ball extinguish fire and land asap towards good engine Steep Turns 20” MP Pitch for 140 kts, Manual Gear Extension Emergency Idle power, 30°- 40° Airspeed Reduce (100-120kts) Decent gear down degrees bank Pull Landing gear circuit breaker One Engine DURING FLIGHT Lower landing gear lever Airspeed min 100 KIAS (blue line) Hand crank approxim. 50 times CCW Power up / Clean Up If electrical system ok, verify gear lights and Signal On Ground In Flight Throttle as needed horn Steady Takeoff Land Flaps / Gear Up Green Identify dead foot, dead engine Flashing Taxi Return to land Verify Close proper throttle Electrical fire Green Propeller Feather All electrical devices Off Steady Stop Give way Red Mixture cut-off If fire is out Batt / Alt on if critical Clear Flashing Red Do not land Cowl Flaps close on dead engine turn on appliances one at a time runway Alternator Off on dead engine Storm Window Open if necessary Flashing Return to -- Magnetos Off on dead engine white ramp Fuel Selector Off on dead engine WARNING – Red/Green USE alternating Emergency Decent CAUTION Throttle IDLE Gear Down Bank max 30°- 40° Speed pitch for 140 .
Recommended publications
  • MGB Alternator Conversion Installation Instructions for MGA & 1962 to 1967 MGB PART# 130-078, 130-088, 130-098 440 Rutherford St
    MGB Alternator Conversion Installation Instructions For MGA & 1962 to 1967 MGB PART# 130-078, 130-088, 130-098 440 Rutherford St. Goleta, CA 93117 1-800-642-8295 • FAX 805-692-2525 • www.MossMotors.com Scan the code to watch Moss's Generator to Alternator Conversion Video Or search “Moss TV generator to alternator conversion” on YouTube. Tools required: Vehicle Preparation: Positive Ground to Negative Ground Conversion • Small and medium flat blade screwdriver 1. Remove the battery cover behind the seats using a • Phillips head screwdriver screwdriver to release the dzus fasteners. Disconnect and remove the battery, or both batteries if still • 11/32" wrench, 7/16" wrench, 1/2" wrench, configured for a dual 6 volt set up, using a 1/2" 5/8" wrench wrench. • 7/16" socket with extension, 1/2" socket, 5/8" socket, 22mm socket 2. Disconnect the Yellow/Green and Yellow wires from the generator. If the generator uses ring type • Center punch connectors use a 5/16" and 7/16" wrench. • Hammer 3. For the installation of the Lucas alternator the ignition • 1/4" drill bit, electric drill coil will have to be relocated to the engine bay side • Deadblow hammer of the right fender well. Remove the coil from the generator using a 7/16" socket. Locate a new place • Air impact gun for the coil and mark the hole locations. Using a • Pry bar center punch and hammer, make two dimples at the center of the marks to insure that the drill bit will not • Wire cutters walk around when the holes are being started.
    [Show full text]
  • Leburg Electronic Ignition System EI10A Installation Manual
    Leburg Electronic Ignition System EI10A Installation Manual For Aero VW’s - Or Any 2 Or 4 Cylinder 4 Stroke Engine Skycraft Ltd Telephone: 01406 540777 Riverside House Bloodfold Farm Website: www.skycraft.ltd Ravens Bank Saturday Bridge Email: [email protected] Holbeach Lincolnshire Facebook: @skycraftlimited PE12 8SR © Skycraft Ltd 2013 Leburg EI10A Manual—July 2020 Page 1 Contents 1. Read This First 2. The VW As An Aero Engine 3. Ignition System Performance 4. Principles Of Operation 5. Set Up 6. Power Supplies 7. Fitting A Honda CBR 600 Alternator 8. Manufacture & Assembly Notes 9. Wiring Notes 10. Wiring Up The Spark Plugs 11. Drawings © Skycraft Ltd 2013 Leburg EI10A Manual—July 2020 Page 2 1. Read This First By virtue of the techniques, design, components used and the care taken in building and testing, each ignition controller is believed to be highly reliable. The risk of failure is thus low, but it is finite. Therefore, this system is only made available on the basis that the user agrees to implement a Dual Ignition System. The Leburg system is the dual system, with the power supply system described in this manual. If any change from this is intended, you will need to check with the LAA that they will accept it. If a different alternator or power system is used, again, you will need to check with the LAA that they will accept it. The benefits of smooth running and getting the maximum power are obtained when the system is installed as described in this manual, with dual controllers, dual ignition spark plugs, both firing at the same time at the optimum advance angle.
    [Show full text]
  • Before Endine Start
    C-A152 CESSNA – NORMAL PROCEDURES BEFORE ENGINE START THROUGH ENGINE SHUTDOWN – CHECKLIST WILL BE VERBALIZED BEFORE ENGINE START WINDOWS ..................................................................................................................... SECURE CABIN DOORS ............................................................................................................. CLOSED TACH TIME ................................................................................... CHECK TIME REMAINING HOBBS TIME ................................................................................................................ RECORD BEFORE TAKE-OFF BRAKES ....................................................................................... APPLY TOE BRAKES ONLY TYPE OF TAKEOFF .............................................................................................. DETERMINE PASSENGER BRIEF ................................................................................................ COMPLETE FLAPS .................................................................................................................. AS REQUIRED SEATBELTS AND HARNESSES .........................................................FASTEN AND SECURE AIRSPEEDS: ROTATION, CLIMB OUT, CABIN DOOR ......................................................................................... CLOSE AND SECURE AND BEST GLIDE ................................................................... CALCULATE (GUST SPREAD) PRE-TAKEOFF BRIEFING .....................................................................................
    [Show full text]
  • Number: 93-04 a Technical Aspects Are FAA Approved Replaces Servl 93-004
    Number: 93-04 A Technical Aspects are FAA Approved Replaces ServL 93-004 Date: 07/13/2004 Subject: Optional Advancement of timing on the Teledyne Continental O-200A, B Compliance: Any time a complete set of Superior Air Parts, Inc. SA10200 Series Millennium® Cylinders is installed on the O-200A or B engine During the development of the SA10200 Series Millennium® Cylinder, Superior Air Parts Inc. incorporated many improvements to increase strength and service life. Requests from the field have prompted us to conduct an additional test for timing advancement. Recently, Superior has received STC SE8675SW approval to advance the magneto timing on both magnetos, from the present position of 24 degrees B.T.C., to the original timing of 28 degrees B.T.C. NOTE The timing change from 24 degrees B.T.C. to 28 degrees B.T.C. can only be accomplished on O-200A or B engines containing four Superior Air Parts, Inc. SA10200 Series Millennium® Cylinders. PROCEDURES: 1. Remove all upper spark plugs. 2. Position the No. 1 piston on its compression stroke, aligning the 28-degree B.T.C. crankshaft flange index with the bottom split on the crankcase. 3. Refer to the appropriate service information for the particular magneto in use, to properly connect a timing light. Loosen magneto retaining nuts. Rotate the magneto case until the timing light indicates that the points are just opening. If there is not enough limit allowed by the slotted flange holes, then the magneto must be removed from its pad and the magneto drive gear repositioned with the camshaft gear so that the points are just opening in the number 1 magneto firing position.
    [Show full text]
  • Starters & Alternators
    Starters & Alternators Technical Manual www.denso-am.eu n UK & IE n RU n DACH n Eastern Europe n Export n Iberia, France, Italy DENSO Europe B.V. After Market and Industrial Solutions Business Unit Sales Representation European Headquarters Albania Hungary Portugal Weesp, Netherlands Austria Ireland Romania Belarus Israel Russia (Moscow) Belgium Italy Russia (Novosibirsk) Distribution warehouses Bosnia and Herzegovina Kaliningrad Slovakia Bulgaria Kazakhstan Slovenia Gennevilliers, France Cyprus Latvia Spain Leipzig, Germany Czech Republic Lithuania Sweden Madrid, Spain Denmark Luxembourg Switzerland Milton Keynes, UK Estonia Macedonia Turkey Moscow, Russia Finland Moldova United Kingdom Polrino, Italy France Montenegro Ukraine Weesp, Netherlands Georgia Netherlands Germany Norway Greece Poland DENSO Starters & Alternators Table of Content DENSO in Europe > The Aftermarket Originals 04 Introduction > About This Publication 04 > Product Range 05 PART 1 – DENSO Starters PART 2 – DENSO Alternators Characteristics Characteristics > System outline 08 > System outline 42 > How Starters work 09 > How Alternators work 43 Types Types > Pinion Shift Type 11 > Conventional Type 45 > Reduction Type 14 > Type III 46 > Planetary Type 17 > SC Type 47 Wall Chart 21 Wall Chart 53 Stop & Start Technology 22 Replacement Guide 54 Replacement Guide 28 Troubleshooting > Diagnostic Chart 55 Troubleshooting > Inspection 56 > Diagnostic Chart 29 > Q&A 58 > Inspection 30 > Q&A 37 Edition: 1, date of publication: August 2016 All rights reserved by DENSO EUROPE B.V. This document may not be reproduced or copied, in Edition: 2, date of publication: October 2016 whole or in part, without the written permission of the publisher. DENSO EUROPE B.V. reserves Editorial dept, staff: DNEU AMIS Technical Service, K.
    [Show full text]
  • 1 C255-POM-S-Feb06
    C255-POM-S-FEB06 1 Contents DISASSEMBLY OF CYLINDER HEAD 16 REFACING THE VALVES 18 REASSEMBLY OF CYLINDER HEAD 18 FOREWORD 4 GENERAL DESCRIPTION 4 CYLINDER SLEEVE 20 PISTON & CONNECTING ROD 20 OPERATION 6 CAMSHAFT 22 BEFORE STARTING 6 CRANKSHAFT 22 COOLANT 6 OIL PUMP 24 LUBRICATION 6 FUEL 7 GOVERNOR 25 OIL BATH AIR CLEANER 7 SPEED ADJUSTMENT 25 FINAL INSPECTION 8 POWER TAKE-OFF STARTING THE ENGINE 8 REMOVAL & DISASSEMBLY 26 BRINGING THE ENGINE UP TO SPEED 8 POWER TAKE-OFF STOPPING THE ENGINE 8 ASSEMBLY & INSTALLATION 28 EMERGENCY STOP 9 SPECIFICATIONS AND DERATES 30 INSPECTION 9 DAILY INSPECTION 9 PARTS 33 WEEKLY INSPECTION 9 MONTHLY INSPECTION 9 CRANKCASE AND BASE 33 CRANKSHAFT, CAMSHAFT & SERVICE 10 TIMING GEARS 34 LUBRICATION 10 PISTON & CONNECTING ROD 35 CIRCULATION OF OIL 10 CYLINDER HEAD 36 OIL FILTER 10 ROCKER ARM & COVER 37 OIL SUMP 10 OIL PUMP 10 CYLINDER BLOCK 38 MAGNETO LUBRICATION 11 OIL PUMP AND FILTER 39 GOVERNOR LUBRICATION 11 FLYWHEEL & HOUSING 41 CLUTCH LUBRICATION 11 OVERSPEED CONTROLER 42 FUEL SYSTEM 11 CARBURETOR 11 MAGNETO & GOVERNOR DRIVE 43 FUEL RATE FOR ARROW ENGINES 12 GOVERNOR 45 BTU RATE FOR ARROW ENGINES 12 INSTRUMENT PANEL 46 HIGHER HEATING VALUES OF FUEL 12 ARROW C-255 FUEL CONSUMPTION 13 CARBURETOR & AIR CLEANER 47 AIR CLEANER 13 CARBURETOR COMPONENTS 49 COOLING SYSTEM 13 RADIATOR 51 ALTRONIC 1 IGNITION 14 ELECTRIC STARTER 52 IGNITION SYSTEM TROUBLESHOOTING 14 SPARK PLUG 15 ALTRONIC 1 IGNITION 53 POWER TAKE-OFF 15 POWER TAKE OFF COMPONENTS 55 ADJUSTMENT 15 POWER TAKE OFF 56 LUBRICATION 15 COMPLETE OIL LINE KIT 57 DRIVING PLATE REPLACEMENT 15 INSTALLATION OF OIL LINES 57 COMPLETE GASKET SET 58 ENGINE OVERHAUL 16 TORQUING SEQUENCE 59 CYLINDER HEAD 16 VALVES AND MECHANISM 16 2 3 FOREWORD transfer the rotary motion of the crankshaft to take-off Cranking the engine for starting is aided by using NOTE: GENERAL DESCRIPTION assembly.
    [Show full text]
  • Tim's Updated Slick Timing Document Updated for Better Readablity and More Completeness
    Tim's Slick Mag Timing Re-Compilation http://www.myrv10.com/tips/maintenance/tims_slick_timing_info.html Tim's updated Slick Timing Document Updated for better readablity and more completeness Note: This wall all originally compiled by Sacramento Sky Ranch. I'm not trying to duplicate it totally, but instead, trim out some of the variety of engine types that they talk about, so that it mainly applies to my IO-540 D4A5, and to correct all of the poor word wrapping and other cosmetic defects such as the ugly ALL-CAPS text, that they put together, so it's easier to read. WHERE DO I STICK THE TIMING PIN? 1. TIMING INSTRUCTIONS ARE ON THE OUTSIDE OF THE BOX. Insert the T-118 timing pin in the L OR hole of the distributor block, depending on the rotation of the magneto. Refer to the Magneto Data Plate for magneto rotation direction. 2. Turn the rotor shaft opposite the specified direction of rotation until the timing pin is inserted approximately 7/8" into the distributor block. When properly engaged, the timing pin will "Seat" against the distributor block. Note: If the rotor shaft cannot be turned and the timing pin is not seated 7/8" into the distributor block, remove the pin. Turn the rotor shaft 1/8" turn and reinsert the pin. Turn the rotor shaft 1/8" and reinsert the timing pin. Then repeat steps 1 and 2 above. 3. With the pin fully inserted into the distributor block, the magnto is now aligned to fire cylinder #1. (My Note: This is NOT TDC, but rather the firing position which is probably about 25 degrees BTDC) 4.
    [Show full text]
  • Cooling System
    COOLING SYSTEM A system, which controls the engine temperature, is known as a cooling system. NECESSITY OF COOLING SYSTEM The cooling system is provided in the IC engine for the following reasons: The temperature of the burning gases in the engine cylinder reaches up to 1500 to 2000°C, which is above the melting point of the material of the cylinder body and head of the engine. (Platinum, a metal which has one of the highest melting points, melts at 1750 °C, iron at 1530°C and aluminium at 657°C.) Therefore, if the heat is not dissipated, it would result in the failure of the cylinder material. Due to very high temperatures, the film of the lubricating oil will get oxidized, thus producing carbon deposits on the surface. This will result in piston seizure. Due to overheating, large temperature differences may lead to a distortion of the engine components due to the thermal stresses set up. This makes it necessary for, the temperature variation to be kept to a minimum. Higher temperatures also lower the volumetric efficiency of the engine. REQUIREMENTS OF EFFICIENT COOLING SYSTEM The two main requirements of an efficient cooling system are: 1. It must be capable of removing only about 30% of the heat generated in the combustion chamber. Too much removal of heat lowers the thermal efficiency of the engine. 2. It should remove heat at a fast rate when the engine is hot. During the starting of the engine, the cooling should be very slow so that the different working parts reach their operating temperatures in a short time.
    [Show full text]
  • ROBINSON MODEL R44 II ROBINSON MODEL R44 II SECTION 3 EMERGENCY PROCEDURES FAA APPROVED: 11 MAY 2020 3-I SECTION 3 EMERGENCY PR
    ROBINSON SECTION 3 MODEL R44 II EMERGENCY PROCEDURES SECTION 3 EMERGENCY PROCEDURES CONTENTS Page Definitions . 3-1 Power Failure – General . 3-1 Power Failure Above 500 Feet AGL . 3-2 Power Failure Between 8 Feet and 500 Feet AGL . 3-2 Power Failure Below 8 Feet AGL . 3-3 Maximum Glide Distance Configuration . 3-3 Minimum Rate of Descent Configuration . 3-3 Air Restart Procedure . 3-3 Emergency Water Landing – Power Off . 3-4 Emergency Water Landing – Power On . 3-4 Loss of Tail Rotor Thrust in Forward Flight . 3-5 Loss of Tail Rotor Thrust in Hover . 3-5 Headset Audio Failure . 3-5 Engine Fire During Start on Ground . 3-6 Engine Fire in Flight . 3-6 Electrical Fire in Flight . 3-6 Tachometer Failure . 3-7 Hydraulic System Failure . 3-7 Governor Failure . 3-7 Warning/Caution Lights . 3-8 Audio Alerts . 3-11 FAA APPROVED: 11 MAY 2020 3-i INTENTIONALLY BLANK ROBINSON SECTION 3 MODEL R44 II EMERGENCY PROCEDURES SECTION 3 EMERGENCY PROCEDURES DEFINITIONS Land Immediately – Land on the nearest clear area where a safe normal landing can be performed. Be prepared to enter autorotation during approach, if required. Land as soon as practical – Landing site is at pilot’s discretion based on nature of problem and available landing areas. Flight beyond nearest airport is not recommended. POWER FAILURE – GENERAL A power failure may be caused by either an engine or drive system failure and will usually be indicated by the low RPM horn. An engine failure may be indicated by a change in noise level, nose left yaw, an oil pressure light, or decreasing engine RPM.
    [Show full text]
  • Magneto Switch Options
    Magneto Switch Options Robert L. Nuckolls, III AeroElectric Connection 6936 Bainbridge Road Wichita, Kansas 67226-1008 Phone (316) 685-8617 I was privileged to receive an invitation to speak before an short pulse of higher velocity rotation enhances spark during a annual gathering of RV builders in Frederick, Maryland, just time when engine speed is too low to produce normal sparks before Sun-N-Fun ’92. Several questions posed there from the magneto. Further, delayed mechanical release causes illustrated a general misunderstanding about magneto switch a spark to be delivered after top-dead-center thus assuring that wiring with respect to switches and wire to be used. After the first explosion to occur in any cylinder pushes the engine exploring the issues with attendees, someone suggested that forward instead of backwards. After the engine starts, this would be a good topic to write up for Sport Aviation. So flyweights inside the coupler pull against another spring to here it is ... retract the pawl thus preventing further engagement with the locking stud. The energy storage spring used to “snap" the There are two types of switches commonly used to control shaft during cranking now keeps the magneto in proper step aircraft magnetos and starters. The most popular is the key with the engine for running. locking, multi-position, rotary switch like those found on many production aircraft. The other is a common toggle It is common practice to install only one impulse coupler on switch not unlike those used to control devices like pitot heat the left magneto. Some engines have couplers on both or landing lights.
    [Show full text]
  • Symbols and Circuit Diagrams | Circuit Symbols
    500 | Symbols and circuit diagrams | Circuit symbols Symbols and circuit diagrams The electrical systems in vehicles contain Circuit symbols a wide array of electric and electronic devices for open and closed-loop engine- The circuit symbols shown in Table 1 are management systems as well as numer- a selection of the standardized circuit sym- ous comfort and convenience systems. bols relevant to automotive electrical sys- Only by using expressive symbols and tems. With a few exceptions, they conform circuit diagrams is it possible to provide to the standards of the International Elec- an overview of the complex circuits in trotechnical Commission (IEC). the vehicle’s electrical system. Circuit, The European Standard EN 60 617 schematic and terminal diagrams are a (Graphical Symbols for Electrical Circuit help during troubleshooting. They also Diagrams) corresponds to the interna- facilitate field installation of accessories, tional standard IEC 617. It exists in three and furnish support for trouble-free in- official versions (German, English and stallations and modifications on the French). The standard contains symbol vehicle’s electrical equipment. 1 Circuit diagram of an three-phase alternator with voltage regulator a WD+ B+ D+ wvu U D– DF B– b WB+D+ In addition to the symbol G for generator/alternator G, the circuit symbol also includes the symbols for the three 3 windings (phases) 3 U the star junction the diodes and the regulator U . B– Fig. 1 a With internal circuitry b Circuit symbols UAS0002-1E Robert Bosch GmbH (ed.), Bosch Automotive Electrics and Automotive Electronics, DOI 10.1007/978-3-658-01784-2, © Springer Fachmedien Wiesbaden 2014 Symbols and circuit diagrams | Circuit symbols | 501 elements, signs and, in particular, circuit cate the shapes and dimensions of the de- symbols for the following areas: vices they represent, nor do they show the General applications Part 2 locations of their terminal connections.
    [Show full text]
  • Altronic® Ignition Systems for Industrial Engines
    Ignition Systems for Industrial Engines Altronic Ignition Systems CONTENTS Altronic Ignition Systems Overview and Guide Contents and Introduction ................................................................................ 2 Engine Application Guide ................................................................................. 3 Solid-State/Mechanical Ignition Systems Theory and Overview ........................................................................................ 4 Altronic I, II, III, and V ..................................................................................... 5 Disc-Triggered Digital Ignition Systems Theory and Overview ........................................................................................ 6 CD1, CD200, DISN ......................................................................................... 7 Crankshaft-Referenced Digital Ignition Systems Theory and Overview ........................................................................................ 8 CPU-95, CPU-2000 ......................................................................................... 9 Crankshaft-Referenced, Directed Energy Digital Ignition Systems CPU-XL VariSpark .......................................................................................... 10 Ignition Coils ................................................................................................... 12 Conversion Kits for Caterpillar Engines ......................................................... 14 Flashguard® Spark Plugs & Secondary
    [Show full text]