Boeing Catches a Lift with High Performance Computing 1 High Performance Computing Case Study

Total Page:16

File Type:pdf, Size:1020Kb

Boeing Catches a Lift with High Performance Computing 1 High Performance Computing Case Study Boeing Catches a Lift with High Performance Computing 1 High Performance Computing Case Study. Boeing Catches a Lift with High Performance Computing Boeing Catches a Lift with High Performance Computing This material is based on work supported by The Department of Energy under grant award DE-FG02-06ER25795. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or pro- cess disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not nec- essarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This publication may not be reproduced, in whole or in part, in any form beyond copying permitted by sections 107 and 108 of the U.S. copyright law and excerpts by reviewers for the public press, without written permis- sion from the publishers. The Council on Competitiveness is a nonprofit, 501 (c) (3) organization as recognized by the U.S. Internal Revenue Service. The Council’s activities are funded by contributions from its members, foundations and project contributions. To learn more about the Council on Competitiveness, visit us at www.compete.org. Dreamliner is a registered trademark of Boeing. Copyright © 2009 Council on Competitiveness Design: Soulellis Studio Printed in the United States of America Boeing Catches a Lift with High Performance Computing 1 Boeing Catches a Lift with High Performance Computing Through the Department of Energy’s Innovative and Novel Computational Impact on Theory and Experiment (INCITE) competition, Boeing R&D researchers recently won a multi-issue, multi-industry, international competition for a grant to use the powerful supercomputers at Oak Ridge National Labo- ratory (ORNL), bolstering their access to Boeing’s own in-house high performance computing (HPC) capabilities. Access to the lab’s leadership class systems allows Boeing scientists and researchers to tackle problems that are beyond the reach of the company’s in-house supercomputers and HPC clus- ters. Because ORNL constantly upgrades its supercomputer capabilities, Boeing can also preview the latest in HPC hardware and software before adding new systems to their own data center. When it comes to high performance computing (HPC), Says Ball about his competitors, “The world has become Doug Ball, Boeing’s chief engineer for enabling technol- a really smart place—there are highly trained, highly intel- ogy and research, acts locally and thinks globally. And ligent people everywhere, and most of them have access from his perspective, competition on today’s global play- to high performance computing capabilities. Here in the ing field has changed radically. U.S., we no longer enjoy the advantage we had in the Marketplace pressures are becoming more intense, 1950s and 1960s relative to the rest of the globe. Today and accelerating the pace of design is essential in our competitors are just as capable of making innovative today’s aerospace marketplace. Although Airbus is the discoveries as we are.” Timing, therefore, has become only other manufacturer of commercial jetliners that critical—now the race is on to see which company will be seat more than 100 people, the market for short- and first to come up with a particular breakthrough discov- medium-range regional jets is becoming increasingly ery, incorporate it into their products and services and crowded with new entries from companies like Embraer capture the market. in Brazil, Sukhoi in Russia, Mitsubishi in Japan, Bom- Fortunately, U.S. and foreign researchers, including bardier in Canada, and a new regional jet from Chinese those in industry, have a tremendous opportunity, thanks firm ACAC, the ARJ-21. “Right now these regional to a now well-established Department of Energy (DOE) companies aren’t competing with us directly,” says Ball. program—the Innovative and Novel Computational Im- “But fast-forward several years, and it may be an entirely pact on Theory and Experiment (INCITE) competition, different story.” now in its sixth year, is sponsored by the DOE’s Office Headquartered in Chicago, Boeing is the world’s lead- of Science. ing aerospace company and the largest manufacturer of Through a competitive, multi-issue, multi-industry commercial jetliners and military aircraft combined. The peer-review process, the program awards significant company employs more than 160,000 people across allocations on some of the world’s most powerful the United States and in 70 countries. With customers supercomputers to innovative, large-scale computa- in more than 90 countries, Boeing is one of the largest tional science projects to enable high-impact advances. U.S. exporters in terms of sales. Revenues in 2007 were Boeing is one of those awardees. nearly $66.4 billion. 2 Council on Competitiveness High Performance Computing Boeing Catches a Lift with High Performance Computing This image depicts a simulation of the unsteady effects on thrust reverser and helped Boeing determine how to improve predictions of re-ingestion, impingement and blanking effects. Scientists and engineers in Ball’s R&D group at Boeing the effect of aerodynamic loads on airplane structures. are performing complex basic research on problems Ball explains that when a wing is subjected to lift, loading related to some of the company’s most advanced com- causes the wing to deform—it tends to bend upward and mercial and military aircraft. His staff of 145 people twist. To get the best possible performance from the supports aerodynamic, propulsion, fuels and acoustic airplane, engineers use the wings aeroelasticity to obtain technology development. Pursuant to the terms of the maximum wing loading—this provides optimal lift and DOE program, research on non-proprietary projects is reduces drag that, in turn, lowers fuel consumption. This undertaken with the intent to publish the results in open is static aeroelasticity. The other physical condition under peer-reviewed literature. The results of proprietary proj- investigation is dynamic aeroelasticity, which occurs when ects are not published, but then the work is subject to the wing is subjected to sudden forces such as a wind negotiated terms with DOE, which include cost recovery gust. Designing the wing to handle oscillations induced by DOE. Whether published or proprietary, the results by these forces makes for a smoother and safer ride. of the basic research that INCITE enables ultimately “Of course, one way to solve the problem is to build a big, provide new tools, processes and technology ideas that beefy, super strong wing,” Ball says. “But a heavy wing Boeing development groups can use to design airplanes. is bad design—what we’re really trying to do is design a Currently the R&D group is investigating ways to improve wing with minimal weight that meets our design criteria. aircraft performance. They use computational modeling For example, one approach is to add more structure only and simulation to explore various design options before in those places that are taking the brunt of the static and building physical prototypes and conducting experimen- dynamic aeroelasticity forces. In addition, we are advanc- tal testing. Working with the INCITE program and Oak ing the state of the art in the use of composites.” Ridge National Laboratory (ORNL) plays a major role in The Dreamliner® wing, the first Boeing product to make their work. significant use of composites, is lighter and safer than its metal predecessors, and its greater efficiency results in Investigating Aeroelasticity reduced fuel consumption and emissions. Understand- One of the areas Boeing researchers have modeled ing how these new materials can be used in future wing using ORNL’s supercomputers is aeroelasticity—that is, design is a major goal of Ball’s group. Boeing Catches a Lift with High Performance Computing 3 “Composites give us a whole new degree of freedom have access to the latest HPC hardware and software that we don’t have with aluminum structures,” he explains. in order to work with the latest equipment, tools and “The entire wing deformation process depends on how processes before purchasing new hardware for our own the carbon fibers are laid. By altering their patterns, we data center. Upgrading our in-house HPC capabilities should be able to tailor the structure of the wing to put involves major expenditures, so the ability to try before the load in the right places. This will allow us to achieve we buy is a huge plus.” minimum weight and maximum performance.” HPC’s Competitive Impact: Boeing Putting HPC to Work Taking Off Ball’s research group is no stranger to HPC. They have Here’s how Ball summarizes the major benefits of HPC: been using the most powerful systems available during “It lets engineers design better airplanes with fewer the past 30 years. Their most recent supercomputer, a resources, in less time, with far less physical simulation vector processing system that can accommodate thou- based on wind tunnel testing,” he says. “For example, sands of processors, is augmented by five Linux-based when we were designing the 767 back in the 1980s, HPC clusters with a total of 792 nodes. we built and tested about 77 wings. By using supercom- With the help of these supercomputers, the group uses puters to simulate the properties of the wings on recent numerical processes to investigate both the internal models such as the 787 and the 747-8, we only had to and external areas of the airplane.
Recommended publications
  • FUNDAMENTALS of COMPUTING (2019-20) COURSE CODE: 5023 502800CH (Grade 7 for ½ High School Credit) 502900CH (Grade 8 for ½ High School Credit)
    EXPLORING COMPUTER SCIENCE NEW NAME: FUNDAMENTALS OF COMPUTING (2019-20) COURSE CODE: 5023 502800CH (grade 7 for ½ high school credit) 502900CH (grade 8 for ½ high school credit) COURSE DESCRIPTION: Fundamentals of Computing is designed to introduce students to the field of computer science through an exploration of engaging and accessible topics. Through creativity and innovation, students will use critical thinking and problem solving skills to implement projects that are relevant to students’ lives. They will create a variety of computing artifacts while collaborating in teams. Students will gain a fundamental understanding of the history and operation of computers, programming, and web design. Students will also be introduced to computing careers and will examine societal and ethical issues of computing. OBJECTIVE: Given the necessary equipment, software, supplies, and facilities, the student will be able to successfully complete the following core standards for courses that grant one unit of credit. RECOMMENDED GRADE LEVELS: 9-12 (Preference 9-10) COURSE CREDIT: 1 unit (120 hours) COMPUTER REQUIREMENTS: One computer per student with Internet access RESOURCES: See attached Resource List A. SAFETY Effective professionals know the academic subject matter, including safety as required for proficiency within their area. They will use this knowledge as needed in their role. The following accountability criteria are considered essential for students in any program of study. 1. Review school safety policies and procedures. 2. Review classroom safety rules and procedures. 3. Review safety procedures for using equipment in the classroom. 4. Identify major causes of work-related accidents in office environments. 5. Demonstrate safety skills in an office/work environment.
    [Show full text]
  • Top 10 Reasons to Major in Computing
    Top 10 Reasons to Major in Computing 1. Computing is part of everything we do! Computing and computer technology are part of just about everything that touches our lives from the cars we drive, to the movies we watch, to the ways businesses and governments deal with us. Understanding different dimensions of computing is part of the necessary skill set for an educated person in the 21st century. Whether you want to be a scientist, develop the latest killer application, or just know what it really means when someone says “the computer made a mistake”, studying computing will provide you with valuable knowledge. 2. Expertise in computing enables you to solve complex, challenging problems. Computing is a discipline that offers rewarding and challenging possibilities for a wide range of people regardless of their range of interests. Computing requires and develops capabilities in solving deep, multidimensional problems requiring imagination and sensitivity to a variety of concerns. 3. Computing enables you to make a positive difference in the world. Computing drives innovation in the sciences (human genome project, AIDS vaccine research, environmental monitoring and protection just to mention a few), and also in engineering, business, entertainment and education. If you want to make a positive difference in the world, study computing. 4. Computing offers many types of lucrative careers. Computing jobs are among the highest paid and have the highest job satisfaction. Computing is very often associated with innovation, and developments in computing tend to drive it. This, in turn, is the key to national competitiveness. The possibilities for future developments are expected to be even greater than they have been in the past.
    [Show full text]
  • Open Dissertation Draft Revised Final.Pdf
    The Pennsylvania State University The Graduate School ICT AND STEM EDUCATION AT THE COLONIAL BORDER: A POSTCOLONIAL COMPUTING PERSPECTIVE OF INDIGENOUS CULTURAL INTEGRATION INTO ICT AND STEM OUTREACH IN BRITISH COLUMBIA A Dissertation in Information Sciences and Technology by Richard Canevez © 2020 Richard Canevez Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2020 ii The dissertation of Richard Canevez was reviewed and approved by the following: Carleen Maitland Associate Professor of Information Sciences and Technology Dissertation Advisor Chair of Committee Daniel Susser Assistant Professor of Information Sciences and Technology and Philosophy Lynette (Kvasny) Yarger Associate Professor of Information Sciences and Technology Craig Campbell Assistant Teaching Professor of Education (Lifelong Learning and Adult Education) Mary Beth Rosson Professor of Information Sciences and Technology Director of Graduate Programs iii ABSTRACT Information and communication technologies (ICTs) have achieved a global reach, particularly in social groups within the ‘Global North,’ such as those within the province of British Columbia (BC), Canada. It has produced the need for a computing workforce, and increasingly, diversity is becoming an integral aspect of that workforce. Today, educational outreach programs with ICT components that are extending education to Indigenous communities in BC are charting a new direction in crossing the cultural barrier in education by tailoring their curricula to distinct Indigenous cultures, commonly within broader science, technology, engineering, and mathematics (STEM) initiatives. These efforts require examination, as they integrate Indigenous cultural material and guidance into what has been a largely Euro-Western-centric domain of education. Postcolonial computing theory provides a lens through which this integration can be investigated, connecting technological development and education disciplines within the parallel goals of cross-cultural, cross-colonial humanitarian development.
    [Show full text]
  • From Ethnomathematics to Ethnocomputing
    1 Bill Babbitt, Dan Lyles, and Ron Eglash. “From Ethnomathematics to Ethnocomputing: indigenous algorithms in traditional context and contemporary simulation.” 205-220 in Alternative forms of knowing in mathematics: Celebrations of Diversity of Mathematical Practices, ed Swapna Mukhopadhyay and Wolff- Michael Roth, Rotterdam: Sense Publishers 2012. From Ethnomathematics to Ethnocomputing: indigenous algorithms in traditional context and contemporary simulation 1. Introduction Ethnomathematics faces two challenges: first, it must investigate the mathematical ideas in cultural practices that are often assumed to be unrelated to math. Second, even if we are successful in finding this previously unrecognized mathematics, applying this to children’s education may be difficult. In this essay, we will describe the use of computational media to help address both of these challenges. We refer to this approach as “ethnocomputing.” As noted by Rosa and Orey (2010), modeling is an essential tool for ethnomathematics. But when we create a model for a cultural artifact or practice, it is hard to know if we are capturing the right aspects; whether the model is accurately reflecting the mathematical ideas or practices of the artisan who made it, or imposing mathematical content external to the indigenous cognitive repertoire. If I find a village in which there is a chain hanging from posts, I can model that chain as a catenary curve. But I cannot attribute the knowledge of the catenary equation to the people who live in the village, just on the basis of that chain. Computational models are useful not only because they can simulate patterns, but also because they can provide insight into this crucial question of epistemological status.
    [Show full text]
  • Cloud Computing and E-Commerce in Small and Medium Enterprises (SME’S): the Benefits, Challenges
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Cloud Computing and E-commerce in Small and Medium Enterprises (SME’s): the Benefits, Challenges Samer Jamal Abdulkader1, Abdallah Mohammad Abualkishik2 1, 2 Universiti Tenaga Nasional, College of Graduate Studies, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia Abstract: Nowadays the term of cloud computing is become widespread. Cloud computing can solve many problems that faced by Small and medium enterprises (SME’s) in term of cost-effectiveness, security-effectiveness, availability and IT-resources (hardware, software and services). E-commerce in Small and medium enterprises (SME’s) is need to serve the customers a good services to satisfy their customers and give them good profits. These enterprises faced many issues and challenges in their business like lake of resources, security and high implementation cost and so on. This paper illustrate the literature review of the benefits can be serve by cloud computing and the issues and challenges that E-commerce Small and medium enterprises (SME’s) faced, and how cloud computing can solve these issues. This paper also presents the methodology that will be used to gather data to see how far the cloud computing has influenced the E-commerce small and medium enterprises in Jordan. Keywords: Cloud computing, E-commerce, SME’s. 1. Introduction applications, and services) that can be rapidly provisioned and released with minimal management effort or service Information technology (IT) is playing an important role in provider interaction.” [7]. From the definition of NIST there the business work way, like how to create the products, are four main services classified as cloud services which are; services to the enterprise customers [1].
    [Show full text]
  • Software Engineering for Scientific Computing Phillip Colella
    Software Engineering for Scientific Computing Phillip Colella Elements of Scientific Simulation We are mainly interested in scientific computing as it arises in simulation that requires either (1) large software systems, and (2) high-performance computing. Increasingly, (2) (1). However, want to remind you of the larger context. • A science or engineering problem that requires simulation. • Models – must be mathematically well posed. • Discretizations – replacing continuous variables by a finite number of discrete variables. • Software – correctness, performance. • Data – inputs, outputs. Science discoveries ! Engineering designs ! • Hardware. • People. 2 What are the Tools for HPC? The skills and tools to allow you to understand (and perform) good software design for scientific computing. • Programming: expressiveness, performance, scalability to large software systems. • Data structures and algorithms as they arise in scientific applications. • Tools for organizing a large software development effort (build tools, source code control). • Debugging and data analysis tools. 3 Outline of the Talk • A little bit about hardware • Motifs of scientific simulation. • Programming and software design. • A little bit about plumbing: source code control, build systems, debugging, data analysis and visualization. 4 Memory Hierarchy • Take advantage of the principle of locality to: - Present as much memory as in the cheapest technology - Provide access at speed offered by the fastest technology Processor Core Core Core Tertiary core cache core cache core cache Secondary Storage Controller Memory Memory Main Storage Memory (Tape/ Shared Cache Second (Disk/ 6 Cloud O(10 ) (DRAM/ Level FLASH/ FLASH/ Storage) core cache core cache core cache Cache PCM) (SRAM) PCM) Core Core Core 7 10 Latency (ns): ~1 ~5-10 ~100 ~10 ~10 6 Size (bytes): ~10 ~109 ~1012 ~1015 The Principle of Locality • The Principle of Locality: - Program access a relatively small portion of the address space at any instant of time.
    [Show full text]
  • Next Steps in Quantum Computing: Computer Science's Role
    Next Steps in Quantum Computing: Computer Science’s Role This material is based upon work supported by the National Science Foundation under Grant No. 1734706. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Next Steps in Quantum Computing: Computer Science’s Role Margaret Martonosi and Martin Roetteler, with contributions from numerous workshop attendees and other contributors as listed in Appendix A. November 2018 Sponsored by the Computing Community Consortium (CCC) NEXT STEPS IN QUANTUM COMPUTING 1. Introduction ................................................................................................................................................................1 2. Workshop Methods ....................................................................................................................................................6 3. Technology Trends and Projections .........................................................................................................................6 4. Algorithms .................................................................................................................................................................8 5. Devices ......................................................................................................................................................................12 6. Architecture ..............................................................................................................................................................12
    [Show full text]
  • Middleware Technologies
    A. Zeeshan A middleware approach towards Web (Grid) Services 06 January 2006 A Middleware road towards Web (Grid) Services Zeeshan Ahmed Department of Intelligent Software Systems and Computer Science, Blekinge Institute of Technology, Box 520, S-372 25 Ronneby, Sweden [email protected] In Student Workshop on Architectures and Research in Middleware Blekinge Institute of Information Technology (BIT 2006), 06.01.2006, Romney Sweden A. Zeeshan A middleware approach towards Web (Grid) Services 06 January 2006 ABSTRACT: 2. MIDDLEWARE TECHNOLOGIES (MDLW TECH) Middleware technologies is a very big field, containing a strong already done research as well as the currently This is one of the new and hottest topics in the field of running research to confirm already done research’s the computer science which encompasses of many results and the to have some new solution by theoretical technologies to connects computer systems and provide a as well as the experimental (practical) way. This protocol to interact with each other to share the document has been produced by Zeeshan Ahmed information between them. The term Middleware carries (Student: Connectivity Software Technologies Blekinge the meaning to mediate between two or more already Institute of Technologies). This describes the research existing separate software applications to exchange the already done in the field of middleware technologies data. including Web Services, Grid Computing, Grid Services and Open Grid Service Infrastructure & Architecture. Middleware technologies reside inside complex, This document concludes with the overview of Web distributed and online application by hiding their self in (Grid) Service, Chain of Web (Grid) Services and the the form operating system, database and network details, necessary security issue.
    [Show full text]
  • Academic Computing
    Academic Computing A. Academic Computing: Definition Manhattan School of Music defines “academic computing” as all computing activity conducted by registered students on the school’s premises—using school or privately owned hardware, software, or other computer peripherals or technologies—for academic research and productivity, musical creativity, communication, and career-related or incidental personal use. B. Academic Computing Resources Students are encouraged to own and use personal computers, as these are increasingly important tools for academic and artistic endeavors. To enhance student computing capabilities, the school also provides resources of physical space, hardware, software, and network infrastructure for student use. These resources are enumerated and described below. In order to ensure the integrity, safety, and appropriate, equitable use of these resources, students are required to abide by specific school policies concerning their use, described below in Part C. In certain school facilities, students are expected to observe specific procedures, described below in Part D. Violation of the policies or procedures may be punishable as described below in Part E. (Technology and equipment used in electronic music studios or classroom instruction are not treated in this document and are not necessarily subject to the policies and procedures stated herein.) The school’s academic computing resources (the “Resources”) include an Internet and computing center, library computers, a wireless network within the library, and Internet connectivity from residence hall rooms. The school’s Department of Information Technology (“I.T.”) or its contracted agents maintain these Resources, often in collaboration with other administrative departments. On-Campus Computing Resources 1. Internet and Computing Center The Internet and Computing Center (the “Center”) is located in the library.
    [Show full text]
  • A Review of Culturally Relevant Education in Computing
    Vol.21, No.1 International Journal of Multicultural Education 2019 Computing with Relevance and Purpose: A Review of Culturally Relevant Education in Computing Jessica Morales-Chicas Cal State University, Los Angeles U.S.A. Mauricio Castillo Cal State University, Los Angeles U.S.A. Ireri Bernal Cal State University, Los Angeles U.S.A. Paloma Ramos Cal State University, Los Angeles U.S.A. Bianca L. Guzman Cal State University, Los Angeles U.S.A. STRACT: Drawing on multimodal, sound-based data, this study examines how high school students ABSTRACT: The purpose of the present review was to identify culturally responsive education (CRE) tools and strategies within K-12 computing education. A systematic literature review of studies on CRE across 20 years was conducted. A narrative synthesis was applied to code the final studies into six themes: sociopolitical consciousness raising, heritage culture through artifacts, vernacular culture, lived experiences, community connections, and personalization. These common themes in CRE can help empower and attend to the needs of marginalized students in technology education. Furthermore, the review serves as an important overview for researchers and educators attempting to achieve equity in computing education. KEYWORDS: ethnocomputing, culturally responsive computing, culturally responsive teaching, technology, equity Inequities in Technology and Computer Programming Method Results and Discussion Limitations and Future Directions Conclusion References Appendix A Appendix B Author Contact 125 Vol.21, No.1 International Journal of Multicultural Education 2019 Computer programming, also known as computing (i.e., the teaching of computing languages like Java, C++, and HTML), became popularized in K-12 education in the 1980s but has now re-emerged as a way to equip youth with technological skills to transform the world (Lee et al., 2011; Papert, 1980).
    [Show full text]
  • A Study on Middleware Technologies in Cloud Computing (IJIRST/ Volume 4 / Issue 3 / 006)
    IJIRST –International Journal for Innovative Research in Science & Technology| Volume 4 | Issue 3 | August 2017 ISSN (online): 2349-6010 A Study on Middleware Technologies in Cloud Computing M. Saranya A. Anusha Priya Research Scholar Associate Professor Department of Computer Science Department of Computer Science Muthayammal College of Arts & Science, Namakkal, Muthayammal College of Arts & Science, Namakkal, Tamilnadu. Tamilnadu. Abstract This paper Middleware connectivity software presents that where all it provides a mechanism for processes to interact with other processes running on multiple networked machines. It Bridges gap between low-level OS communications and programming language. Middleware Application Programming Interfaces provide a more functional set of capabilities than the OS and a network service provide on their own and also hides complexity and heterogeneity of distributed system. Middleware-oriented R&D activities over the past decade have focused on the identification, evolution, and expansion of understanding current middleware services and the need for defining additional middleware layers and capabilities to meet the challenges associated with constructing future network-centric systems. It contains the more different technologies that can be composed, configured, and deployed to create distributed systems rapidly and it working with the cloud computing environment. Keywords: Middleware Technologies, Cloud Computing Environment, Distributed System _______________________________________________________________________________________________________ I. INTRODUCTION Middleware is an important class of technology that is serving to decrease the cycle-time, level of effort, and complexity associated with developing high-quality, flexible, and interoperable distributed systems. When implemented properly, middleware can help to Shield developers of distributed systems from low-level, tedious, and error-prone platform details, such as socket-level network programming.
    [Show full text]
  • Next Steps in Quantum Computing: Computer Science’S Role This Material Is Based Upon Work Supported by the National Science Foundation Under Grant No
    Next Steps in Quantum Computing: Computer Science’s Role This material is based upon work supported by the National Science Foundation under Grant No. 1734706. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Next Steps in Quantum Computing: Computer Science’s Role Margaret Martonosi and Martin Roetteler, with contributions from numerous workshop attendees and other contributors as listed in Appendix A. November 2018 Sponsored by the Computing Community Consortium (CCC) NEXT STEPS IN QUANTUM COMPUTING 1. Introduction ................................................................................................................................................................1 2. Workshop Methods ....................................................................................................................................................6 3. Technology Trends and Projections .........................................................................................................................6 4. Algorithms .................................................................................................................................................................8 5. Devices ......................................................................................................................................................................12 6. Architecture ..............................................................................................................................................................13
    [Show full text]