La Terre Est Ronde 2015-2016 Ok Mod 2016

Total Page:16

File Type:pdf, Size:1020Kb

La Terre Est Ronde 2015-2016 Ok Mod 2016 ENSM-SE, 2° A : axe transverse P N 08/02/16 - 1 - ENSM-SE, 2° A : axe transverse P N 08/02/16 - 2 - ENSM-SE, 2° A : axe transverse P N 08/02/16 AVERTISSEMENT AU LECTEUR Aristarque de Samos Malgré plus de 10 années d’ajouts variés et de La dilapidation des ressources naturelles est, pour les modifications — et maintenant de pages web élèves Q- ou MC- nom de combustibles fossiles, irréversible pour la fraction déjà la page.htm, « Question » ou « Mot-Clef » indiqués au long de ce poly et consommée. Elle est même semble-t-il impossible à réduire que vous retrouverez en sur le site http://www.emse.fr/~bouchardon dans la pour les sociétés les moins industrialisées 2. Face à cette rubrique Wiki Elèves 2009-10-11 — ce poly de 200 pages, 23 situation, le plus dérangeant n’est pas tant la disparition tableaux et 310 figures environ n’est toujours pas un cours d’une énergie quand d’autres sont renouvelables et complet. Ce n’est d’ailleurs pas son objectif, même si sans seront largement à la disposition de l’homme dans le doute trouverez-vous ici ou là au long de ces cent cinquante futur, que l’épuisement d’un gisement source d’une foule pages, un fourmillement rebutant de connaissances parfois d’applications autres qu’énergétiques. Sur ce plan là, trop (?) pointues, typiques d’un cours. Le propos est de venir l’irréversibilité de nos actes doit peser dans nos décisions. en aide au lecteur, étudiant de l’EMSE ou autre, dans sa S’agissant d’éléments utiles à la fabrication de nos objets et compréhension des processus naturels en le baladant dans outils manufacturés, l’épuisement de la ressource est virtuel. des échelles de temps ou d’espace très variées et en tirant ici Le recyclage devient la norme et constituera demain le ou là sur la pelote de la complexité par quelques brins. nouveau gisement, délocalisé et permanent, dont la En effet, une approche globale (voire systémique) des raréfaction sera en quelque sorte presque seulement processus est indispensable à la compréhension des dépendante de la taille de la population mondiale 3. phénomènes naturels et cette culture devient d’autant plus L’utilisation des deux ressources vitales, l’air dont nécessaire qu’avec les temps modernes, l’homme est bien ere nous commençons à peine à saisir l’importance d’une devenu la 1 espèce consciente que son activité influence gestion, et l’eau, tombée du ciel et donc toujours considérée le futur de notre planète . Il ne faut ni s’en enorgueillir ni comme bénédiction de(s) (D)dieu(x) — utilisez à votre en avoir peur, mais garder à l’esprit que les générations que convenance majuscule, singulier et pluriel — sera demain au nous formons aujourd’hui auront à agir demain en étant cœur des préoccupations humaines. Protéger et gérer capables de considérer leur action en termes de problèmes nécessite une compréhension claire du cycle de l’eau, du globaux, dans leur complexité et dans le respect de ce qui carbone, des substances contaminantes etc., ainsi que des l’entoure, animal, végétal, minéral. Pour ces générations, de interactions entre tous les réservoirs. Passant par nos plus en plus peuplées et actives, le caractère holistique des processus naturels — au sens où ceux-ci ont tendance au travers de leur fonctionnement à créer des ensembles structurés qui présentent des dimensions supérieures à la somme de leurs parties 2 L’absolue nécessité de rattraper leur retard économique, ou — imposera de les aborder avec une pensée complexe en simplement de cuire, de se chauffer, de se déplacer implique, vue d’une politique de développement soutenable. Le mot pour les sociétés les plus pauvres, l’utilisation des ressources anglais « soutenable » est peut-être préférable à « durable », les moins chères, pour l’heure les combustibles fossiles, quel dont la connotation temporelle entrave la compréhension du qu’en soit le prix à payer à long terme. On voit combien il y concept en laissant penser qu’il s’agit de faire durer l’état a loin des intentions aux accords (Kyöto, Montréal ou actuel quand il s’agit au contraire de le faire évoluer. Le Copenhague) et des accords aux réalités qui les suivent… La développement soutenable implique une politique de mitigation passe ici très certainement par notre capacité à croissance responsable et respectueuse, fondée sur la proposer des techniques de substitution au moins aussi mitigation 1 et non sur un retour supposé vertueux (et rentables en terme de coût/performance. Une stratégie complètement irrationnel) aux temps d’avant, Eden adaptative s’impose à nous qui ne relève pas des éco-taxes écologique pour une pensée unique. Viser à limiter l'intensité ou autres incitations à consommer moins, quand le rêve du de certains aléas tels que ceux liés à des phénomènes modèle développé pilleur des ressources qui est le nôtre climatiques et géologiques impose d’en saisir les processus multiplie les besoins d’une population en pleine croissance, et les interactions. Et même si nous devions en venir à tant démographique qu’industrielle. C’est une Grameen considérer toute politique de mitigation comme inaccessible, green mitigation participative qu’il nous faudra inventer. en terme de coût aussi bien que de technique, il resterait à 3 On voit bien ici comment la mondialisation des échanges fournir l’indispensable effort d’adaptation aux changements s’accompagne d’une prise de conscience que le jardin d’environnement qui, de toute manière, attendent notre planétaire est borné. L’idée qu’un jour le nombre des espèce et auxquels, de toutes façons, nous n’échapperons individus devra l’être aussi est déjà perceptible à travers pas ! l’émergence de notions telles que le nombre d’individus que la Terre est capable de nourrir. Là encore une stratégie d’adaptation prévaudra sur un « croissez et multipliez » 1 Mitigation : du latin mitigare ), signifie atténuation. Dans ancestral, nécessaire au salut d’un groupe initial faible vivant le cadre de la prévention de risques majeurs naturels, dans un espace infini pour lui, mais devenu destructeur pour l’objectif de la mitigation est d'atténuer les dommages sur les un groupe nombreux exerçant une prédation forte sur un enjeux, afin de les rendre plus supportables par la société. espace fini. - 1 - ENSM-SE, 2° A : axe transverse P N 08/02/16 besoins, cette eau merveilleuse rejoint un cours d’eau, (IPPC à paraître en octobre 2014, http://ipcc- « diluteur » muet des rejets dont nous le chargeons, dont wg2.gov/AR5/images/uploads/WGIIAR5-Chap29_FGDall.pdf ) s’en fait nous ne connaissons que la surface. Parfois seulement l’écho. Que n’a-t-on dit d’une catastrophe, pourtant (hélas), la vie de ce fleuve vient nous rappeler au détour prévisible, la submersion de la Nouvelle Orléans ? Qui se d’une angoisse médiatisée que nous nous sommes forgé un soucie des 4 à 5 Gigatonnes (10 9) de sédiments bloqués par vrai souci (e.g. les PCB, les antibiotiques …). Certes, les quelques 36389 barrages dans le monde (répertoriés par pays industrialisés ont pris conscience qu’ils ont les moyens Commision Internationnale des Grands Barrages, de s’éviter des problèmes à venir et l’eau de nos rivières http://www.icold-cigb.org/homeF.asp ), soit 1/4 des 16 à 19 devient chaque jour moins sale. Pour le reste, l’immensité Gigatonnes qui arrivaient avant jusqu’à l’océan (d’après océanique si mal connue 4 sert encore trop souvent de l’IPCC 2014), nourrissant ainsi des deltas qui ne plus que poubelle à nos déchets, on la considère à tort comme un reculer, et ce d’autant plus vite que la mer monte… Et le garde-manger inépuisable, comme le moyen idéal de sable de nos plages n’est qu’une infime fraction de la masse circulation sans entretien pour nos marchandises 5 sur des de sédiments qui arrivent à la mer. bateaux pollueurs (fortunes de mer, dégazages, conteneurs Bref, inconsciemment ou pas, l’homme etc.), voire parfois des quasi-épaves flottantes 6… Tous ces d’aujourd’hui a largement mutualisé ses déchets et gère problèmes ne sont pas récents. Le Nouvel Obs. écrivait en la ressource sans autre règle que la loi du plus fort (y 2000, N°1879, « 40 000 navires de plus de 300 tonneaux compris en U.E. [7] ). Il eut mieux valu une approche sillonnent en permanence les océans et un bateau rejoint systémique à l’échelle de la ressource et des déchets générés, tous les trois jours le fond des mers » et de rajouter, presque pour une gestion commune… Dans « la voie pour l’avenir en commentaire par anticipation à notre propos, « Mais plus de l’humanité » 2011, Edgard Morin explore des possibles que naufrages et dégazages sauvages, c’est la terre et ses réformes, rêves peut-être, utopies sans doute, mais la route fleuves poubelles qui polluent massivement la mer ». que l’humanité s’est tracée devra changer ; la réussite de 70% de la surface terrestre n’ont pour témoin de nos notre espèce a résidé dans sa capacité à coévoluer avec notre activités que les riverains de l’océan, ici une marée noire, là monde, pas sûr que nous gagnions à refuser plus longtemps une tempête trop brutale. Quid de l’impact de la surpêche sur d’en faire partie. la ressource halieutique ? Le désert du Sahara offre au Notre regard est en train de changer. La perception de marcheur l’incandescence d’un coucher de soleil ou le chant la finitude du milieu qui nous accueille (espace et temps), de dunes ; la solitude noire du fond des mers nous indiffère.
Recommended publications
  • Jahrbuch Der Kais. Kn. Geologischen Reichs-Anstalt
    Digitised by the Harvard University, Download from The BHL http://www.biodiversitylibrary.org/; www.biologiezentrum.at Die Meteoritensammlung des k. k. mineralogischen Hof kabinetes in Wien am I. Mai 1885. Von Dr. Aristides Breziua. Mit vier Tafe'.n (Nr. 11— V). Von dieser Saminluug, welche schon zu Chladm's Zeiten von hohem wissenschaftlichen Werthe war und seither inamer eine erste Stelle einnahm, ist seit dem Jahre 1872 keine vollständige Gewichts- liste veröffentlicht worden ; in dem genannten Jahre gab der damalige Director des Kabinetes, Hofrath G. Tschermak, ein Verzeichnisse), das er bei seinem Abgange vom Museum durch einen Nachtrag ^) bis Ende September 1877 vervollständigte. Als mir nach dem Ausscheiden Tschermak's von meinem seither verstorbenen Vorstande, Hofrath Ritter v. Hochstetter, die Obsorge über die Sammlung übertragen wurde, war es mein nächstes Ziel, die Fälle aus den letzten Jahr- zehnten zu vervollständigen und die vielen nur durch kleine Splitter von einem Gramm und darunter vertretenen Localitäten durch grössere Stücke zu repräsentiren, weil so kleine Fragmente die petrographische Beschaffenheit eines gemengten Körpers nicht genügend erkennen lassen. Es zeigte sich bald, dass ein solches Ziel nur durch Anlegung einer eigenen Meteoritentauschsammlung zu erreichen war, welche bei Gele- genheit grösserer Fälle oder Funde mit Doublettenmateriale zu billigen Preisen versehen werden konnte und dann die Erwerbung auch der selteneren und kostbareren Fallorte auf dem Tauschwege gestattete; denn die Meteoritenpreise sind gegen frühere Jahrzehnte so wesentlich gestiegen, dass eine Ergänzung der Sammlung durch vorwiegenden Ankauf nicht mehr möglich ist, während andererseits eine Abgabe an- sehnlicher Stücke aus der Hauptsammlung, wie sie unter Hoernes- Haidinger üblich war, eine gewisse Beweglichkeit der Sammlung hervorbringt, welche bei einem so kostbaren Materiale wohl vermieden werden soll ; auch ein Tausch mit kleinen, von den Hauptstücken abge- kueipten Splittern, wie er ebenfalls häufig stattfand, bringt nur einen ') Die Meteoriten des k, k.
    [Show full text]
  • James Hutton's Reputation Among Geologists in the Late Eighteenth and Nineteenth Centuries
    The Geological Society of America Memoir 216 Revising the Revisions: James Hutton’s Reputation among Geologists in the Late Eighteenth and Nineteenth Centuries A. M. Celâl Şengör* İTÜ Avrasya Yerbilimleri Enstitüsü ve Maden Fakültesi, Jeoloji Bölümü, Ayazağa 34469 İstanbul, Turkey ABSTRACT A recent fad in the historiography of geology is to consider the Scottish polymath James Hutton’s Theory of the Earth the last of the “theories of the earth” genre of publications that had begun developing in the seventeenth century and to regard it as something behind the times already in the late eighteenth century and which was subsequently remembered only because some later geologists, particularly Hutton’s countryman Sir Archibald Geikie, found it convenient to represent it as a precursor of the prevailing opinions of the day. By contrast, the available documentation, pub- lished and unpublished, shows that Hutton’s theory was considered as something completely new by his contemporaries, very different from anything that preceded it, whether they agreed with him or not, and that it was widely discussed both in his own country and abroad—from St. Petersburg through Europe to New York. By the end of the third decade in the nineteenth century, many very respectable geologists began seeing in him “the father of modern geology” even before Sir Archibald was born (in 1835). Before long, even popular books on geology and general encyclopedias began spreading the same conviction. A review of the geological literature of the late eighteenth and the nineteenth centuries shows that Hutton was not only remembered, but his ideas were in fact considered part of the current science and discussed accord- ingly.
    [Show full text]
  • Redacted for Privacy Roman A
    AN ABSTRACT OF THE THESIS OF THOMAS WARD OSBORN IIIfor theMASTER OF SCIENCE (Name) (Degree) inCHEMISTRY presented on August 13, 1968 (Major) (Date) Title: SODIUM AND MANGANESE HOMOGENEITY INCHONDRITIC METEORITES Abstract approved:Redacted for Privacy Roman A. Schmitt Four to six one-gram specimens separated by adistance of several inches were obtained from each of 23 largechondritic meteorites (approximately 1 kg each) representing theolivine bronzite (H5), olivine hypersthene (L6) and enstatite (E5)classifications. Each specimen was analyzed for Na and Mn viainstrumental neutron activation analysis to a precision of about 1. 5% usingthe 2. 75 Mev and 0.84 Mev photopeaks for Na and Mn, respectively. The olivine bronzite (H5) falls were found to exhibit aMn homogeneity dispersion range of 3. 9% to 1. 7% for thelarge individual meteorites; Na dispersion range was 5. 2% to 4. 9%.One group of olivine bronzite (H5) finds consisting of five large meteoritefrag- ments exhibited a Mn dispersion range of 0. 8% to Z.7%; Na dispersion range was 1. 8% to 4. 7%.Another group of olivine bronzite (H5) finds consisting of four large pieces showed a Mn dispersion rangefrom 3. 8% to 17 % ; Na dispersion range,3. 8% to 31 % .The olivine hypersthene (L6) falls showed a Mn dispersion of 1.4% to 3.4%; Na dispersion, 2. 0% to 7. 1 %.The olivine hypersthene finds showed a Mn dispersion range of 2.5% to 5. 3%; Na dispersion range, 1.5% to 7. 6 %.The single enstatite find showed a. relative dispersion of 45% for Mn and 28% for Na.
    [Show full text]
  • The Mineralogical Ma Z:Ine
    THE MINERALOGICAL MA Z:INE Al~I) JOURI~IAL OF THE 1V[II~IERALOGIC~L SOCIETY. No, 90. September, 1920. Vol. XIX. The classification of Meteorites. 1 By G. T. Pazoa, i~.A., I).Se., F.R.S. Keeper of the Mineral Department of the British Museum. [Read January 20, 1920.] HE first broad grouping of meteorites was into irons and stones T according as they consisted mainly of nickeliferous iron or of silicates. These were the two main divisions of the first really service- able classification as applied by Gustav Rose in 1862-4 to the collection of meteorites in the, University Museum of Berlin. In this classification the division of meteoric irons included as separate groups the pallasites and the mesosiderites, in which nickel-iron "rod silicates are present in about equal amounts; and the meteo~fic stones were for the first time split up into chondrites, or stones containing those curious rounded grains (chondrules) peculiar to meteorites, and non-Chondritic stones, which were divided according to mineralogical composition into the groups of eucrites, howardites, &c., still largely recognized. At about the same time (1868) Maskelyne used for the British Museum Collection the threefold division of meteorites into siderites or meteoric irons, consisting mainly of nickeliferous iron, siderolites, consisting of metal and silicates in about equal amounts, and aerolites or meteoric stones, consisting mainly of silicates. In Tschermak's modification of the Rose classification, published in 1888, the siderolites were kept, as by Maskelyne, distinct ti'om the irons, the irons themselves were for the first time separated into the groups of I Communicated by permission of the Trustees of the British Museum.
    [Show full text]
  • Introduction to Cosmochemistry
    Cambridge University Press 978-0-521-87862-3 - Cosmochemistry Harry Y. McSween and Gary R. Huss Excerpt More information 1 Introduction to cosmochemistry Overview Cosmochemistry is defined, and its relationship to geochemistry is explained. We describe the historical beginnings of cosmochemistry, and the lines of research that coalesced into the field of cosmochemistry are discussed. We then briefly introduce the tools of cosmochem- istry and the datasets that have been produced by these tools. The relationships between cosmochemistry and geochemistry, on the one hand, and astronomy, astrophysics, and geology, on the other, are considered. What is cosmochemistry? A significant portion of the universe is comprised of elements, ions, and the compounds formed by their combinations – in effect, chemistry on the grandest scale possible. These chemical components can occur as gases or superheated plasmas, less commonly as solids, and very rarely as liquids. Cosmochemistry is the study of the chemical composition of the universe and the processes that produced those compositions. This is a tall order, to be sure. Understandably, cosmo- chemistry focuses primarily on the objects in our own solar system, because that is where we have direct access to the most chemical information. That part of cosmochemistry encom- passes the compositions of the Sun, its retinue of planets and their satellites, the almost innumerable asteroids and comets, and the smaller samples (meteorites, interplanetary dust particles or “IDPs,” returned lunar samples) derived from them. From their chemistry, determined by laboratory measurements of samples or by various remote-sensing techniques, cosmochemists try to unravel the processes that formed or affected them and to fixthe chronology of these events.
    [Show full text]
  • Meteoryt Meteoryt
    BIULETYN MI£OŒNIKÓW METEORYTÓW METEORYTMETEORYT Nr 4 (40) Grudzieñ 2001 W numerze: Do kogo nale¿¹ meteoryty? Tagish Lake, Chassigny, Morasko, Gifhorn MARSMARS OZ£OCONYOZ£OCONY 4/2001 METEORYT 10 lat „Meteorytu”!str. 1 Od redaktora: Meteoryt (ISSN 1642-588X) – biuletyn dla mi³oœników mete- To wydanie „Meteorytu” nosi kolejny numer 40, co dla kwartalnika orytów wydawany przez Olsz- oznacza, ¿e koñczy siê 10 lat jego istnienia. Chcia³bym z tej okazji tyñskie Planetarium i Obserwa- podziêkowaæ najbardziej wytrwa³ym czytelnikom. Nie uda³o mi siê torium Astronomiczne, Muzeum odszukaæ pierwszej listy wysy³kowej, ale na drugiej, z 1993 roku Miko³aja Kopernika we From- widniej¹ nastêpuj¹ce osoby spoœród obecnych prenumeratorów: borku i Pallasite Press – wydaw- Jaros³aw Bandurowski, Janusz Bary³a, Tomasz Celeban, Leszek cê kwartalnika Meteorite, z któ- Chróst, Bartosz D¹browski, Jacek Dr¹¿kowski, Grzegorz Gnysiñski, rego pochodzi wiêksza czêœæ pu- Janusz Kosinski, Micha³ Kosmulski, Anna Kowarska, Jan blikowanych materia³ów. Kozakiewicz, Andrzej Manecki, Marek Micherdziñski, Marek Muciek, £ukasz Obroœlak, Micha³ Ostrowski, Dariusz Piasecki, Redaguje Andrzej S. Pilski Tadeusz Przylibski, Jerzy Puszcz, Krzysztof Socha, Katarzyna Sk³ad: Jacek Dr¹¿kowski Stanilewicz, Krzysztof Szczepaniuk, Marek Wierzchowiecki. Wtedy Druk: Jan, Lidzbark Warm. prenumeratorów by³o akurat 40. Dziêkujê, ¿e a¿ tylu wytrwa³o. Adres redakcji: Objêtoœæ tego numeru wzros³a do 44 stron, aby pomieœciæ skr. poczt. 6 wyczerpuj¹ce opracowanie na temat sytuacji prawnej meteorytów, 14-530 Frombork za które autorom bardzo dziêkujê. Niejednokrotnie styka³em siê tel. 0-55-243-7392 z pytaniem, do kogo nale¿y znaleziony meteoryt, i trudno by³o znaleŸæ e-mail: [email protected] na to odpowiedŸ.
    [Show full text]
  • 1 Introduction
    Cambridge University Press 978-0-521-84035-4 - Atlas of Meteorites Monica M. Grady, Giovanni Pratesi and Vanni Moggi Cecchi Excerpt More information 1 Introduction Solar System history started some 4567 million years ago specimens collected by government-funded expeditions are with the collapse of an interstellar molecular cloud to a given a year–number combination with a prefix recording protoplanetary disk (the solar nebula) surrounding a central the icefield from which they were retrieved (e.g., Allan Hills star (the Sun). Evolution of the Solar System continued 84001), whereas meteorites collected in hot deserts are through a complex process of accretion, coagulation, simply numbered incrementally by region (e.g., Dar al Gani agglomeration, melting, differentiation and solidification, 262). The rules for naming newly recovered meteorites have followed by bombardment, collision, break-up, brecciation been standardized by the Nomenclature Committee of the and re-formation, then to varying extents by heating, meta- Meteoritical Society, which also assigns names to meteorites morphism, aqueous alteration and impact shock. One of the and keeps track of the total number of reported specimens. key goals of planetary science is to understand the primary This information is available at http://www./pi.usra.edu/ materials from which the Solar System formed, and how meteor/metbull.php. they have been modified as the Solar System evolved. The Newly recovered meteorites are also reported in the last two decades have seen a greater understanding of the Meteoritical Bulletin (published in the journal Meteoritics processes that led to the formation of the Sun and Solar and Planetary Sciences, and updated regularly on the web- System.
    [Show full text]
  • United States National Museum
    U. S. NATIONAL MUSEUM BULLETIN 149, FRONTISPIECE GEORGE PERKINS MERRILL BORN. MAY 31. 1854. DIED. AUGUST 15, 1929 SMITHSONIAN INSTITUTION UiNITED STATES NATIONAL MUSEUM Bulletin 149 COMPOSITION AND STRUCTURE OF METEORITES BY GEORGE P. MERRILL Head Curator of Geology, United States National Museum UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1930 the Superintendent of For »ale by Documents, Washington, D. C. ------- Price 40 i ADVERTISEMENT The scientific publications of the National Museum include two series, known, respectively, as Proceedings and Bulletin. The Proceedings, begun in 1878, is intended primarily as a medium for the publication of original papers, based on the collections of the National Museum, that set forth newly acquired facts in biology, anthropology, and geology, with descriptions of new forms and revi- sions of limited groups. Copies of each paper, in pamphlet form, are distributed as published to libraries and scientific organizations and to specialists and others interested in the different subjects. The dates at which these separate papers are published are recorded in the table of contents of each of the volumes. The Bulletins, the first of which was issued in 1875, consist of a series of separate publications comprising monographs of large zoological groups and other general systematic treatises (occasionally in several volumes), faunal works, reports of expeditions, catalogues of type-specimens, special collections, and other material of similar nature. The majority of the volumes are octavo in size, but a cpiarto size has been adopted in a few instances in which large plates were regarded as indispensable. In the Bulletin series appear volumes under the heading Contributions from the United States National Herbarium, in octavo form, published by the National Museum since 1902, which contain papers relating to the botanical collections of the Museum.
    [Show full text]
  • Chondrites and Chondrules
    THIN SECTION OF CHONDRITE viewed through the microscope moved from their matrix in a chondrite. The sections were photo. (top) is interspersed with chondrules (colored bodies). The photo· graphed through polarizing filters, which here give the chondrules micrograph at bottom shows round chondrules that have been reo their color. Chondrules range from size of a pinhead to that of a pea. © 1963 SCIENTIFIC AMERICAN, INC Chondrites and Chondrules The first are stony m�eteorites; the second, the small spherical bodies they contain. There is evidence that the chondrules date back to the opening stages in the evolution of the solar system by John A. Wood n 1802 an English chemist named bodies occurring in chondrites soon came similar to those of the solar atmosphere. Edward C. Howard cautiously titled to be called chondrules. In 1930 the German spectroscopists I a paper he had written "Observa­ From the beginning investigators Ida and Walter Noddack pointed out tions on certain stony and metallic Sub­ have tended to believe that chondrites additional evidence. They found that stances, which at different Times are said are pieces of planetary matter in a very chondrites contain a more generous as­ to have fallen on the Earth." Howard primitive state. If this matter is not still sortment of trace elements in measur­ seems to have been the first person to in exactly the form it took when the able amounts than any type of earth examine carefully the internal structure planets first coalesced, it is not many rock does. In particular chondrites con­ of stony meteorites, and in all four speci­ evolutionary steps removed from that tain, mingled together, lithophile, chal­ mens he studied (stones from England, form.
    [Show full text]
  • The History of Meteoritics - Overview
    The history of meteoritics - overview G.J.H. McCALL 1, A.J. BOWDEN 2 & R.J. HOWARTH 3 144 Robert Franklin Way, South Cerney, Circencester, Gloucestershire GL7 5UD, UK (e-mail: joemccall @tiscali, co. uk) ZEarth and Physical Sciences, National Museums Liverpool, William Brown Street, Liverpool L3 8EN, UK (e-mail: Alan.Bowden@ liverpoolmuseums.org.uk) 3Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK (e-mail: [email protected]) Abstract: This volume was proposed after Peter Tandy and Joe McCall organized a 1-day meeting of the History of Geology Group, which is affiliated to the Geological Society, at the Natural History Museum in December 2003. This meeting covered the History of Meteori- tics up to 1920 and nine presentations were included, the keynote talk being given by Ursula Marvin. There was an enthusiastic audience of about 50, who expressed the view that this meeting should lead to a publication. Dr Cherry Lewis, the chairperson of the group, dis- cussed this with Joe McCall, who said that the material was too small for a Special Publi- cation, but it could be developed by expanding it, taking the history through the 20th century, when there was a revolution and immense expansion both in the scope of meteorite finds and the application of meteoritics to scientific research on a very broad front with the advent of the Space Age. This was agreed and a format of about 24 articles was designed, approaches being made to selected authors. The sections of this Special Publication relate to the early development of meteoritics as a science; collecting and museum collections; researches establishing the provenance of meteorites; and impact craters and tektites.
    [Show full text]
  • The History of Meteoritics - Overview
    Downloaded from http://sp.lyellcollection.org/ by guest on September 29, 2021 The history of meteoritics - overview G.J.H. McCALL 1, A.J. BOWDEN 2 & R.J. HOWARTH 3 144 Robert Franklin Way, South Cerney, Circencester, Gloucestershire GL7 5UD, UK (e-mail: joemccall @tiscali, co. uk) ZEarth and Physical Sciences, National Museums Liverpool, William Brown Street, Liverpool L3 8EN, UK (e-mail: Alan.Bowden@ liverpoolmuseums.org.uk) 3Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK (e-mail: [email protected]) Abstract: This volume was proposed after Peter Tandy and Joe McCall organized a 1-day meeting of the History of Geology Group, which is affiliated to the Geological Society, at the Natural History Museum in December 2003. This meeting covered the History of Meteori- tics up to 1920 and nine presentations were included, the keynote talk being given by Ursula Marvin. There was an enthusiastic audience of about 50, who expressed the view that this meeting should lead to a publication. Dr Cherry Lewis, the chairperson of the group, dis- cussed this with Joe McCall, who said that the material was too small for a Special Publi- cation, but it could be developed by expanding it, taking the history through the 20th century, when there was a revolution and immense expansion both in the scope of meteorite finds and the application of meteoritics to scientific research on a very broad front with the advent of the Space Age. This was agreed and a format of about 24 articles was designed, approaches being made to selected authors.
    [Show full text]
  • Niobium and Tantalum III
    Rediscovery of the Elements Niobium and Tantalum III James L. Marshall, Beta Eta 1971, and Virginia R. Marshall, Beta Eta 2003, Department of Chemistry, University of North Texas, Denton, TX 76203-5070, [email protected] Figure 1. Map of Berlin. The Apotheke zum weissen Schwan (Apothecary of the White Swan) no longer In the last issue of The HEXAGON 1j we exists; it was across the street from the present Heilige Geist Kirche (Church of the Holy Ghost), which still described how in 1809 William Hyde Wollaston stands today, Spandauer Straße 1, N52° 31.26 E13° 24.19. The Apotheke zum Bären (Apothecary of the (1766–1828) proclaimed 2 the two elements Bear) no longer exists; it was next to the present Nikolaikirche (Nicholas church), Probststraße - N52° columbium (known today as niobium), discov- 31.04 E13° 24.46. The Akadamiehaus (Old Berlin Akademie) was at present 28 Dorotheenstraße (original- ered in 1801 by Charles Hatchett (1765–1847), ly 7 Letzten Straße, then 10 Dorotheenstraße); now a parking garage - N52° 31.14 E13° 23.46. The and tantalum, discovered in 1802 by Anders Humboldt Universität zum Berlin (Berlin University) is located at Unter den Linden 6 - N52° 31.06 E13° Ekeberg (1767–1813), were identical. However, 23.63, with statues of Wilhelm Humboldt, founder of the university (located at “1”) and his brother there was a lingering suspicion among some Alexander Humboldt, the biogeological explorer (located at “2”). chemists that something was not quite right, because the densities of the source minerals eponymous Rose’s metal, a low-melting apothecary, and moved on to the Berlin columbite (from Connecticut) and tantalite (100°C) alloy of bismuth, tin, and lead.4a In Academy in 1800, becoming professor of the (from Finland) were different (5.918 and 7.953, 1771, Martin Heinrich Klaproth (1743–1817), University of Berlin when it was founded by the respectively).
    [Show full text]