Soltis Apps5

Total Page:16

File Type:pdf, Size:1020Kb

Soltis Apps5 Soltis et al—American Journal of Botany 98(4):704-730. 2011. – Data Supplement S5 – page 1 Soltis, Douglas E., Stephen A. Smith, Nico Cellinese, Kenneth J. Wurdack, David C. Tank, Samuel F. Brockington, Nancy F. Refulio-Rodriguez, Jay B. Walker, Michael J. Moore, Barbara S. Carlsward, Charles D. Bell, Maribeth Latvis, Sunny Crawley, Chelsea Black, Diaga Diouf, Zhenxiang Xi, Catherine A. Rushworth, Matthew A. Gitzendanner, Kenneth J. Sytsma, Yin-Long Qiu, Khidir W. Hilu, Charles C. Davis, Michael J. Sanderson, Reed S. Beaman, Richard G. Olmstead, Walter S. Judd, Michael J. Donoghue, and Pamela S. Soltis. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98(4): 704-730. Appendix S5. The maximum likelihood majority-rule consensus from the cpDNA analysis shown as a phylogram. Numbers above branches are bootstrap percentages. Homalanthus 99 99 Hura 95 Euphorbia Pimelodendron 9 Codiaeum 100 2862 Trigonostemon Croton 47 Suregada Tetrorchidium 73 100Omphalea Endospermum Lasiocroton 79 70 35 Dalechampia 27 Acalypha 94 Ricinus 100 Spathiostemon 10053 Conceveiba 30 Moultonianthus Manihot 100 100 Hevea Neoscortechinia Clutia 100 100 Pera Pogonophora 14 Dicella 100 100Malpighia 100Thryallis 100 Acridocarpus 100 Byrsonim a Bergia 100 Elatine Prockia 100 Abatia 95 Flacourtia 100 Dovyalis 100 Salix 100 Populus 7 64 100100Idesia Poliothyrsis 100 Scyphostegia Casearia 100 100 Lunania Lacistema 100 76 Lozania Passiora 100 93 Paropsia 100 Turnera Malesherbia Acharia 54 97 100Kiggelaria 98 Pangium Hydnocarpus 100 Carpotroche 94 100Caloncoba Erythrospermum Hybanthus 58 88 71 Viola 100 Hymenanthera 2 100 Leonia 56 Rinorea Goupia Hypericum 100 86 Triadenu m 100 Vismia 100 Cratoxylum Marathrum 100 86 Podostemum Mammea 90 100Calophyllum 71 Mesua Pentaphalangium 99 100 100 Garcinia Clusia Archytaea 76 100 Bonnetia Klainedoxa 100 Irvingia Hirtella 96 Licania 100 Atuna 100 99 15 Chrysobalanus Euphronia 100 Dichapetalum 100 100 100 Tapura Trigonia 11 Balanops Ochthocosmus Reinwardtia 12 100 10 68 Linum 100Durandea 41 Hugonia Bhesa Austrobuxus 95 94Dissiliaria 100 Micrantheum 98 Petalostigma Tetracoccus 100100Androstachys Podocalyx Lachnostylis 92 89 69 Croizatia 100 Phyllanthus 100 Heywoodia Bischoa 100 21 Aporusa Cespedesia 92 75 Sauvagesia 51 99 Ochna 7 95 Luxemburgia 100 Medusagyne Quiina 100 Touroulia Centroplacus 42 Ctenolophon 7 Carallia 77 100 Bruguiera 98 Rhizophora 100 100 Paradrypetes 2 Erythroxylum 8 Galearia 100 100 Panda Microdesmis Putranjiva 100 100 Drypetes Lophopyxis Caryocar Vantanea 65 100Humiria 83 Sacoglottis Brexia 96 59 Elaeodendron 17Maytenu s Euonymus 58 51Paxistim a 100 Plagiopteron Tripterygium 100 100 Celastrus Stackhousia 60 100 99 Denhamia Siphonodo n 100 Parnassia 100 Ruptiliocarpon 100 Lepidobotrys Elaeocarpus 98 96 Crinodendron Sloanea 60 Geissois 100 10056 Eucryphia Cephalotus Brunellia 100 Averrhoa 70 85Dapania 100 Oxalis 39 Connarus 100 Rourea Afrostyrax 100 Hua Alnus 97 53 Casuarina 100 Myrica Juglans 49 100 Quercus 100 100 100 Chrysolepis Fagus Nothofagus Cucumis 87 100Cucurbita 60 Begonia 69 45 Datisca 100 Coriaria Anisophyllea Pilea 100 90 95 Urtica 100 Morus Cannabis 100 100 Celtis 100 100 Zelkova Rhamnus 100 Ceanothus 10064 Elaeagnu s Prunus 100 100 Spiraea Pisum 94 100 Medicago 99 Cicer 100 Lotus 100 Glycine 60 Albizia 57 Stylobasium 100 Quillaja Polygala Guaiacum 100 Krameria Arabidopsis 100 100 Brassica 100 Capparis 100 Reseda 100 Batis 16 Floerkea 100 Tropaeolum Carica Anisoptera 100 100 48 100 Helianthemum 3 Bixa Sterculia 100 100 100 Gossypium 54 Thymelaea Tapiscia Dipentodon Citrus 100 74 100 Ailanthus 83 Swietenia 40 Cupaniopsis 92 Schinu s 100 100 Bursera Nitraria 89 Picramnia Ixerba 100 99 Strasburgeria Aphloia 100 Crossosoma 99 100Stachyurus Staphylea Olinia 38 100 100 Crypteronia Clidemia 100 Myrtus 100 68 100 Eucalyptus 100 Qualea 100 Lythrum 100 62 97 Oenothera Terminalia Melianthus 100 Viviania Geranium Haloragis 100 100 Myriophyllum 100 Penthorum 100 Tetracarpaea 100 Aphanopetalum Kalanchoe 100 Sedum 82 Saxifraga 98 97 97 Heuchera 97 Ribes Choristylis 100 Itea Corylopsis 100 89 Hamamelis 70 Rhodoleia 100 65 Exbucklandia Altingia 100 9792 Liquidambar Cercidiphyllum 5781 Daphniphyllum Paeonia Peridiscus 100 Soyauxia Leea 100 Vitis Valeriana 100 Centranthus 100 Valerianella 100 100 Fedia 100Nardostachys Patrinia 100 Pterocephalodes 74 100 Scabiosa 100 Dipsacus 68 Triplostegia Acanthocalyx 81 100Morina 81 Cryptothladia 100Zabelia Dipelta 67 86Kolkwitzia 100Abelia 100 Linnaea Triosteum 65 45Leycesteria 100100Symphoricarpos 69 Lonicera Heptacodium Weigela 100 100 Diervilla Tetradoxa 70 100Adoxa 100 Sinadoxa 83100Sambucus Viburnum Paracryphia 100 97 Sphenostemon Quintinia Coriandrum 100 Angelica 100 Anethum 100100Apium 100 Daucus 100 Heteromorph a Arctopus 100100 Sanicula 99 Azorella Platysace 94 97 Mackinlaya 72 Myodocarpus 100 Delarbrea Tetraplasandra 100 33Pseudopana x 98 Polyscias 23 Tetrapanax 93 5136Scheera Hedera 10095Cussonia Aralia 10099 86 Panax 78 Hydrocotyle Sollya 100 Pittosporum 100Griselinia Torricellia 91 100 100Melanophylla Aralidium Pennantia 42 Desfontainia 100 Columellia 73 Berzelia 100 Brunia 100Valdivia 100Forgesia 56 Escallonia 51 Eremosyne 97 Anopterus Tribeles 31 Polyosma Guizotia 78 100Helianthus Tagetes 100 Lactuca 100 100100Cichorium Tragopogon 100Echinops 96 Gerbera Barnadesia 100 Acicarpha 100 55 100Moschopsis 100 Boopis Goodenia 100 100 Scaevola 100 Dampiera Villarsia 100 Nymphoide s 100 55 Menyanthes 100 Fauria Stylidium 100 100 Forstera 98 Donatia Wittsteinia 99 94Alseuosmia 100Crispiloba 100 Platyspermation 96 Argophyllum 100 100 51 Corokia Phelline Pentaphragma Dialypetalum 100 100 62 Lobelia 16 Pseudonemacladus Trachelium 100 100 Campanula Cyphia 93 100 Cuttsia 100 100 Abrophyllum 100 Carpodetus Roussea Cardiopteris 77 100 Gonocaryum Citronella 100 Gomphandra 86 100Irvingbaileya 100 Grisollea Phyllonoma 100 100 Helwingia Ilex Pinguicula 62 44 Acanthus 67 Byblis 12 Lamium Verbena 38 Martynia Pedicularis 4396 90 Phryma 19 Paulownia 9523 Catalpa 100 Thomandersia 80 Sesamum 75 Scrophularia 54 Halleria 100 Antirrhinum Saintpaulia 34 10096Peltanthera Calceolaria 100 Polypremum Jasminum 100 100 Syringa 61 Plocosperm a Ehretia 71 100 Hydrophyllum Borago Atropa 88 100 Solanum 26 100 Nicotiana Cuscut a 100 100 Ipomoea Hydrolea 100 92 Sphenoclea Montinia Gentiana 41 100 100 91 Exacum 10 Nerium 100 Gelsemium 94 Strychnos 100 Galium 25 100 100 Coea Luculia Vahlia 100 Eucommia 100 40 Garrya Icacina Oncotheca Arbutus 89 89 Cyrilla 73 Clethra 21 Actinidia Styrax 75 27 Galax 9 Camellia 8 Ternstroemia 97 Diospyros Androsace 100 48 100 Primula 100 100 Clavija 31 Maesa Couroupita 50 4611 Manilkara Polemonium 64 Fouquieria Tetramerista 97 79 100 Impatiens Marcgravia Sarracenia Mentzelia 100 100 Petalonyx 62 Hydrangea 17 Nyssa 100 Curtisia Cornus Pereskia 100 80 Opuntia 100 Portulaca Talinum Calyptrotheca 3199 61 Alluaudia 10055 Basella Halophytum 100 Claytonia 60 84 Mollugo Limeum Mirabilis 100 52 Bougainvillea 100 37 Rivina 100 Sarcobatus 75 Phytolacca 90 Gisekia 97 Delosperma 100 100 Lampranthus Barbeuia 100 Stegnosperma 76 Beta 57 100 Celosia 100 100 Spinacia 100 Phaulothamnus Stellaria 100 Physena 100 100 Asteropeia Simmondsia 94 Rhabdodendron Bistorta 93 100 Fagopyrum 100 100 Polygonum Limonium 100 91 Plumbago Frankenia 100 Tamarix Triphyophyllum 100 100 100 100 Dioncophyllum 100 Ancistrocladus 100 100 Drosophyllum 68 Drosera 75 Nepenthes Berberidopsis 100 Aextoxicon Santalum 92 Opilia 100 Schoepa 91 62 Gaiadendron 100 Ximenia Heisteria Hibbertia 100 100 100 Dillenia Tetracera Gunnera 100 Myrothamnus Pachysandra 100 100 Buxus Didymeles 100Tetracentron Trochodendron Petrophile 100 100 Roupala 100 Platanus 65 Nelumbo Meliosma 100 100 Sabia Ranunculus 6 100 Glaucidium 99 Hydrastis Caulophyllum 100 98 Nandina Menispermum 100 Tinospora 88 100 Lardizabala 99 100Decaisnea 4698 Sargentodoxa Circaeaster Hypecoum 100 97 100 Dicentra Eschscholzia Euptelea Ceratophyllum Saccharum 100 26 Zea 100 Oryza 91 Hordeum Stegolepis 100 Sparganium 100 90 Typha Vriesea Maranta 100 80 100 Musa 100 Strelitzia Philydrum 94 56 Tradescantia Elaeis 100 95 Chamaedorea Beaucarnea 96 8 69 Asparagus 10 Lomandra Agave 100 100 Yucca 100 Allium 85 100 Xanthorrhoea Iris 99 Oncidium 100 9 Phalaenopsis Blandfordia 100 Lilium 100 100 Smilax Trillium Croomia 100 95 Carludovica Dioscorea 100 Alism a 100 Hydrocharis 100 Triglochin 100 Potamogeton 42 Xanthosoma 48 100 100 Spathiphyllum 100100 Lemna Orontium Pleea 100 Toeldia Acorus 100 Hedycarya 100 Peumus 66 Hernandia 100 99 Gyrocarpus Cryptocarya 100 Laurus 97 Atherosperma 100 97 Daphnandra 10090 Gomortega Siparuna Calycanthus 100 Idiospermum Cananga 100 99 99 Annona 37 Eupomatia Degeneria 76 99 Galbulimima Liriodendron 100 100 Magnolia Mauloutchia 100 Myristica 96 100 Thottea 100 100 Aristolochia 58 Lactoris Saruma 100 Houttuynia 100 Saururus 100 Piper 100 6182 Peperomia Tasmannia 100 100Drimys 100 Takhtajania Canella 100 Cinnamodendron 100 Sarcandra 100 100 Chloranthus 100 Ascarina Hedyosmum Schisandra 100 100 Kadsura 100 Illicium 100 Trimenia Austrobaileya Nymphaea 79 Nuphar 100 Brasenia 100 100 Cabomba 78 Trithuria Amborella Cycas 100 98 Zamia 6 Ginkgo 23 Pinus Podocarpus 41 100 Metasequoia Gnetum 100 Welwitschia 0.2.
Recommended publications
  • Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
    TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees.
    [Show full text]
  • Lemur News 7 (2002).Pdf
    Lemur News Vol. 7, 2002 Page 1 Conservation International’s President EDITORIAL Awarded Brazil’s Highest Honor In recognition of his years of conservation work in Brazil, CI President Russell Mittermeier was awarded the National Are you in favor of conservation? Do you know how conser- Order of the Southern Cross by the Brazilian government. vation is viewed by the academic world? I raise these ques- Dr. Mittermeier received the award on August 29, 2001 at tions because they are central to current issues facing pri- the Brazilian Ambassador's residence in Washington, DC. matology in general and prosimians specifically. The National Order of the Southern Cross was created in The Duke University Primate Center is in danger of being 1922 to recognize the merits of individuals who have helped closed because it is associated with conservation. An inter- to strengthen Brazil's relations with the international com- nal university review in 2001 stated that the Center was too munity. The award is the highest given to a foreign national focused on conservation and not enough on research. The re- for service in Brazil. viewers were all researchers from the "hard" sciences, but For the past three decades, Mittermeier has been a leader in they perceived conservation to be a negative. The Duke ad- promoting biodiversity conservation in Brazil and has con- ministration had similar views and wanted more emphasis ducted numerous studies on primates and other fauna in the on research and less on conservation. The new Director has country. During his time with the World Wildlife Fund three years to make that happen.
    [Show full text]
  • Early Evolution of the Angiosperm Clade Asteraceae in the Cretaceous of Antarctica
    Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica Viviana D. Barredaa,1,2, Luis Palazzesia,b,1, Maria C. Telleríac, Eduardo B. Oliverod, J. Ian Rainee, and Félix Forestb aDivisión Paleobotánica, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia,” Consejo Nacional de Investigaciones Cientificas y Técnicas, Buenos Aires C1405DJR, Argentina; bJodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom; cLaboratorio de Sistemática y Biología Evolutiva, Museo de La Plata, La Plata B1900FWA, Argentina; dCentro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Cientificas y Técnicas, 9410 Ushuaia, Tierra del Fuego, Argentina; and eDepartment of Palaeontology, GNS Science, Lower Hutt 5040, New Zealand Edited by Michael J. Donoghue, Yale University, New Haven, CT, and approved July 15, 2015 (received for review December 10, 2014) The Asteraceae (sunflowers and daisies) are the most diverse Here we report fossil pollen evidence from exposed Campanian/ family of flowering plants. Despite their prominent role in extant Maastrichtian sediments from the Antarctic Peninsula (Fig. 1, Fig. S1, terrestrial ecosystems, the early evolutionary history of this family and SI Materials and Methods, Fossiliferous Localities)(7)thatradi- remains poorly understood. Here we report the discovery of a cally changes our understanding of the early evolution of Asteraceae. number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back Results and Discussion the timing of assumed origin of the family. Reliably dated to ∼76–66 The pollen grains reported here and discovered in the Late Cre- Mya, these specimens are about 20 million years older than previ- taceous of Antarctica are tricolporate, microechinate, with long ously known records for the Asteraceae.
    [Show full text]
  • Dry Forest Trees of Madagascar
    The Red List of Dry Forest Trees of Madagascar Emily Beech, Malin Rivers, Sylvie Andriambololonera, Faranirina Lantoarisoa, Helene Ralimanana, Solofo Rakotoarisoa, Aro Vonjy Ramarosandratana, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet & Vololoniaina Jeannoda Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK. © 2020 Botanic Gardens Conservation International ISBN-10: 978-1-905164-75-2 ISBN-13: 978-1-905164-75-2 Reproduction of any part of the publication for educational, conservation and other non-profit purposes is authorized without prior permission from the copyright holder, provided that the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without prior written permission from the copyright holder. Recommended citation: Beech, E., Rivers, M., Andriambololonera, S., Lantoarisoa, F., Ralimanana, H., Rakotoarisoa, S., Ramarosandratana, A.V., Barstow, M., Davies, K., Hills, BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) R., Marfleet, K. and Jeannoda, V. (2020). Red List of is the world’s largest plant conservation network, comprising more than Dry Forest Trees of Madagascar. BGCI. Richmond, UK. 500 botanic gardens in over 100 countries, and provides the secretariat to AUTHORS the IUCN/SSC Global Tree Specialist Group. BGCI was established in 1987 Sylvie Andriambololonera and and is a registered charity with offices in the UK, US, China and Kenya. Faranirina Lantoarisoa: Missouri Botanical Garden Madagascar Program Helene Ralimanana and Solofo Rakotoarisoa: Kew Madagascar Conservation Centre Aro Vonjy Ramarosandratana: University of Antananarivo (Plant Biology and Ecology Department) THE IUCN/SSC GLOBAL TREE SPECIALIST GROUP (GTSG) forms part of the Species Survival Commission’s network of over 7,000 Emily Beech, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet and Malin Rivers: BGCI volunteers working to stop the loss of plants, animals and their habitats.
    [Show full text]
  • Indigenous Plant Naming and Experimentation Reveal a Plant–Insect Relationship in New Zealand Forests
    Received: 23 February 2020 Revised: 10 August 2020 Accepted: 25 August 2020 DOI: 10.1111/csp2.282 CONTRIBUTED PAPER Indigenous plant naming and experimentation reveal a plant–insect relationship in New Zealand forests Priscilla M. Wehi1,2 | Gretchen Brownstein2 | Mary Morgan-Richards1 1School of Agriculture and Environment, Massey University, Palmerston North, Abstract New Zealand Drawing from both Indigenous and “Western” scientific knowledge offers the 2Manaaki Whenua Landcare Research, opportunity to better incorporate ecological systems knowledge into conserva- Dunedin, New Zealand tion science. Here, we demonstrate a “two-eyed” approach that weaves Indige- Correspondence nous ecological knowledge (IK) with experimental data to provide detailed and Priscilla M. Wehi, Manaaki Whenua comprehensive information about regional plant–insect interactions in Landcare Research, 764 Cumberland New Zealand forests. We first examined Maori names for a common forest Street, Dunedin 9053, New Zealand. Email: [email protected], tree, Carpodetus serratus, that suggest a close species interaction between an [email protected] herbivorous, hole-dwelling insect, and host trees. We detected consistent – Funding information regional variation in both Maori names for C. serratus and the plant insect Foundation for Research, Science and relationship that reflect Hemideina spp. abundances, mediated by the presence Technology; Royal Society of New Zealand of a wood-boring moth species. We found that in regions with moths C. serratus trees are home to more weta than adjacent forest species and that these weta readily ate C. serratus leaves, fruits and seeds. These findings con- firm that a joint IK—experimental approach can stimulate new hypotheses and reveal spatially important ecological patterns.
    [Show full text]
  • Ancistrocladaceae
    Soltis et al—American Journal of Botany 98(4):704-730. 2011. – Data Supplement S2 – page 1 Soltis, Douglas E., Stephen A. Smith, Nico Cellinese, Kenneth J. Wurdack, David C. Tank, Samuel F. Brockington, Nancy F. Refulio-Rodriguez, Jay B. Walker, Michael J. Moore, Barbara S. Carlsward, Charles D. Bell, Maribeth Latvis, Sunny Crawley, Chelsea Black, Diaga Diouf, Zhenxiang Xi, Catherine A. Rushworth, Matthew A. Gitzendanner, Kenneth J. Sytsma, Yin-Long Qiu, Khidir W. Hilu, Charles C. Davis, Michael J. Sanderson, Reed S. Beaman, Richard G. Olmstead, Walter S. Judd, Michael J. Donoghue, and Pamela S. Soltis. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98(4): 704-730. Appendix S2. The maximum likelihood majority-rule consensus from the 17-gene analysis shown as a phylogram with mtDNA included for Polyosma. Names of the orders and families follow APG III (2009); other names follow Cantino et al. (2007). Numbers above branches are bootstrap percentages. 67 Acalypha Spathiostemon 100 Ricinus 97 100 Dalechampia Lasiocroton 100 100 Conceveiba Homalanthus 96 Hura Euphorbia 88 Pimelodendron 100 Trigonostemon Euphorbiaceae Codiaeum (incl. Peraceae) 100 Croton Hevea Manihot 10083 Moultonianthus Suregada 98 81 Tetrorchidium Omphalea 100 Endospermum Neoscortechinia 100 98 Pera Clutia Pogonophora 99 Cespedesia Sauvagesia 99 Luxemburgia Ochna Ochnaceae 100 100 53 Quiina Touroulia Medusagyne Caryocar Caryocaraceae 100 Chrysobalanus 100 Atuna Chrysobalananaceae 100 100 Licania Hirtella 100 Euphronia Euphroniaceae 100 Dichapetalum 100
    [Show full text]
  • University of Birmingham How Deep Is the Conflict Between Molecular And
    University of Birmingham How deep is the conflict between molecular and fossil evidence on the age of angiosperms? Coiro, Mario; Doyle, James A.; Hilton, Jason DOI: 10.1111/nph.15708 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Coiro, M, Doyle, JA & Hilton, J 2019, 'How deep is the conflict between molecular and fossil evidence on the age of angiosperms?', New Phytologist, vol. 223, no. 1, pp. 83-99. https://doi.org/10.1111/nph.15708 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility 14/01/2019 This is the peer reviewed version of the following article: Coiro, M. , Doyle, J. A. and Hilton, J. (2019), How deep is the conflict between molecular and fossil evidence on the age of angiosperms?. New Phytol. , which has been published in final form at doi:10.1111/nph.15708. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
    [Show full text]
  • Analysis of Recent Interception Records Reveals Frequent Transport of Arboreal Ants and Potential Predictors for Ant Invasion in Taiwan
    insects Article Analysis of Recent Interception Records Reveals Frequent Transport of Arboreal Ants and Potential Predictors for Ant Invasion in Taiwan 1 2 3 4,5,6 7, Ching-Chen Lee , Yi-Ming Weng , Li-Chuan Lai , Andrew V. Suarez , Wen-Jer Wu y , 8, 9,10,11, , Chung-Chi Lin y and Chin-Cheng Scotty Yang * y 1 Center for Ecology and Environment, Department of Life Science, Tunghai University, Taichung 40704, Taiwan; [email protected] 2 Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA; [email protected] 3 Department of Ecological Humanities, Providence University, Taichung 43301, Taiwan; [email protected] 4 Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; [email protected] 5 Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA 6 Beckman Institute for Science and Technology, Urbana-Champaign, Urbana, IL 61801, USA 7 Department of Entomology, National Taiwan University, Taipei 10617, Taiwan; [email protected] 8 Department of Biology, National Changhua University of Education, Changhua 50007, Taiwan; [email protected] 9 Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan 10 Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA 11 Department of Entomology, National Chung Hsing University, Taichung 402204, Taiwan * Correspondence: [email protected]; Tel.: +81-774-38-3874 These authors contributed equally to this work. y Received: 22 April 2020; Accepted: 4 June 2020; Published: 8 June 2020 Abstract: We uncovered taxonomic diversity, country of origin and commodity type of intercepted ants at Taiwanese borders based on an 8 year database of 439 interception records.
    [Show full text]
  • Phylogeny and Phylogenetic Nomenclature of the Campanulidae Based on an Expanded Sample of Genes and Taxa
    Systematic Botany (2010), 35(2): pp. 425–441 © Copyright 2010 by the American Society of Plant Taxonomists Phylogeny and Phylogenetic Nomenclature of the Campanulidae based on an Expanded Sample of Genes and Taxa David C. Tank 1,2,3 and Michael J. Donoghue 1 1 Peabody Museum of Natural History & Department of Ecology & Evolutionary Biology, Yale University, P. O. Box 208106, New Haven, Connecticut 06520 U. S. A. 2 Department of Forest Resources & Stillinger Herbarium, College of Natural Resources, University of Idaho, P. O. Box 441133, Moscow, Idaho 83844-1133 U. S. A. 3 Author for correspondence ( [email protected] ) Communicating Editor: Javier Francisco-Ortega Abstract— Previous attempts to resolve relationships among the primary lineages of Campanulidae (e.g. Apiales, Asterales, Dipsacales) have mostly been unconvincing, and the placement of a number of smaller groups (e.g. Bruniaceae, Columelliaceae, Escalloniaceae) remains uncertain. Here we build on a recent analysis of an incomplete data set that was assembled from the literature for a set of 50 campanulid taxa. To this data set we first added newly generated DNA sequence data for the same set of genes and taxa. Second, we sequenced three additional cpDNA coding regions (ca. 8,000 bp) for the same set of 50 campanulid taxa. Finally, we assembled the most comprehensive sample of cam- panulid diversity to date, including ca. 17,000 bp of cpDNA for 122 campanulid taxa and five outgroups. Simply filling in missing data in the 50-taxon data set (rendering it 94% complete) resulted in a topology that was similar to earlier studies, but with little additional resolution or confidence.
    [Show full text]
  • Campanulaceae): Review, Phylogenetic and Biogeographic Analyses
    PhytoKeys 174: 13–45 (2021) A peer-reviewed open-access journal doi: 10.3897/phytokeys.174.59555 RESEARCH ARTICLE https://phytokeys.pensoft.net Launched to accelerate biodiversity research Systematics of Lobelioideae (Campanulaceae): review, phylogenetic and biogeographic analyses Samuel Paul Kagame1,2,3, Andrew W. Gichira1,3, Ling-Yun Chen1,4, Qing-Feng Wang1,3 1 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China 4 State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China Corresponding author: Ling-Yun Chen ([email protected]); Qing-Feng Wang ([email protected]) Academic editor: C. Morden | Received 12 October 2020 | Accepted 1 February 2021 | Published 5 March 2021 Citation: Kagame SP, Gichira AW, Chen L, Wang Q (2021) Systematics of Lobelioideae (Campanulaceae): review, phylogenetic and biogeographic analyses. PhytoKeys 174: 13–45. https://doi.org/10.3897/phytokeys.174.59555 Abstract Lobelioideae, the largest subfamily within Campanulaceae, includes 33 genera and approximately1200 species. It is characterized by resupinate flowers with zygomorphic corollas and connate anthers and is widely distributed across the world. The systematics of Lobelioideae has been quite challenging over the years, with different scholars postulating varying theories. To outline major progress and highlight the ex- isting systematic problems in Lobelioideae, we conducted a literature review on this subfamily. Addition- ally, we conducted phylogenetic and biogeographic analyses for Lobelioideae using plastids and internal transcribed spacer regions.
    [Show full text]
  • Review of the Sporoderm Ultrastructure of Members of the Asterales S
    ISSN 0031-0301, Paleontological Journal, 2006, Vol. 40, Suppl. 5, pp. S656–S663. © Pleiades Publishing, Inc., 2006. Review of the Sporoderm Ultrastructure of Members of the Asterales S. V. Polevova Biological Faculty, Moscow State University, Leninskie gory 1, Moscow, 119992 Russia e-mail: [email protected] Received March 23, 2006 Abstract—Palynomorphological characteristics of the order Asterales are discussed. Particular attention is paid to the pollen morphology of basal families of this group and to that of problematic taxa that are considered as sister groups to the group under study. Ultrastructurally similar sporoderms of several families, including (1) Asteraceae, Calyceraceae, and Goodeniaceae; (2) Campanulaceae, Phellinaceae, and Menyanthaceae; (3) Rousseaceae, Abrophyllaceae, and Columelliaceae, are described. Pollen grains of Alseuosmiaceae and Stylidiaceae show unique ultrastructural features of the exine. DOI: 10.1134/S0031030106110128 Key words: Asterales, pollen grains, ultrastructure, phylogenetic systematics. INTRODUCTION MATERIAL AND METHODS At different times, concepts of the group of Aster- Pollen grains of 18 members of 12 families were aceae and its relatives has been considered to include studied. The material was received from the herbarium different families. These variants concerned a distinct of Komarov Botanical Institution of the Russian Acad- circle of taxa. Thus, the system of Takhatajan (1997) emy of Sciences, St. Petersburg. included the subclass Asteridae with 14 families; the (1) Family Goodeniaceae: Brunonia australis system of Thorne (2000) included the suborder Astera- R. Brown and Dampiera eriocephala Vriese. nae with nine families. (2) Family Columelliaceae: Columellia sericea Recently, relationships of Asteraceae have been sig- F.A. Humbolt, A.J.A. Bonpland et C.S.
    [Show full text]
  • Early Evolution of the Angiosperm Clade Asteraceae in the Cretaceous of Antarctica
    Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica Viviana D. Barredaa,1,2, Luis Palazzesia,b,1, Maria C. Telleríac, Eduardo B. Oliverod, J. Ian Rainee, and Félix Forestb aDivisión Paleobotánica, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia,” Consejo Nacional de Investigaciones Cientificas y Técnicas, Buenos Aires C1405DJR, Argentina; bJodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom; cLaboratorio de Sistemática y Biología Evolutiva, Museo de La Plata, La Plata B1900FWA, Argentina; dCentro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Cientificas y Técnicas, 9410 Ushuaia, Tierra del Fuego, Argentina; and eDepartment of Palaeontology, GNS Science, Lower Hutt 5040, New Zealand Edited by Michael J. Donoghue, Yale University, New Haven, CT, and approved July 15, 2015 (received for review December 10, 2014) The Asteraceae (sunflowers and daisies) are the most diverse Here we report fossil pollen evidence from exposed Campanian/ family of flowering plants. Despite their prominent role in extant Maastrichtian sediments from the Antarctic Peninsula (Fig. 1, Fig. S1, terrestrial ecosystems, the early evolutionary history of this family and SI Materials and Methods, Fossiliferous Localities)(7)thatradi- remains poorly understood. Here we report the discovery of a cally changes our understanding of the early evolution of Asteraceae. number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back Results and Discussion the timing of assumed origin of the family. Reliably dated to ∼76–66 The pollen grains reported here and discovered in the Late Cre- Mya, these specimens are about 20 million years older than previ- taceous of Antarctica are tricolporate, microechinate, with long ously known records for the Asteraceae.
    [Show full text]