Contribution to the Geology of the So.Uthern Part Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Norway and Its Marine Areas - a Brief Description of the Sea Floor
No.3 2003 IN FOCUS Norway and its marine areas - a brief description of the sea floor From the deep sea to the fjord floor Norwegian waters comprise widely differing environments - from the Bjørnøyrenna deep sea via the continental slope and continental shelf to the coastal zone with its strandflat, archipelagos and fjords.This constitutes a geologi- cal diversity that is unique in a European context. An exciting geological history lies Trænadjupet behind this diversity - a development that has taken place over more than 400 million years.The continents con- Vøringplatået sist of plates of solidified rock that float on partially molten rock, and these plates move relative to one another.Where they collide, the Earth's crust is folded and mountain chains are created.Where they drift apart, deep oceans form and new sea Storegga floor is created along rifts because molten rock (magma) streams up from below. A good example is the Mid-Atlantic Ridge, including Iceland, a which is a result of Greenland and n n e Europe drifting from each other at a r e rate of about 2 cm a year. k s r o The plates on which Norway and N Greenland rest collided more than 400 million years ago and formed mountain chains on either side of a Skagerrak shallow sea. Both Greenland and Norway are remnants of worn down mountain chains. Between these mountain chains, the shallow sea Figure 1.Norway and its neighbouring seas. gradually filled with sediments derived from the erosion of the chains.These sedi- ments became transformed into sandstones, shales and limestones and it is in these rocks we now find oil and gas on the Norwegian continental shelf. -
WEST NORWEGIAN FJORDS UNESCO World Heritage
GEOLOGICAL GUIDES 3 - 2014 RESEARCH WEST NORWEGIAN FJORDS UNESCO World Heritage. Guide to geological excursion from Nærøyfjord to Geirangerfjord By: Inge Aarseth, Atle Nesje and Ola Fredin 2 ‐ West Norwegian Fjords GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 © Geological Society of Norway (NGF) , 2014 ISBN: 978‐82‐92‐39491‐5 NGF Geological guides Editorial committee: Tom Heldal, NGU Ole Lutro, NGU Hans Arne Nakrem, NHM Atle Nesje, UiB Editor: Ann Mari Husås, NGF Front cover illustrations: Atle Nesje View of the outer part of the Nærøyfjord from Bakkanosi mountain (1398m asl.) just above the village Bakka. The picture shows the contrast between the preglacial mountain plateau and the deep intersected fjord. Levels geological guides: The geological guides from NGF, is divided in three leves. Level 1—Schools and the public Level 2—Students Level 3—Research and professional geologists This is a level 3 guide. Published by: Norsk Geologisk Forening c/o Norges Geologiske Undersøkelse N‐7491 Trondheim, Norway E‐mail: [email protected] www.geologi.no GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3 West Norwegian Fjords‐ 3 WEST NORWEGIAN FJORDS: UNESCO World Heritage GUIDE TO GEOLOGICAL EXCURSION FROM NÆRØYFJORD TO GEIRANGERFJORD By Inge Aarseth, University of Bergen Atle Nesje, University of Bergen and Bjerkenes Research Centre, Bergen Ola Fredin, Geological Survey of Norway, Trondheim Abstract Acknowledgements Brian Robins has corrected parts of the text and Eva In addition to magnificent scenery, fjords may display a Bjørseth has assisted in making the final version of the wide variety of geological subjects such as bedrock geol‐ figures . We also thank several colleagues for inputs from ogy, geomorphology, glacial geology, glaciology and sedi‐ their special fields: Haakon Fossen, Jan Mangerud, Eiliv mentology. -
Frisk Oslofjord: RESYME Etter Seminar 14/11-2018 Statens Park Tønsberg
Frisk Oslofjord: RESYME etter seminar 14/11-2018 Statens Park Tønsberg Oslofjordens tilstand er svekket og fjorden er nærmest fiskedød. FRISK OSLOFJORD skal samle og formidle kunnskap om det undersjøiske landskapet og livet under de blå flater i Færder og Ytre Hvaler nasjonalparker og etablerer et grunnlag for kunnskapsbasert forvaltning. Kystforvaltning skal ikke lenger gjøres i blinde, og befolkningen, spesielt barn og unge som er framtidens beslutningstakere, skal opplyses for å styrke et bredt eierskap til fjorden og de tiltak som må gjennomføres. FRISK OSLOFJORD skal ta i bruk ny teknologi som kan revolusjonere framtidig kartlegging og overvåking i havet. Prosjektet ble presentert i Auditoriet Statens Park Tønsberg den 11 nov. 2018 for nærmere 60 fremmøtte med representanter fra: Besøkssenter Færder nasjonalpark, Besøkssenter Ytre Hvaler nasjonalpark, Fiskeridirektoratet, Fylkesmannen i Vestfold, Fylkesmannen i Østfold, Færder kommune, Kystverket, Nasjonalparkstyrene, Miljødirektoratet / Statens naturoppsyn, Oslofjordens Friluftsråd, RFF Oslofjordfondet, Skjærgårdstjenesten Færder, Små fiskeren, Sparebankstiftelsen DNB, Statens naturoppsyn, Vannområde Horten-Larvik/Aulivassdraget, Vestfold fylkeskommune, Vestfold fylkeskommune Utdanningsavdelingen, Østfold fylkeskommune, Opplæringsavdelingen, samt deltakere fra de 6 partnere som har gått sammen for å gjennomføre prosjektet FRISK OSLOFJORD: Havforskningsinstituttet, Inspiria, Kartverket sjødivisjonen, Kongsberg Maritime, NGU og NIVA. Færder og Ytre Hvaler nasjonalparker er prosjekteier -
1 Introduction
Notes 1 Introduction 1. Donald Macintyre, Narvik (London: Evans, 1959), p. 15. 2. See Olav Riste, The Neutral Ally: Norway’s Relations with Belligerent Powers in the First World War (London: Allen and Unwin, 1965). 3. Reflections of the C-in-C Navy on the Outbreak of War, 3 September 1939, The Fuehrer Conferences on Naval Affairs, 1939–45 (Annapolis: Naval Institute Press, 1990), pp. 37–38. 4. Report of the C-in-C Navy to the Fuehrer, 10 October 1939, in ibid. p. 47. 5. Report of the C-in-C Navy to the Fuehrer, 8 December 1939, Minutes of a Conference with Herr Hauglin and Herr Quisling on 11 December 1939 and Report of the C-in-C Navy, 12 December 1939 in ibid. pp. 63–67. 6. MGFA, Nichols Bohemia, n 172/14, H. W. Schmidt to Admiral Bohemia, 31 January 1955 cited by Francois Kersaudy, Norway, 1940 (London: Arrow, 1990), p. 42. 7. See Andrew Lambert, ‘Seapower 1939–40: Churchill and the Strategic Origins of the Battle of the Atlantic, Journal of Strategic Studies, vol. 17, no. 1 (1994), pp. 86–108. 8. For the importance of Swedish iron ore see Thomas Munch-Petersen, The Strategy of Phoney War (Stockholm: Militärhistoriska Förlaget, 1981). 9. Churchill, The Second World War, I, p. 463. 10. See Richard Wiggan, Hunt the Altmark (London: Hale, 1982). 11. TMI, Tome XV, Déposition de l’amiral Raeder, 17 May 1946 cited by Kersaudy, p. 44. 12. Kersaudy, p. 81. 13. Johannes Andenæs, Olav Riste and Magne Skodvin, Norway and the Second World War (Oslo: Aschehoug, 1966), p. -
Late-Pleistocene Foraminifera from the Oslofj Ord Area, Southeast Norway
NORSK GEOLOGISK TIDSSKRIFT 33 LATE-PLEISTOCENE FORAMINIFERA FROM THE OSLOFJ ORD AREA, SOUTHEAST NORWAY BY RoLF W. FEYLI�G-HANSSEN (University of Oslo) CONTENTS P age Abstract 109 Introduction .................... ... ....... 109 The Yoldia-clay ...................... ..... 113 The Arca-clay ................... ............ 119 Transitional sediments . ......... .......... 120 The lsocardia-clay ....... ..................... 121 The Foraminifera ..... ........... .. .. 125 Index of foraminiferal species . .. .. .. .. 144 References .. .. .. .. .. .. .. .. .. .. .. .. 146 Plates I-Il . ... ..................... ..... 151 Abst rac t : The present paper is a preliminary report on a quanti tative study of the foraminiferal contents of Late- and Post-Glacial clay samples from the Oslofjord area. It appears that sedimen�s of Late-Glacial and Post-Glacial age are sharply defined by a few dominent species in their foraminiferal faunas. A subdivision can be based partly on the dominance of some species and partly on the presence of certain a::cessory species. In this way, most samples from the area could be rapidly pla::ed in the old strati graphic scheme based on megafossils. Introduction. For the Oslofjord area BRøGGER (1900-19 01) established a stratigraphy of the sediments dep)sited at the r etreating front of the ice of the latest glaciation on the basis of their content of fossil 12 -Geo!. 33 110 ROLF W. FEYLI:-.IG-HAXSSEN pelecypods. He thus divided the clay sediments into the following main horizons: Yoldia-clay, Arca-clay, Mytilus- and Cyprina-clay, (of Late-Glacialage) Cardium-clay, Ostrea-clay, Isocardia-clay, (of Post Glacial age), and Mya-clay which is of recent origin. The Yoldia-clay is a high-arctic sediment. Its index fossil is Portlandia arctica (GRAY) ( = Yoldia arctica GRAY) which at present lives only in arctic waters, e.g. -
Lund, Sweden, January 8–10 2014
31st Nordic Geological Winter Meeting. Lund, Sweden. January 8-10, 2014 31st Nordic Sponsors Hosted by the Geological Society of Sweden Lund, Sweden, January 8–10 2014 Abiskojokk canyon, Abisko Sweden Photo: Mark Johnson, 2012 Main sponsors Table of Contents Welcome ______________________________________________________ 2 Organizing committee __________________________________________ 3 Scientific program committee ___________________________________ 3 Program Overview _____________________________________________ 4 Social Program ________________________________________________ 5 Scientific Program______________________________________________ 6 - Oral presentations __________________________________________ 7 - Posters ___________________________________________________ 22 Abstracts1 ________________________________________________ 34 - Plenary talks ________________________________________________ 35 - HYD-ENV Hydrogeology/Environmental Geology _______________ 37 - ENG-GEO Engineering Geology ______________________________ 46 - ECON-OIL Economic and Petroleum Geology __________________ 50 - LUNDPAL Lundadagarna i Historisk Geologi och Paleontologi ____________________________________________ 64 - PET Petrology ______________________________________________ 77 - STR-TEC Structural Geology/Tectonics ________________________ 104 - MOR-GLA Geomorphology and Glacial Geology ______________ 126 - QUAT Quaternary Geology _________________________________ 148 - GEOBIO Geobiology and Astrobiology _______________________ 156 - GEOP Geophysics -
The Fortress Trail at Oscarsborg Fortress
Welcome to the fortress trail Welcome to the cultural heritage site and natural wonder of Oscarsborg. Follow us on social media On this map, we have highlighted places of interest. Some of the points #oscarsborg at Oscarsborg Fortress are marked with QR codes. Follow the map and discover the enthralling history of Oscarsborg Fortress! The Fortress trail lasts around 1.5 hours at a normal walking pace. We hope you have a pleasant walk and experience. Bathing spot 19 2 20 /2 Bathing spot 1 2 r B Bathing spot te ru , # o sl O o Guest Harbour t y r Oscarsborg r 18 e Harbour Inn F r 17 e m Kaholmen South The Commandant’s m 8 u 9 Residence S 21 7 The Torpedo Battery 10 1 6 13 Kaholmen North 14 11 16 3 four years to construct (1874-1879). The material was freighted in on barges from The Main Fort Røyken. Today, 50 metres of the Jetty has been removed to facilitate leisure boats. 15 4 Fortress Museum 6 WESTERN BEACH QUAY / CRANE QUAY 5 The wharf was built in 1862 in order to enable ammunition to be brought ashore. 12 2 This ammunition was then transported through a tunnelto the Main Battery’s The Main Battery k a underground arsenal. The Fortress’s electric ferry which went between the b ø r Kaholmen islands, Håøya and Bergholmen was also located here. Today, the quay is D Oscarsborg Fortress’ only deep-water quay and is used for larger boats. This is where o t the liner B21/B22 from Oslo/Aker Brygge Pier is situated during the summer season. -
Introduction to the Studies of Pollution in the Oslofjord
Helgol~inder wiss. Meeresunters. 17, 455-461 (1968) Introduction to the studies of pollution in the Oslofjord JOHAN T. RUUD Institute of Marine Biology, University of Oslo, Oslo, Norway KURZFASSUNG: Einfiihrung in die Untersuchungen fiber die Verunreinigung im Oslo- fjord. Der Oslofjord erstreckt sich etwa 100 km in n/Srdlicher Richtung yore Skagerrak bis nach Oslo. Bei Dr~bak, etwa auf dem zweiten Drittel des Weges nach Oslo, gibt es eine Reihe yon Hindernissen, die einem ungehinderten Austausch der Wassermassen im Fjord entgegenstehen. Der wichtigste Durchlaf~ ist nur etwa 300 m breit und hat eine Wassertiefe ~iber der Schwelle yon 19 m. Hinter Drobak besteht der Fjord aus zwei Becken, dem Westfjord und dem Bunne- fjord, die Tiefen yon 164 m beziehungsweise von 160 m aufweisen. Der Fjord hinter Drobak hat eine Fl~che yon 191 km~; die Wassermenge betr~igt nach Berechnungen 9,4 Milliarden m ~. Der j~hrliche Zufluf~ an Siit~wasser, das durch Abw~.sser yon ca. 700 000 Menschen und einer bedeutenden Industrie verunreinigt wird, betr~igt etwa 800 Millionen m 3. Studien fiber die Fauna wurden im 18. Jahrhundert von O. F. MiSLLER und im 19. Jahrhundert von M. und G. O. SARS vorgenommen. Ausgedehntere Untersuchungen wurden um 1900 yon J. Hjollx und H. H. GRAN begonnen. Seit Anfang der dreit~iger Jahre sind diese Untersuchungen yon den biologischen Instituten der Universit~it Oslo weitergefiihrt worden. 1953 wurde die Situation hinsichtlich der Verunreinigung des Fjords alarmierend. Die Beh/Srden der Stadt Oslo wurden davon unterrichtet, dal~ umfassendere Untersuchungen notwendig seien, um die Folgen, die dadurch entstehen, daf~ der Fjord als Auffangbecken f~ir die Abw~isser der Stadt dient, zu erforschen. -
How Can Cooperation Between Neighbouring Ports Within the Oslofjord Area Become Reality?
HØGSKOLEN I VESTFOLD How can cooperation between neighbouring ports within the Oslofjord area become reality? A study of two neighbouring ports and the opportunities of future collaboration for mutual benefits Øivind Berg November 2013 In partial fulfilment of the degree Master in Maritime Management, Department of Maritime Technology and Innovation, Vestfold University College, Horten, Norway Acknowledgement This thesis would not have arisen without the kind contribution from Finn Flogstad, Port Director, Port of Grenland, Jan Fredrik Jonas, Port Director, Port of Larvik, Jan Einar Skarding, Marketing and Logistics Manager, Port of Grenland, Per Kvaale Caspersen, Project Manager at Vestfold Municipal County, and Olav Risholt, Project Manager Telemark Municipal County. I must also thank advisors and colleagues at Vestfold University College; Halvor Schøyen, PhD, Kjell Ivar Øvergård Dr. Professor, Jørn Kragh Project Manager and Tine Viveka Westerberg for valuable information and good advice. And, not at least: the one at home Halldis, who has not seen me for a good while. Contents Introduction ................................................................................................................................ 1 Background ............................................................................................................................. 1 Research question ................................................................................................................... 2 Relation to other work in the area ......................................................................................... -
Metreport Oceanography a High-Resolution, Curvilinear ROMS Model for the Oslofjord Fjordos Technical Report No
No. 4/2016 ISSN 2387-4201 METreport Oceanography A high-resolution, curvilinear ROMS model for the Oslofjord FjordOs technical report No. 2 Lars Petter Røed1,2, Nils Melsom Kristensen1, Karina Bakkeløkken Hjelmervik3 and André Staalstrøm4 1Norwegian Meteorological Institute, 2Department of Geosciences, University of Oslo, 3University College of Southeast Norway, 4Norwegian Institute of Water Research aa METreport Title Date A high-resolution, curvilinear ROMS model for the Oslofjord. Fjor- June 7, 2016 dOs technical report No. 2 Section Report no. Ocean and Ice 4/2016 Author(s) Classification Lars Petter Røed, Nils Melsom Kristensen, Karina Bakkeløkken ③Free ❥Restricted Hjelmervik, André Staalstrøm Client(s) Client’s reference Oslofjordfondet Abstract Provided is documentation of a new Oslofjord model, FjordOs CL, utilizing the curvilinear option of the Regional Ocean Modeling System - ROMS. The development is part of the project FjordOs. FjordOs CL has a spatial grid size varying from about 50 meters in the Drøbak sound to about 300 meters at its southern open boundary bordering on the Sk- agerrak. It features 42 terrain-following levels in the vertical. In addition to being forced by atmospheric, river and tidal input it is also forced by oceanic input at the open boundary. The atmospheric input is extracted from MET Norway’s operational NWP model (AROME- MetCoOp), while oceanic input is extracted from MET Norway’s operational, ocean forecast- ing model NorKyst800. The river input consists of observational based estimated discharges from 37 rivers along the perimeter of the fjord. The tidal input is based on the TPXO Atlantic database modified by observations and consists of nine tidal constituents as input. -
Heavy Cruisers of the Admiral Hipper Class Free
FREE HEAVY CRUISERS OF THE ADMIRAL HIPPER CLASS PDF Gerhard Koop,Klaus-Peter Schmolke | 208 pages | 06 Jun 2014 | Pen & Sword Books Ltd | 9781848321953 | English | Barnsley, United Kingdom Heavy Cruisers of the Admiral Hipper and the Prinz Eugen class Admiral Hipperthe first of five ships of her class, was the lead ship of the Admiral Hipper class of heavy cruisers which served with Nazi Germany 's Kriegsmarine during World War II. The ship was named after Admiral Franz von Hippercommander of the German battlecruiser squadron during the Battle of Jutland in and later commander-in-chief of the German High Seas Fleet. She was armed with a main battery of eight Admiral Hipper saw a significant amount of action during the war, notably present during the Battle of the Atlantic. In Decembershe broke out into the Atlantic Ocean to operate against Allied merchant shipping, though this operation ended without significant success. In FebruaryAdmiral Hipper sortied again, sinking several merchant vessels before eventually returning to Germany via the Denmark Strait. As a result, Admiral Hipper was returned to Germany and decommissioned for repairs. The ship was never restored to operational status, however, and Heavy Cruisers of the Admiral Hipper Class 3 MayRoyal Air Force bombers severely damaged her while she was in Kiel. Her crew scuttled the ship at her mooringsand in Julyshe was raised and towed to Heikendorfer Bay. She was ultimately broken up for scrap in — and her bell is currently on display at the Laboe Naval Memorial. The Admiral Hipper class of heavy cruisers was ordered in the context of German naval rearmament after the Nazi Party came to power in and repudiated the disarmament clauses of the Treaty of Versailles. -
NGU Report 2012.005 Tropical Weathering in Norway, TWIN Final
NGU Report 2012.005 Tropical Weathering in Norway, TWIN Final Report 2 Geological Survey of Norway NO-7491 Trondheim, Norway REPORT Tel.: 47 73 90 40 11 Telefax: 47 73 92 16 20 Report no.: 2012.005 ISSN 0800-3416 Grading: Open Title: Tropical Weathering In Norway, TWIN Final Report Authors: Client: Odleiv Olesen, Dag Bering, Marco Brönner, Einar Dalsegg, Karl Fabian, Ola Geological Survey of Norway Fredin, Jomar Gellein, Berit Husteli, Christian Magnus, Jan Steinar Rønning, and Norwegian Petroleum Terje Solbakk, Jan Fredrik Tønnesen & Jon Arne Øverland Directorate County: Commune: Vestfold, Vest-Agder, Sogn & Fjordane, Nord-Trøndelag, Nordland, Finnmark Map-sheet name (M=1:250.000) Number of pages: 188 Skien, Mandal, Florø, Ulsteinvik, Trondheim, Svolvær, Andøya Price (NOK): 645,- Fieldwork carried out: Date of report: Project no.: Person responsible: 2009-2011 02.05.2012 3307.00 Summary: The Geological Survey of Norway and the Norwegian Petroleum Directorate established the TWIN Project (Tropical Weathering In Norway) in 2009 to improve the understanding of deep weathering on mainland Norway as well as offshore. All known reports of deep weathering in Norway have been reviewed and registered in a GIS database. We have selected four representative locations for more detailed studies in southern Norway (Kjose, Lista, Vågsøy-Stad and Inderøya) and another four locations in northern Norway (Vestvågøya, Hadseløya, Andøya and Hamarøya). Geophysical studies (2D resisitivity and refraction seismic) reveal fairly continuous saprolite layers with a thickness up to 100 metres in Vestfold (Kjose), Lofoten- Vesterålen, Hamarøya and Varangerhalvøya. The results also show that the degree of weathering varies extensively over short distances.