Disclaimer: This File Has Been Scanned with an Optical Character Recognition Program, Often an Erroneous Process
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Giardiasis Importance Giardiasis, a Gastrointestinal Disease Characterized by Acute Or Chronic Diarrhea, Is Caused by Protozoan Parasites in the Genus Giardia
Giardiasis Importance Giardiasis, a gastrointestinal disease characterized by acute or chronic diarrhea, is caused by protozoan parasites in the genus Giardia. Giardia duodenalis is the major Giardia Enteritis, species found in mammals, and the only species known to cause illness in humans. This Lambliasis, organism is carried in the intestinal tract of many animals and people, with clinical signs Beaver Fever developing in some individuals, but many others remaining asymptomatic. In addition to diarrhea, the presence of G. duodenalis can result in malabsorption; some studies have implicated this organism in decreased growth in some infected children and Last Updated: December 2012 possibly decreased productivity in young livestock. Outbreaks are occasionally reported in people, as the result of mass exposure to contaminated water or food, or direct contact with infected individuals (e.g., in child care centers). People are considered to be the most important reservoir hosts for human giardiasis. The predominant genetic types of G. duodenalis usually differ in humans and domesticated animals (livestock and pets), and zoonotic transmission is currently thought to be of minor significance in causing human illness. Nevertheless, there is evidence that certain isolates may sometimes be shared, and some genetic types of G. duodenalis (assemblages A and B) should be considered potentially zoonotic. Etiology The protozoan genus Giardia (Family Giardiidae, order Giardiida) contains at least six species that infect animals and/or humans. In most mammals, giardiasis is caused by Giardia duodenalis, which is also called G. intestinalis. Both names are in current use, although the validity of the name G. intestinalis depends on the interpretation of the International Code of Zoological Nomenclature. -
Review Article Nematodes of Birds of Armenia
Annals of Parasitology 2020, 66(4), 447–455 Copyright© 2020 Polish Parasitological Society doi: 10.17420/ap6604.285 Review article Nematodes of birds of Armenia Sergey O. MOVSESYAN1,2, Egor A. VLASOV3, Manya A. NIKOGHOSIAN2, Rosa A. PETROSIAN2, Mamikon G. GHASABYAN2,4, Dmitry N. KUZNETSOV1,5 1Centre of Parasitology, A.N. Severtsov Institute of Ecology and Evolution RAS, Leninsky pr., 33, Moscow 119071, Russia 2Institute of Zoology, Scientific Center of Zoology and Hydroecology NAS RA, P. Sevak 7, Yerevan 0014, Armenia 3V.V. Alekhin Central-Chernozem State Nature Biosphere Reserve, Zapovednyi, Kursk district, Kursk region, 305528, Russia 4Armenian Society for the Protection of Birds (ASPB), G. Njdeh, 27/2, apt.10, Yerevan 0026, Armenia 5All-Russian Scientific Research Institute of Fundamental and Applied Parasitology of Animals and Plants - a branch of the Federal State Budget Scientific Institution “Federal Scientific Centre VIEV”, Bolshaya Cheremushkinskaya str., 28, Moscow 117218, Russia Corresponding Author: Dmitry N. KUZNETSOV; e-mail: [email protected] ABSTRACT. The review provides data on species composition of nematodes in 50 species of birds from Armenia (South of Lesser Caucasus). Most of the studied birds belong to Passeriformes and Charadriiformes orders. One of the studied species of birds (Larus armenicus) is an endemic. The taxonomy and host-specificity of nematodes reported in original papers are discussed with a regard to current knowledge about this point. In total, 52 nematode species parasitizing birds in Armenia are reported. Most of the reported species of nematodes are quite common in birds outside of Armenia. One species (Desmidocercella incognita from great cormorant) was first identified in Armenia. -
Tinamiformes – Falconiformes
LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma -
A 2010 Supplement to Ducks, Geese, and Swans of the World
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Ducks, Geese, and Swans of the World by Paul A. Johnsgard Papers in the Biological Sciences 2010 The World’s Waterfowl in the 21st Century: A 2010 Supplement to Ducks, Geese, and Swans of the World Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biosciducksgeeseswans Part of the Ornithology Commons Johnsgard, Paul A., "The World’s Waterfowl in the 21st Century: A 2010 Supplement to Ducks, Geese, and Swans of the World" (2010). Ducks, Geese, and Swans of the World by Paul A. Johnsgard. 20. https://digitalcommons.unl.edu/biosciducksgeeseswans/20 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Ducks, Geese, and Swans of the World by Paul A. Johnsgard by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The World’s Waterfowl in the 21st Century: A 200 Supplement to Ducks, Geese, and Swans of the World Paul A. Johnsgard Pages xvii–xxiii: recent taxonomic changes, I have revised sev- Introduction to the Family Anatidae eral of the range maps to conform with more current information. For these updates I have Since the 978 publication of my Ducks, Geese relied largely on Kear (2005). and Swans of the World hundreds if not thou- Other important waterfowl books published sands of publications on the Anatidae have since 978 and covering the entire waterfowl appeared, making a comprehensive literature family include an identification guide to the supplement and text updating impossible. -
Proceedings of the United States National Museum
— THE ADAPTIVE MODIFICATIONS AND THE TAXONOMIC VALUE OF THE TONGUE IN BIRDS By Leon L. Gardner, Of the United States Army Medical Corps Since the work of Lucas 1 there has been little systematic investiga- tion on the tongues of birds, and with the exception of an occasional description the subject has been largely neglected. It is in the hope of reopening interest in the subject that this paper is written. As is well known the tongue is an exceptionally variable organ in the Class Aves, as is to be expected from the fact that it is so inti- mately related with the birds' most important problem, that of obtaining food. For this function it must serve as a probe or spear (woodpeckers and nuthatches), a sieve (ducks), a capillary tube (sunbirds and hummers), a brush (Trichoglossidae), a rasp (vul- tures, hawks, and owls), as a barbed organ to hold slippery prey (penguins), as a finger (parrots and sparrows), and perhaps as a tactile organ in long-billed birds, such as sandpipers, herons, and the like. The material upon which this paper is based is the very extensive alcoholic collection of birds in the United States National Museum, Washington, D. C, for the use of which and for his abundant aid in numberless ways I am very much indebted to Dr. Charles W. Richmond, associate curator of the Division of Birds. To Dr. Alexander Wetmore, assistant secretary in charge of the United States National Museum, I wish to express my thanks for his kind assistance in reviewing the paper and for his help in its preparation. -
Diet of Breeding White-Throated and Black Swifts in Southern California
DIET OF BREEDING WHITE-THROATED AND BLACK SWIFTS IN SOUTHERN CALIFORNIA ALLISON D. RUDALEVIGE, DESSlE L. A. UNDERWOOD, and CHARLES T. COLLINS, Department of BiologicalSciences, California State University,Long Beach, California 90840 (current addressof Rudalevige:Biology Department, Universityof California,Riverside, California 92521) ABSTRACT: We analyzed the diet of nestling White-throated(Aeronautes saxatalis) and Black Swifts (Cypseloidesniger) in southern California. White- throatedSwifts fed their nestlingson bolusesof insectsmore taxonomicallydiverse, on average(over 50 arthropodfamilies represented), than did BlackSwifts (seven arthropodfamilies, primarfiy ants). In some casesWhite-throated Swift boluses containedprimarily one species,while other bolusesshowed more variation.In contrast,all BlackSwift samplescontained high numbersof wingedants with few individualsof other taxa. Our resultsprovide new informationon the White-throated Swift'sdiet and supportprevious studies of the BlackSwift. Swiftsare amongthe mostaerial of birds,spending most of the day on the wing in searchof their arthropodprey. Food itemsinclude a wide array of insectsand some ballooningspiders, all gatheredaloft in the air column (Lack and Owen 1955). The food habitsof a numberof speciesof swifts have been recorded(Collins 1968, Hespenheide1975, Lack and Owen 1955, Marfn 1999, Tarburton 1986, 1993), but there is stilllittle informa- tion availablefor others, even for some speciesthat are widespreadand common.Here we providedata on the prey sizeand compositionof food broughtto nestlingsof the White-throated(Aerona u tes saxa talis) and Black (Cypseloidesniger) Swifts in southernCalifornia. The White-throatedSwift is a commonresident that nestswidely in southernCalifornia, while the Black Swift is a local summerresident, migrating south in late August (Garrettand Dunn 1981, Foersterand Collins 1990). METHODS When feedingyoung, swifts of the subfamiliesApodinae and Chaeturinae return to the nest with a bolusof food in their mouths(Collins 1998). -
Peru: from the Cusco Andes to the Manu
The critically endangered Royal Cinclodes - our bird-of-the-trip (all photos taken on this tour by Pete Morris) PERU: FROM THE CUSCO ANDES TO THE MANU 26 JULY – 12 AUGUST 2017 LEADERS: PETE MORRIS and GUNNAR ENGBLOM This brand new itinerary really was a tour of two halves! For the frst half of the tour we really were up on the roof of the world, exploring the Andes that surround Cusco up to altitudes in excess of 4000m. Cold clear air and fantastic snow-clad peaks were the order of the day here as we went about our task of seeking out a number of scarce, localized and seldom-seen endemics. For the second half of the tour we plunged down off of the mountains and took the long snaking Manu Road, right down to the Amazon basin. Here we traded the mountainous peaks for vistas of forest that stretched as far as the eye could see in one of the planet’s most diverse regions. Here, the temperatures rose in line with our ever growing list of sightings! In all, we amassed a grand total of 537 species of birds, including 36 which provided audio encounters only! As we all know though, it’s not necessarily the shear number of species that counts, but more the quality, and we found many high quality species. New species for the Birdquest life list included Apurimac Spinetail, Vilcabamba Thistletail, Am- pay (still to be described) and Vilcabamba Tapaculos and Apurimac Brushfnch, whilst other montane goodies included the stunning Bearded Mountaineer, White-tufted Sunbeam the critically endangered Royal Cinclodes, 1 BirdQuest Tour Report: Peru: From the Cusco Andes to The Manu 2017 www.birdquest-tours.com These wonderful Blue-headed Macaws were a brilliant highlight near to Atalaya. -
Appendix, French Names, Supplement
685 APPENDIX Part 1. Speciesreported from the A.O.U. Check-list area with insufficient evidencefor placementon the main list. Specieson this list havebeen reported (published) as occurring in the geographicarea coveredby this Check-list.However, their occurrenceis considered hypotheticalfor one of more of the following reasons: 1. Physicalevidence for their presence(e.g., specimen,photograph, video-tape, audio- recording)is lacking,of disputedorigin, or unknown.See the Prefacefor furtherdiscussion. 2. The naturaloccurrence (unrestrained by humans)of the speciesis disputed. 3. An introducedpopulation has failed to becomeestablished. 4. Inclusionin previouseditions of the Check-listwas basedexclusively on recordsfrom Greenland, which is now outside the A.O.U. Check-list area. Phoebastria irrorata (Salvin). Waved Albatross. Diornedeairrorata Salvin, 1883, Proc. Zool. Soc. London, p. 430. (Callao Bay, Peru.) This speciesbreeds on Hood Island in the Galapagosand on Isla de la Plata off Ecuador, and rangesat seaalong the coastsof Ecuadorand Peru. A specimenwas takenjust outside the North American area at Octavia Rocks, Colombia, near the Panama-Colombiaboundary (8 March 1941, R. C. Murphy). There are sight reportsfrom Panama,west of Pitias Bay, Dari6n, 26 February1941 (Ridgely 1976), and southwestof the Pearl Islands,27 September 1964. Also known as GalapagosAlbatross. ThalassarchechrysosWma (Forster). Gray-headed Albatross. Diornedeachrysostorna J. R. Forster,1785, M6m. Math. Phys. Acad. Sci. Paris 10: 571, pl. 14. (voisinagedu cerclepolaire antarctique & dansl'Ocean Pacifique= Isla de los Estados[= StatenIsland], off Tierra del Fuego.) This speciesbreeds on islandsoff CapeHorn, in the SouthAtlantic, in the southernIndian Ocean,and off New Zealand.Reports from Oregon(mouth of the ColumbiaRiver), California (coastnear Golden Gate), and Panama(Bay of Chiriqu0 are unsatisfactory(see A.O.U. -
The Function and Evolution of the Supraorbital Process in Ducks
THE FUNCTION AND EVOLUTION OF THE SUPRAORBITAL PROCESS IN DUCKS ROBERTJ. RAIKOW THE anteriormargin of the orbit in ducksis formedby the lacrimalbone, which articulateswith the anterolateralmargin of the frontal boneand the posterodorsalcorner of the maxillary processof the nasal bone. The evolu- tion of this bone in birds generally has been dealt with recently by Cracraft (Amer. Midl. Naturalist, 80: 316, 1968), whoseterminology for the parts of the lacrimal bone is followedhere. In many ducksthe postero- dorsalcorner of the lacrimal is marked by a small tubercle,which serves as the site of attachment of the anterior end of the orbital membrane,a sheetof connectivetissue that coversand protectsthe dorsalaspect of the eyeball. In some forms this tubercle has become elongated to form a stout, finger-like projection, the supraorbitalprocess. This appears to provide mechanicalprotection to the eyeball and salt gland (Figure 1). Table 1 lists the occurrenceand degree of developmentof this process in the skulls of all living generaof ducks. CORRELATION WITH FEEDING AND LOCOMOTOR HABITS In the following discussion,data on feeding habits are from Delacour (The waterfowlof the world,vols. 1-3, London,Country Life Ltd., 1954, 1956, 1959). Table 1 showsthat the supraorbital processis developed significantlyonly in certain groupsof ducks that feed underwater. It is absentor rudimentaryin the Tadornini, Cairinini, and Anatini, which are primarily surfacefeeders, but also in Merganetta arma.ta,the Torrent Duck, which feedsunderwater. In the Aythyini it is fairly well-developed in severalspecies of Aythya, which are excellentdivers, but is rudimentary in Netta peposaca,which is moreof a surfacefeeder. It is alsorudimentary in the Canvasback,Aythya valisineria,which dives for vegetation.Among the Mergini the supraorbitalprocess is highly developedin eiders (Poly- sticta, Somateria) , scoters( M elanitta) , and Long-tailed Duck ( Clangula byemalls), all of which feed mainly on invertebratestaken from the bottom. -
Lista Das Aves Do Brasil
90 Annotated checklist of the birds of Brazil by the Brazilian Ornithological Records Committee / Lista comentada das aves do Brasil pelo Comitê Brasileiro de Registros Ornitológicos content / conteÚDO Abstract ............................. 91 Charadriiformes ......................121 Scleruridae .............187 Charadriidae .........121 Dendrocolaptidae ...188 Introduction ........................ 92 Haematopodidae ...121 Xenopidae .............. 195 Methods ................................ 92 Recurvirostridae ....122 Furnariidae ............. 195 Burhinidae ............122 Tyrannides .......................203 Results ................................... 94 Chionidae .............122 Pipridae ..................203 Scolopacidae .........122 Oxyruncidae ..........206 Discussion ............................. 94 Thinocoridae .........124 Onychorhynchidae 206 Checklist of birds of Brazil 96 Jacanidae ...............124 Tityridae ................207 Rheiformes .............................. 96 Rostratulidae .........124 Cotingidae .............209 Tinamiformes .......................... 96 Glareolidae ............124 Pipritidae ............... 211 Anseriformes ........................... 98 Stercorariidae ........125 Platyrinchidae......... 211 Anhimidae ............ 98 Laridae ..................125 Tachurisidae ...........212 Anatidae ................ 98 Sternidae ...............126 Rhynchocyclidae ....212 Galliformes ..............................100 Rynchopidae .........127 Tyrannidae ............. 218 Cracidae ................100 Columbiformes -
Review of Zoonotic Pathogens in Ambient Waters
EPA 822-R-09-002 REVIEW OF ZOONOTIC PATHOGENS IN AMBIENT WATERS U.S. Environmental Protection Agency Office of Water Health and Ecological Criteria Division February 2009 [this page intentionally left blank] U.S. Environmental Protection Agency DISCLAIMER This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. February 2009 i [this page intentionally left blank] U.S. Environmental Protection Agency ACKNOWLEDGMENTS Questions concerning this document or its application should be addressed to the EPA Work Assignment Manager: John Ravenscroft USEPA Headquarters Office of Science and Technology, Office of Water 1200 Pennsylvania Avenue, NW Mail Code: 4304T Washington, DC 20460 Phone: 202-566-1101 Email: [email protected] This literature review was managed under EPA Contract EP-C-07-036 to Clancy Environmental Consultants, Inc. The following individuals contributed to the development of the report: Lead writer: Audrey Ichida ICF International Leiran Biton ICF International Alexis Castrovinci ICF International Jennifer Clancy Clancy Environmental Consultants Mary Clark ICF International Elizabeth Dederick ICF International Kelly Hammerle ICF International Walter Jakubowski WaltJay Consulting Margaret McVey ICF International Michelle Moser ICF International Jeffery Rosen Clancy Environmental Consultants Tina Rouse ICF International Jennifer Welham ICF International -
A Revised Annotated Checklist of Louse Flies (Diptera, Hippoboscidae) from Slovakia
A peer-reviewed open-access journal ZooKeys 862: A129–152 revised (2019) annotated checklist of louse flies (Diptera, Hippoboscidae) from Slovakia 129 doi: 10.3897/zookeys.862.25992 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A revised annotated checklist of louse flies (Diptera, Hippoboscidae) from Slovakia Jozef Oboňa1, Oldřich Sychra2, Stanislav Greš3, Petr Heřman4, Peter Manko1, Jindřich Roháček5, Anna Šestáková6, Jan Šlapák7, Martin Hromada1,8 1 Laboratory and Museum of Evolutionary Ecology, Department of Ecology, Faculty of Humanities and Na- tural Sciences, University of Presov, 17. novembra 1, SK – 081 16 Prešov, Slovakia 2 Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, CZ – 612 42 Brno, Czech Republic 3 17. novembra 24, SK – 083 01 Sabinov, Slovakia 4 Křivoklát 190, CZ – 270 23, Czech Republic 5 Department of Entomology, Silesian Museum, Tyršova 1, CZ-746 01 Opava, Czech Republic 6 The Western Slovakia Museum, Múzejné námestie 3, SK – 918 09 Trnava, Slovakia 7 Vojtaššákova 592, SK – 027 44 Tvrdošín, Slovakia 8 Faculty of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65–516 Zielona Gora, Poland Corresponding author: Jozef Oboňa ([email protected]) Academic editor: Pierfilippo Cerretti | Received 4 June 2018 | Accepted 22 April 2019 | Published 9 July 2019 http://zoobank.org/00FA6B5D-78EF-4618-93AC-716D1D9CC360 Citation: Oboňa J, Sychra O, Greš S, Heřman P, Manko P, Roháček J, Šestáková A, Šlapák J, Hromada M (2019) A revised annotated checklist of louse flies (Diptera, Hippoboscidae) from Slovakia. ZooKeys 862: 129–152.https://doi.