Renal Tubular Metabolism Reviewed in Health and Disease

Total Page:16

File Type:pdf, Size:1020Kb

Renal Tubular Metabolism Reviewed in Health and Disease nutrients Review Sugar or Fat? Renal Tubular Metabolism Reviewed in Health and Disease Leslie S. Gewin 1,2,3 1 Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA; [email protected] 2 Department of Medicine, Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN 37212, USA 3 Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212, USA Abstract: The kidney is a highly metabolically active organ that relies on specialized epithelial cells comprising the renal tubules to reabsorb most of the filtered water and solutes. Most of this reabsorption is mediated by the proximal tubules, and high amounts of energy are needed to facilitate solute movement. Thus, proximal tubules use fatty acid oxidation, which generates more adenosine triphosphate (ATP) than glucose metabolism, as its preferred metabolic pathway. After kidney injury, metabolism is altered, leading to decreased fatty acid oxidation and increased lactic acid generation. This review discusses how metabolism differs between the proximal and more distal tubular segments of the healthy nephron. In addition, metabolic changes in acute kidney injury and chronic kidney disease are discussed, as well as how these changes in metabolism may impact tubule repair and chronic kidney disease progression. Keywords: proximal tubule; acute kidney injury; chronic kidney disease; fatty acid oxidation; kidney injury; kidney metabolism Citation: Gewin, L.S. Sugar or Fat? Renal Tubular Metabolism Reviewed in Health and Disease. Nutrients 2021, 1. Introduction 13, 1580. https://doi.org/10.3390/ The kidney receives 25% of the cardiac output and filters approximately 180 L of nu13051580 water daily, while only excreting 1 to 2 L. In addition, over 1.6 kg of salt is filtered but only 3–20 g is eliminated, and significant energy is expended to conserve such a large fraction of Academic Editor: Emily Sonestedt water and salt in addition to glucose and other filtered solutes [1]. The human kidney is a complex organ with approximately 1 million nephrons, with each comprising glomerulus Received: 10 April 2021 and subsequent tubular segments. The tubular compartment of the kidney consists of the Accepted: 30 April 2021 proximal tubule (with S1 segment closest to the glomerulus, S2, and S3), loop of Henle, Published: 9 May 2021 distal convoluted tubule, and the collecting duct. The renal tubules are responsible for conserving 99% of the water and solutes in the glomerular filtrate, as well as maintaining Publisher’s Note: MDPI stays neutral acid/base balance. The metabolic needs and substrate preference (e.g., glucose and fatty with regard to jurisdictional claims in acids) vary depending upon the specific tubule segment. published maps and institutional affil- iations. The kidney can be injured acutely by ischemia, toxins, drugs, and infection or can be chronically impaired by diabetes, hypertension, glomerulonephritides, or severe acute kidney injuries. The renal tubules, particularly the proximal tubules, are vulnerable to both acute kidney (AKI) and chronic kidney disease (CKD). There is strong evidence that renal tubular metabolism is altered in both AKI and CKD. Emerging evidence suggests that Copyright: © 2021 by the author. correcting some of these metabolic changes may attenuate injury or improve recovery, but Licensee MDPI, Basel, Switzerland. questions persist about which metabolic perturbations are adaptive versus maladaptive. This article is an open access article This review will discuss what is known about metabolism in the healthy kidney tubules, distributed under the terms and conditions of the Creative Commons how tubular metabolism changes in kidney injury, and the unanswered questions regarding Attribution (CC BY) license (https:// how metabolic changes may affect tubular repair and tubulointerstitial fibrosis progression, creativecommons.org/licenses/by/ the hallmark of CKD. 4.0/). Nutrients 2021, 13, 1580. https://doi.org/10.3390/nu13051580 https://www.mdpi.com/journal/nutrients NutrientsNutrients2021 2021,,13 13,, 1580x FOR PEER REVIEW 2 of2 of16 15 2. Metabolism in in the the Healthy Healthy Kidney Kidney 2.1. Fatty Acid Acid Oxidation Oxidation The primary cells cells responsible responsible for for the the large large reabsorptive reabsorptive capacity capacity of of the the kidney kidney are are proximal tubules tubules which which reclaim reclaim about about 70% 70% of filtered of filtered solutes solutes and andwater. water. To facilitate To facilitate this massivethis massive amount amount of water of waterand solute and solutetransport, transport, a high anumber high number of ATP- ofconsuming ATP-consuming trans- porterstransporters are needed. are needed. Abundant Abundant mitochondria mitochondria are present are in present proximal in tubules proximal to tubulesgenerate to thegenerate necessary the necessary ATP. Similar ATP. to Similar the metabolically to the metabolically active cardiomyocyte, active cardiomyocyte, the proximal the proximal tubule reliestubule on relies fatty on acid fatty oxidation acid oxidation (FAO) because (FAO) because this fuel this source fuel provides source provides 106 ATP 106 units ATP com- units paredcompared to 36 tofrom 36 fromglucose glucose metabolism metabolism (Figure (Figure 1A) [2].1A) Most [ 2 ].of Mostthe outer of the kidney, outer or kidney, cortex, or iscortex, comp isosed composed of proximal of proximal tubules. tubules.Consistent Consistent with this withlarge thismass large of proximal mass of tubules, proximal earlytubules, studies early showed studies that showed two- thatthirds two-thirds of oxygen of consumption oxygen consumption in the human in the kidney human comes kidney fromcomes fatty from acid fatty oxidation acid oxidation [3]. [3]. A B Figure 1. Metabolism in theFigure uninjured 1. Metabolism nephron and in the proximal uninjured tubule. nephron (A) The and proximal proximal tubule tubule. segment (A) The has proximal gluconeogenic tubule capacity and preferentiallysegment uses fatty has acid gluconeogenic oxidation to capacity generate and ATP. preferentially By contrast, uses the fatty distal acid tubules oxidation do not to generate have gluco- ATP. neogenic potential but are betterBy contrast, equipped the dist to generateal tubules ATP do not through have gluconeogenic glycolysis. (B) potential Schematic but of are metabolism better equipped within to the gen- erate ATP through glycolysis. (B) Schematic of metabolism within the proximal tubule showing proximal tubule showing that glucose is taken up on the apical side by SGLT1/2 transporters and released on the basal that glucose is taken up on the apical side by SGLT1/2 transporters and released on the basal side side through GLUT1/2. Fattythrough acids GLUT1/2. (FA) cross Fatty the plasma acids (FA) membrane cross the through plasma CD36,membrane fatty through acid binding CD36, proteins fatty acid (FABP), binding and fatty acid transport proteinsproteins (FATP), (FABP), convert and fatty into acid acetyl-CoA transport and proteins are transported (FATP), convert into the into mitochondria acetyl-CoA throughand are trans- the carnitine shuttle involving theported carnitine into the palmityol-transferases mitochondria through CPT1a the carnitine and CPT2. shu Betattle oxidationinvolving of the fatty carnitine acyl-CoA palmityol produces-trans- acetyl-CoA which enters theferases TCA (tricarboxylicCPT1a and CPT2. acid) Beta cycle. oxidation Oxidation of fatty of acetyl-CoA acyl-CoA produces by the TCA acetyl produces-CoA which NADH enters which the enters the electron transportTCA chain (tricarboxylic (ETC) to generate acid) cycle. ATP. Oxidation Created with of acetyl BioRen-der.com.-CoA by the TCA produces NADH which enters the electron transport chain (ETC) to generate ATP. Created with BioRen-der.com. Fatty acids can be taken up by renal tubules primarily through the CD36 receptors expressedFatty onacids plasma can be membranes, taken up by but renal also tubules through primarily fatty acid through binding proteinsthe CD36 (FABPs) receptors and expressedfatty acid transporton plasma proteins membranes, (FATPs) but (Figure also through1B) [ 4– fatty7]. In acid addition, binding they proteins can be (FABPs) produced andthrough fatty fattyacid transport acid synthase proteins in the (FATPs) cytosol (Figure or by 1B) metabolism [4–7]. In addition, of phospholipids they can be through pro- phospholipaseduced through A2 fatty [2]. acid Long-chain synthase fatty in acidsthe cytosol (LCFA) or such by asmetabolism palmitate requireof phospholipids the carnitine throughshuttle for phospholipase transport into A2 mitochondria [2]. Long-chain where fatty oxidation acids (LCFA) and ATP such generation as palmitate occurs. require The thecarnitine carnitine shuttle shuttle consists for trans of carnitineport into palmitoyl-transferasemitochondria where oxidation 1 (CPT1), and located ATP generation on the outer occurs.mitochondrial The carnitine membrane, shuttle which consists converts of carnitine fatty acylpalmitoyl CoA into-transferase a long-chain 1 (CPT1), acylcarnitine, located onallowing the outer movement mitochondrial into the membrane, mitochondrial which matrix converts [8]. The fatty carnitine acyl CoA palmitoyltransferase-2 into a long-chain (CPT2)acylcarnitine, enzyme allowi thenng reconstitutes movement into acyl-CoA, the mitochondrial which undergoes matrixβ [-oxidation8]. The carnitine in the pal- mito- mitoyltransferasechondria.
Recommended publications
  • Control of Fluid Absorption in the Renal Proximal Tubule
    Control of fluid absorption in the renal proximal tubule Maurice B. Burg, Jack Orloff J Clin Invest. 1968;47(9):2016-2024. https://doi.org/10.1172/JCI105888. Research Article Glomerulotubular balance was investigated in isolated, perfused rabbit proximal tubules in vitro in order to evaluate some of the mechanisms proposed to account for the proportionate relationship between glomerular filtration rate and fluid absorption generally observed in vivo. The rate of fluid transport from lumen to bath in proximal convoluted tubules in vitro was approximately equal to the estimated normal rate in vivo. The absorption rate in proximal straight tubules however was approximately one-half as great. If the mechanism responsible for maintenance of glomerulotubular balance is intrinsic to the proximal tubule, as has been proposed on the basis of micropuncture studies, the rate of fluid absorption in vitro should be directly related to the perfusion rate and/or tubule volume. In the present studies absorption rate was only minimally affected when perfusion rate was increased or the tubule distended. Thus, glomerulotubular balance is not mediated by changes in velocity of flow of the tubular fluid or tubular diameter and therefore is not an intrinsic property of the proximal tubule. It has also been proposed that glomerulotubular balance results from a humoral feedback mechanism in which angiotensin directly inhibits fluid absorption by the proximal convoluted tubule. In the present experiments, angiotensin was found to have no significant effect on absorption rate. Find the latest version: https://jci.me/105888/pdf Control of Fluid Absorption in the Renal Proximal Tubule MAURICE B.
    [Show full text]
  • Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training
    nutrients Review Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training Parker L. Evans 1,2,3, Shawna L. McMillin 1,2,3 , Luke A. Weyrauch 1,2,3 and Carol A. Witczak 1,2,3,4,* 1 Department of Kinesiology, East Carolina University, Greenville, NC 27858, USA; [email protected] (P.L.E.); [email protected] (S.L.M.); [email protected] (L.A.W.) 2 Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA 3 East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27834, USA 4 Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA * Correspondence: [email protected]; Tel.: +1-252-744-1224 Received: 8 September 2019; Accepted: 8 October 2019; Published: 12 October 2019 Abstract: Aerobic exercise training and resistance exercise training are both well-known for their ability to improve human health; especially in individuals with type 2 diabetes. However, there are critical differences between these two main forms of exercise training and the adaptations that they induce in the body that may account for their beneficial effects. This article reviews the literature and highlights key gaps in our current understanding of the effects of aerobic and resistance exercise training on the regulation of systemic glucose homeostasis, skeletal muscle glucose transport and skeletal muscle glucose metabolism. Keywords: aerobic exercise; blood glucose; functional overload; GLUT; hexokinase; insulin resistance; resistance exercise; SGLT; type 2 diabetes; weightlifting 1. Introduction Exercise training is defined as planned bouts of physical activity which repeatedly occur over a duration of time lasting from weeks to years.
    [Show full text]
  • L5 6 -Renal Reabsorbation and Secretation [PDF]
    Define tubular reabsorption, Identify and describe tubular secretion, Describe tubular secretion mechanism involved in transcellular and paracellular with PAH transport and K+ Glucose reabsorption transport. Identify and describe Identify and describe the Study glucose titration curve mechanisms of tubular characteristic of loop of in terms of renal threshold, transport & Henle, distal convoluted tubular transport maximum, Describe tubular reabsorption tubule and collecting ducts splay, excretion and filtration of sodium and water for reabsorption and secretion Identify the tubular site and Identify the site and describe Revise tubule-glomerular describe how Amino Acids, the influence of aldosterone feedback and describe its HCO -, P0 - and Urea are on reabsorption of Na+ in the physiological importance 3 4 reabsorbed late distal tubules. Mind Map As the glomerular filtrate enters the renal tubules, it flows sequentially through the successive parts of the tubule: The proximal tubule → the loop of Henle(1) → the distal tubule(2) → the collecting tubule → finally ,the collecting duct, before it is excreted as urine. A long this course, some substances are selectively reabsorbed from the tubules back into the blood, whereas others are secreted from the blood into the tubular lumen. The urine represent the sum of three basic renal processes: glomerular filtration, tubular reabsorption, and tubular secretion: Urinary excretion = Glomerular Filtration – Tubular reabsorption + Tubular secretion Mechanisms of cellular transport in the nephron are: Active transport Pinocytosis\ Passive Transport Osmosis “Active transport can move a solute exocytosis against an electrochemical gradient and requires energy derived from metabolism” Water is always reabsorbed by a Simple diffusion passive (nonactive) (Additional reading) Primary active (without carrier physical mechanism Secondary active The proximal tubule, reabsorb protein) called osmosis , transport large molecules such as transport Cl, HCO3-, urea , which means water proteins by pinocytosis.
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Alterations in Net Glucose Uptake and in the Pancreatic B-Cell GLUT2 Transporter Induced by Diazoxide and by Secretory Stimuli
    291 Alterations in net glucose uptake and in the pancreatic B-cell GLUT2 transporter induced by diazoxide and by secretory stimuli L Zhao, Z Li, M Kullin,LAHBorg1 and F A Karlsson Department of Medical Sciences, University Hospital, SE-751 85 Uppsala, Sweden 1Department of Medical Cell Biology, University of Uppsala, PO Box 571, SE-751 23 Uppsala, Sweden (Requests for offprints should be addressed to L A H Borg; Email: [email protected]) Abstract The pancreatic B-cell GLUT2 transporter and glucose which may reflect a lowered energy requirement. Con- metabolism were examined in isolated rat islets subjected versely, islets subjected to a stimulated insulin secretion to treatments affecting insulin secretion. Diazoxide was with glipizide or a high extracellular K+ concentration used to inhibit, while glipizide or depolarization of the showed a reduced staining of the GLUT2 transporter. The plasma membrane with a high extracellular K+ concen- net glucose uptake and glucose oxidation were also tration were used to stimulate insulin release in short-term reduced. In islets exposed to the high K+ concentration no experiments. Islet GLUT2 and insulin were determined change in the molecular weight or phosphorylation of by quantitative immunohistochemistry and GLUT2 was GLUT2 was observed but a lesser amount of the trans- also determined by Western blot analysis. Islet net glucose porter was found by Western blot analysis. Thus, GLUT2 uptake and glucose oxidation were measured using radio- and glucose uptake in the pancreatic B-cell are modified actively labelled glucose. Exposure of the islets to diaz- by the secretory process, which suggests that changes in oxide was associated with a marked increase in the B-cell the glucose transporter have a functional role in normal plasma membrane staining for GLUT2 and increased net B-cell physiology.
    [Show full text]
  • Novel Tubular–Glomerular Interplay in Diabetic Kidney Disease Mediated
    Clinical and Experimental Nephrology https://doi.org/10.1007/s10157-019-01719-4 INVITED REVIEW ARTICLE Novel tubular–glomerular interplay in diabetic kidney disease mediated by sirtuin 1, nicotinamide mononucleotide, and nicotinamide adenine dinucleotide Oshima Award Address 2017 Kazuhiro Hasegawa1 Received: 6 December 2018 / Accepted: 15 February 2019 © The Author(s) 2019 Abstract Tubules interact with glomeruli, which are composed of podocytes, parietal epithelial cells, mesangial cells, and glomerular endothelial cells. Glomerular–tubular balance and tubuloglomerular feedback are the two components of the tubular–glo- merular interplay, which has been demonstrated to play roles in physiological renal function and in diabetic kidney disease (DKD), in which proteins leaking from glomeruli arrive at tubular regions, leading to further tubular injury caused by the accumulation of proteinuria-inducing reactive oxygens species and various cytokines. In the current review, we present our recent work identifying a novel tubular–glomerular interplay in DKD mediated by sirtuin 1 and nicotinamide mononucleotide. Keywords Sirtuin 1 · Tubuloglomerular feedback · Diabetic kidney disease · Nicotinamide mononucleotide Introduction The longevity gene sirtuin 1 In this review, we summarize our studies revealing the novel We have demonstrated the role of SIRT1 in kidneys, par- roles of sirtuin 1 (SIRT1) and nicotinamide mononucleo- ticularly in DKD. Figure 1 outlines the basic characteristics tide (NMN) in the tubular–glomerular interplay in diabetic of SIRT1, one of the seven isoforms of mammalian sirtuins, kidney disease (DKD). First, we overview the basic func- which are found in specific intracellular compartments. tions of SIRT1 and NMN and changes i1 and NMN during The first sirtuin that was discovered was Sir2 in yeast [1].
    [Show full text]
  • REVIEW the Molecular Basis of Insulin
    1 REVIEW The molecular basis of insulin-stimulated glucose uptake: signalling, trafficking and potential drug targets Sophie E Leney and Jeremy M Tavare´ Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK (Correspondence should be addressed to J M Tavare´; Email: [email protected]) Abstract The search for the underlying mechanism through which GLUT4 translocation and will attempt to address the spatial insulin regulates glucose uptake into peripheral tissues has relationship between the signalling and trafficking com- unveiled a highly intricate network of molecules that function ponents of this event. We will also explore the degree to in concert to elicit the redistribution or ‘translocation’ of which components of the insulin signalling and GLUT4 the glucose transporter isoform GLUT4 from intracellular trafficking machinery may serve as potential targets for membranes to the cell surface. Following recent technological the development of orally available insulin mimics for the advances within this field, this review aims to bring together treatment of diabetes mellitus. the key molecular players that are thought to be involved in Journal of Endocrinology (2009) 203, 1–18 Introduction Levine & Goldstein 1958). However, the mechanism by which insulin is able to stimulate glucose uptake was not Glucose homeostasis and diabetes mellitus elucidated until the early 1980s when two independent groups demonstrated that insulin promoted the movement of The ability of insulin to stimulate glucose uptake into muscle and adipose tissue is central to the maintenance of whole- a ‘glucose transport activity’ from an intracellular membrane body glucose homeostasis. Autoimmune destruction of the pool to the plasma membrane (Cushman & Wardzala 1980, pancreatic b-cells results in a lack of insulin production Suzuki & Kono 1980).
    [Show full text]
  • Beta Cell Physiological Dynamics and Dysfunctional Transitions in Response to Islet Inflammation in Obesity and Diabetes
    H OH metabolites OH Review Beta Cell Physiological Dynamics and Dysfunctional Transitions in Response to Islet Inflammation in Obesity and Diabetes Marlon E. Cerf 1,2,3 1 Grants, Innovation and Product Development, South African Medical Research Council, Tygerberg 7505, South Africa; [email protected] 2 Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa 3 Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg 7505, South Africa Received: 14 August 2020; Accepted: 10 October 2020; Published: 10 November 2020 Abstract: Beta cells adapt their function to respond to fluctuating glucose concentrations and variable insulin demand. The highly specialized beta cells have well-established endoplasmic reticulum to handle their high metabolic load for insulin biosynthesis and secretion. Beta cell endoplasmic reticulum therefore recognize and remove misfolded proteins thereby limiting their accumulation. Beta cells function optimally when they sense glucose and, in response, biosynthesize and secrete sufficient insulin. Overnutrition drives the pathogenesis of obesity and diabetes, with adverse effects on beta cells. The interleukin signaling system maintains beta cell physiology and plays a role in beta cell inflammation. In pre-diabetes and compromised metabolic states such as obesity, insulin resistance, and glucose intolerance, beta cells biosynthesize and secrete more insulin, i.e., hyperfunction. Obesity is entwined with inflammation, characterized by compensatory hyperinsulinemia, for a defined period, to normalize glycemia. However, with chronic hyperglycemia and diabetes, there is a perpetual high demand for insulin, and beta cells become exhausted resulting in insufficient insulin biosynthesis and secretion, i.e., they hypofunction in response to elevated glycemia.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Development of Insulin-Responsive Glucose Uptake and GLUT4 Expression in Differentiating Human Adipocyte Precursor Cells
    International Journal of Obesity (1998) 22, 448±453 ß 1998 Stockton Press All rights reserved 0307±0565/98 $12.00 http://www.stockton-press.co.uk/ijo Development of insulin-responsive glucose uptake and GLUT4 expression in differentiating human adipocyte precursor cells H Hauner, K RoÈhrig, M Spelleken, LS Liu and J Eckel Diabetes Research Institute at the Heinrich-Heine-University DuÈsseldorf, D-40225 DuÈsseldorf, Germany OBJECTIVE: In differentiating human preadipocytes glucose uptake in the presence of insulin is a prerequisite for lipid accumulation. The aim of this study was to characterize the insulin-regulated glucose transport system during and after differentiation. DESIGN AND METHODS: Human adipocyte precursor cells kept in primary culture were allowed to differentiate into fat cells under serum-free hormone-supplemented conditions. 2-Deoxy-glucose uptake was measured as a functional parameter of the glucose transport system, the amount of GLUT1 and GLUT4 protein was determined by Western blotting. RESULTS: In the undifferentiated state, cells did not increase 2-deoxy-glucose uptake in response to insulin. On day 16, when cells have acquired the adipocyte phenotype, there was a 3±4-fold stimulation of glucose transport by insulin compared to basal rates, whereas basal glucose uptake was dramatically diminished. Measurement of GLUT4 protein in cell extracts, showed a marked increase in the amount of this insulin-regulated transporter isoform during the differentiation period. On average, the amount of GLUT4 was 16.7-fold greater after than before differentiation. In contrast, the amount of GLUT1 protein decreased during differentiation to almost undetectable levels on day 16. When newly developed adipocytes were maintained in culture for another 14 d, the stimulation of glucose uptake and the amount of GLUT4 remained stable.
    [Show full text]
  • Normal Muscle Glucose Uptake in Mice Deficient in Muscle GLUT4
    313 Normal muscle glucose uptake in mice deficient in muscle GLUT4 Barbara C Fam, Laura J Rose, Rebecca Sgambellone, Zheng Ruan, Joseph Proietto and Sofianos Andrikopoulos Department of Medicine (Austin Health), Austin Hospital, University of Melbourne, Level 7, Lance Townsend Building, Studley Road, Heidelberg, Victoria 3084, Australia (Correspondence should be addressed to B C Fam; Email: [email protected]) Abstract Skeletal muscle insulin resistance is a major characteristic hearts compared with control mice. Basally, plasma glucose and underpinning type 2 diabetes. Impairments in the insulin plasma insulin were significantly lower in the KO compared responsiveness of the glucose transporter, Glut4 (Slc2a4),have with control mice, which conferred normal glucose tolerance. been suggested to be a contributing factor to this disturbance. Despite the lack of GLUT4 in the KO mouse muscle, glucose We have produced muscle-specific Glut4 knockout (KO) mice uptake was not impaired in skeletal muscle but was reduced in using Cre/LoxP technology on a C57BL6/J background and heart under insulin-stimulated conditions. Neither GLUT1 nor shown undetectable levels of GLUT4 in both skeletal muscle GLUT12 protein levels were altered in the skeletal muscle or and heart. Our aim was to determine whether complete heart tissue of our KO mice. High-fat feeding did not alter deletion of muscle GLUT4 does in fact lead to perturbations glucose tolerance in the KO mice but led to elevated plasma in glucose homoeostasis. Glucose tolerance, glucose turnover insulin levels during the glucose tolerance test. Our study and 2-deoxyglucose uptake into muscle and fat under basal and demonstrates that deletion of muscle GLUT4 does not adversely insulin-stimulated conditions were assessed in 12-week-old KO affect glucose disposal and glucose tolerance and that and control mice using the oral glucose tolerance test (OGTT) compensation from other transporters may contribute to this and hyperinsulinaemic/euglycaemic clamp respectively.
    [Show full text]
  • Crystal Structure of a Glucose/H Symporter and Its Mechanism of Action
    + Crystal structure of a glucose/H symporter and its mechanism of action Cristina V. Iancua, Jamillah Zamoonb, Sang Bum Wooa, Alexander Aleshinc, and Jun-yong Choea,1 aDepartment of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago,IL 60064; bDepartment of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City 13060, Kuwait; and cDepartment of Infectious Diseases, Sanford Burnham Medical Research Institute, La Jolla, CA 92037 Edited* by H. Ronald Kaback, University of California, Los Angeles, CA, and approved September 26, 2013 (received for review June 25, 2013) + Glucose transporters are required to bring glucose into cells, of a Staphylococcus epidermidis glucose/H symporter (GlcPSe) where it is an essential energy source and precursor in protein by single anomalous dispersion methods. GlcPSe shares high se- and lipid synthesis. These transporters are involved in important quence identity (27–34%) and homology (49–58%) with the hu- common diseases such as cancer and diabetes. Here, we report the man GLUTs (Table S1), is highly specific for glucose, and is + crystal structure of the Staphylococcus epidermidis glucose/H sym- inhibited by the well-characterized inhibitors of human GLUTs porter in an inward-facing conformation at 3.2-Å resolution. The phloretin, cytochalasin B, and forskolin. In contrast to GlcP , + Se Staphylococcus epidermidis glucose/H symporter is homologous XylE transports xylose but not glucose, which is an inhibitor, and is to human glucose transporters, is very specific and has high avidity impervious to inhibition by cytochalasin B (13, 24). On the basis of for glucose, and is inhibited by the human glucose transport inhib- the GlcPSe structure and functional studies of wild-type and mu- itors cytochalasin B, phloretin, and forskolin.
    [Show full text]