Biology of Sugarcane Woolly Aphid Predator, Dipha Aphidivora Meyrick (Lepidoptera: Pyralidae)

Total Page:16

File Type:pdf, Size:1020Kb

Biology of Sugarcane Woolly Aphid Predator, Dipha Aphidivora Meyrick (Lepidoptera: Pyralidae) CJ. Bioi. Control. 20( I): 81-84. 2006 ) Biology of sugarcane woolly aphid predator, Dipha aphidivora Meyrick (Lepidoptera: Pyralidae) M. S. PUTTANNAVAR, R. K. PATIL*, M. VIDYA, G. K. RAMEGOWDA, S. LINGAPPA, SHEKARAPPA and K.A. KULKARNI Department ofAgricultural Entomology, College ofAgriculture University ofAgricultural Sciences Dhm'wad 580 005, Kamataka, India E-mail:[email protected] ABSTRACT: A laboratory study was carried out on biology of sugarcane woolly aphid (SWA) predator, Diplla apllidivora Meyrick (Lepidoptera: Pyralidae). DilJ110 al'flitiivora occupied 5.6 ± 0.81, 24.61 ± 3.41, 7.80 ± 0.51, 1.65 ± 0.54 and 3.89 ± 0.74 days for incubation. total larval period, pupation, longevity ot· adult male and female, respectively. The total lire cycle .'a.sted for 43.27 ± 5.84 days. During its total larval period of 24.61 ± 3.41 days, a single 1). alJllltilVora consumed on an average 6,074.84 ± 87.6 sugarcane woolly aphids. KEY WORDS: Biology, DipJw aphidivo/"{/, sugarcane woolly aphid All around the world 47 natural enemies have the biological control agent in the management of been recorded on sugarcane woolly aphid (SWA). SWA. A laboratory investigation was carried out at Among these natural enemies, predators (37) are Department ofAgricultural Entomology, Col.lege of predominant, followed by parasitoids (7) and Agriculture, University of Agricultural SCiences, entomopathogens (3) (Joshi and Viraktamath, 2004). Dharwad during 2003-04. Out of these 37 predators, belonging to six orders The pupae of D. aphidivora were collected (Coleoptera, Neuroptera, Diptera, Lepidoptera, from the SWA infested fie1d and allowed to adult Hemiptera and Araneae), only three predators viz., emerge in the cages with glass front cages (35 x 24 Dipha aphidivora Meyrick. Micromus igorotus x 30 cm). The emerged adults were fed with ten per Banks and syrphids are found more potential cent honey solution wad in cotton swab. Moths (Anon., 2004) in Karnataka. Dipha aphidivora is were released in cage with the sex ratio of I :2 (male: one of the most effective predators on SWA as female) based on the abdominal size. The c~ge was reported by many workers (Cheng ct al.. 1994; Liu provided with sugarcane leaf bits of ~cm !I1fested et at., 1985; Arakaki and Yoshiyasu, 1988; Tripathi, with SWA placed in conical flask wlth.water for 1992 and 1995; Mote and Puri, 2003; 2004). The deposition of eggs. The eggs deposited were present investigation was undertaken to study the counted and transferred individually to separate biology of D. aphidivora and its feeding potential glass vials (3.0 x 2.5cm). The time that lapsed on SWA in order to utilize this predator as one of I'UTTANNAVAR <'f II/. between the egg deposition and hatching was varies between 15.4- 7.6 mm with a mean of 16.17 ± recorded as incubation period. The freshly hatched 0.70 mm and width varies from 2.2 to 3.3 mm with a larvae were enclosed separately in glass vials and mean of 2.53 ± 0.49 111m. The head capsule width stoppered with cotton plugs. \Voolly aphids were range from 2.8 to 3.3 mm with a mean of3.24±0.16 provided ad IihiwlI/ to the developing larvae. The mm. Thc duration of the first instar range between Ii me t,lken f<)r each molt was recorded for each instar 2 to 3 days with a mean of2.40 ± 0.61 days. to determine the larval duration. Likcwise, pupal period and adult longevity wcre also recorded. The Second ins tar: The second instal' larva is whitish biology of n. apltidi\'ora was studied by in colour with dark brown head and brownish patch maintaining fifty larvae. Further, parameters like on the thoracic region. The tenth abdominal length and breadth of different stages were segment becomes slightly prominent in the second measured with stereo binocular microscope at 0.9x instar. The length and width of the larvae ranges magni licatioll with stage and occular micrometer. from 18.7 to 22.0 mm with a mean of20.02 ± 1.65 111m and 2.5 to 4.4 mm with the mean of3.08 ± 0.44 mm, The first instar Iarvac of the D. apltidi\'ora respectively. The head capsule width ranges were enclosed in glass vials (3.0 x 2.5cl11) and between 4.95 to 5.61 mm with a mean of5.50±0.62 provided with 10 aphids evcry day, which included 111m. The duration of the second instar is 3 to 4 days all instal's. Such 25 vials werc maintained. Evcry with a mean of3. 71 ± 0.53 days. day the number of aphids remaining in the vial was countcd and thc difTcrence in thcse two readings Third instar: The body of the larva is light brown gavc the day wisc and the instar-wise aphid with greenish tinge and head capsule was brown in conslimption. Number of aphids provided to colour. Sparsely distributed setae are present on second to fi nh instars was 25 to 70 aphids per day, the body with prominent constrictions. The larva respectively. The total and number of aphids measures 35.2 to 38.5 mm with a mean of 36.52 ± consumed by each instar was worked out per day, 1.21 mm in length and 5.5 to 7.7 mm with a mean of per instar and for total larval duration. 6.60 ± 0.12 mm in width. The head capsule width ranges from 7.7 to 8.8 mm with a mean of8.25 ±0.69 Biology of D. aphidivora mm. The duration of third instar larva is 5- 9 days with a mean of6.82 ± 0.98 days. Studies carried out on the biology of D. aplJidiFora revealed that it undergoes five larval Fourth instar: Fourth instar larva is light green in instars. The detailed morphometric characters of colour; head and thorax are brown and with a brown each stage are as below. patch on the thorax. Body is constricted deeply with prominent setae. The length of the body varies Egg: The female moth laid eggs individually or in between 75.1 - 81.1 mm with a mean of79.90± 6.05 groups in a straight line of 4 to 12, on the ventral mm and width of 14.3 - 16.5 111m with a mean of surface of the leaf in the colonies ofSWA. The egg 14.52 ± 2.97 mm. The head capsule width ranges is elongate oval and rounded at both the end. The from 8.8 to 9.9 with a mean of9.24 ± 0.52 mm. The freshly laid egg is cream to yellowish in colour and duration of fourth instar larva is 6 - 12 days with a a day before hatching it turn to black. The length mean of7.93 ± 0.83 days. and breadth of the egg measure between 6.6 -7.7 mm with a mean of7.59 ± 1.03 mm and 3.3 - 4.6 111m Fifth instar: Thc head of fifth instar is brown in with a mean of 4.51 ± 0.77 mm, respectively. The colollr with green body covered by long setae. incubation period is 5 - 7 days with a mean of5.60 ± Distinct longitudinal mid dorsal linc is found 011 0.81 days. the body which is green in colour. The body was fusiform and wider at thc central region. The length First instar: The freshly hatched larva is white to of the body varies betwecn S2.3 - 87.9 111m with a creamy white in colour with smooth body. The head mean of85.30 ± 5.13111111 and width of 17.6 - 22.0111111 capsule is light brown in colour. The length oflarva with a mean of 18.70 ± 2.64 lllm. The hcad capsule 82 Biology of sugarcane woolly aphid predator, D. apiJidivora width varies between 9.9 - 11.0 mm with a mean of aphidivora required 2.44, 17.72, 7.00 and 2.00 days 10.17 ± 0.47 mm. The duration offifth instar is 3 - 5 of incubation, larval, pupal and adult periods with days with a mean of3.75 ± 0.46 days. 30.72 days of total life cycle. Total larval period: The total larval period of D. Feeding potential of Dipha aphidivortl aphidivora varies from 19 to 33 days with a mean of 24.61 ± 3.41 days. The data generated on the fceding potential of different instars of the predator are presented Pupa: Pupation occurred in the boat shaped, white, below. fine and tightly woven silken cocoon. The pupa is obtect type, dark brown colour; anterior end is blunt First Instar: On an average the first instal' larva and posterior end conical. Pupal length varies consumed 5.48 ± 1.44 aphids / day. A total of 13.52 between 69.3 -71.5 mm with the mean of69.85 ± aphids were consumed by first instar larva during 2.55 mm and width of 18.7 - 19.9 mm with a mean of the period of2.4 ± 0.61 days. 19.55 ± 0.44mm. The pupal period varies between 7 -10 days with a mean of7.8 ± 0.51 days. Second instar: The second instar larva consllllled 103 - 117 aphids pcr day with a mean of 115.4 Xl Adult: Adult moth is with brown thorax and 3.45 aphids per day. A total of 428.43 aphids during abdomen. Forewings are brown in colour whereas, the period of3.71 ± 0.53 days during second instar. hind wings are light brown with fringed margins. In case of male moth, on an average 54.30 ± 0.78 Third instar: The third instar larvae consumed 220 antennal segments are present whereas, in to 266 aphids per day with a mean of264.36 ± 10.73 female it was 58.63 ± 1.91.
Recommended publications
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • Entomology Research Recommendations
    ENTOMOLOGY RESEARCH FINDINGS/ RECOMMENDATIONS Division of Crop Protection 01. Research Findings of Research based on Sugarcane Woolly Aphid (SWA); Ceratovacuna lanigera (Homoptera: Aphididae) i. Natural enemy spectrum of SWA includes only arthropod predators and six species have been identified (Wanasinghe et al; 2012). - Dipha aphidivora (Lepidoptera: Pyralidae) - Micromus sp. (Neuroptera: Hemorabiidae) - Eupeodes sp. (Diptera: Syrphidae) - Micraspis discolor (Coleoptera: Coccinelidae) - Synonycha sp. (Coleoptera: Coccinelidae) - Micraspis allardi (Coleoptera: Coccinelidae) Reference: - VKASM Wanasinghe, NC Kumarasinghe and KMG Chanchala (2012). Natural Enemies of Sugarcane Woolly Aphid (Ceratovacuna lanigera): A survey in Passara, Sri Lanka. Proceeding of the forth symposium on plantation crop research, pp 163-170 (Annex 01). ii. Variations of population density of the three natural predators of SWA According to the data collected to find out the variations of population density of the three natural predators of SWA (Dipha aphidivora, Micromus sp. and unidentified Syrphid fly larva) from January 2012 to December 2014 indicated that, Dipha aphidivora and Micromus sp. were recorded throughout the sampling period. Peak populations of Dipha aphidivora were recorded in months of December and January in each year. Peak populations of Micromus sp. were recorded during the time periods with low number of Dipha aphidivora and the correlation coefficient value between the population levels of Dipha aphidivora and Micromus sp. is 0.0047. Unidentified Syrphid fly larva was recorded an uneven distribution during the study period (Annual Research Progress, 2014) iii. Relationship of the three natural predators of SWA with some weather parameters The results of the Pearson correlation coefficient values of each three predator with rainfall, temperature and relative humidity (Table 1) have indicated that, there were no significant correlations of each predator with the weather parameters (Annual Research Progress, 2014) (Annex 02).
    [Show full text]
  • INSECTS of MICRONESIA Neuroptera: Hemerobiidae*
    INSECTS OF MICRONESIA Neuroptera: Hemerobiidae* By F. M. CARPENTER HARVARD UNIVERSITY INTRODUCTION This account is based mainly on about 150 specimens of Hemerobiidae from Micronesia. All of this material was placed at my disposal through the courtesy of Dr. J. L. Gressitt, to whom I am indebted for the opportunity of making this study. The United States Office of Naval Research, the Pacific Science Board (National Research Council), the National Science Foundation, and Bernice P. Bishop Museum have made this survey and publication of the results pos­ sible. Field research was aided by a contract between the Office of Naval Re­ search, Department of the Navy, and the National Academy of Sciences, NR 160-175. In the course of this study I have made much use of specimens in the Mu­ seum of Comparative Zoology and I have been helped to an inestimable extent by my examination of a type of Micromus navigatorum Brauer, sent to me by Dr. Beier of the Naturhistorisches Museum in Vienna. Specimens are deposited at the following institutions: Bernice P. Bishop Museum (BISHOP), United States National Museum (US), and Museum of Comparative Zoology, Harvard University (MCZ). Only three species are represented in this Micronesian collection, two in Annandalia and the third in Micromus. The third species, M. navigatorum, has now acquired a very wide distribution, in part, at least, through the agency of man. The two species of Annandalia are, so far as now known, endemic to Micronesia. Annandalia and Micromus are only distantly' related within the family Hemerobiidae and they can readily be distinguished: Annandalia has a broad costal area basally, with a well developed recurrent vein; Micromus has a narrow costal area basally and lacks entirely the recurrent vein.
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • Further Insect and Other Invertebrate Records from Glasgow Botanic
    The Glasgow Naturalist (online 2021) Volume 27, Part 3 https://doi.org/10.37208/tgn27321 Ephemerellidae: *Serratella ignita (blue-winged olive), found occasionally. Further insect and other Heptageniidae: *Heptagenia sulphurea (yellow may dun), common (in moth trap). *Rhithrogena invertebrate records from Glasgow semicolorata was added in 2020. Botanic Gardens, Scotland Leptophlebiidae: *Habrophlebia fusca (ditch dun). *Serratella ignita (blue-winged olive), found R.B. Weddle occasionally in the moth trap. Ecdyonurus sp. 89 Novar Drive, Glasgow G12 9SS Odonata (dragonflies and damselflies) Coenagrionidae: Coenagrion puella (azure damselfly), E-mail: [email protected] one record by the old pond outside the Kibble Palace in 2011. Pyrrhosoma nymphula (large red damselfly), found by the new pond outside the Kibble Palace by Glasgow Countryside Rangers in 2017 during a Royal ABSTRACT Society for the Protection of Birds (RSPB) Bioblitz. This paper is one of a series providing an account of the current status of the animals, plants and other organisms Dermaptera (earwigs) in Glasgow Botanic Gardens, Scotland. It lists mainly Anisolabididae: Euborellia annulipes (ring-legged invertebrates that have been found in the Gardens over earwig), a non-native recorded in the Euing Range the past 20 years in addition to those reported in other found by E.G. Hancock in 2009, the first record for articles in the series. The vast majority of these additions Glasgow. are insects, though some records of horsehair worms Forficulidae: *Forficula auricularia (common earwig), (Nematomorpha), earthworms (Annelida: first record 2011 at the disused Kirklee Station, also Lumbricidae), millipedes (Diplopoda) and centipedes found subsequently in the moth trap. (Chilopoda) are included.
    [Show full text]
  • Evaluation of Monitoring Methods for Thrips and the Effect of Trap Colour
    Crop Protection 42 (2012) 156e163 Contents lists available at SciVerse ScienceDirect Crop Protection journal homepage: www.elsevier.com/locate/cropro Evaluation of monitoring methods for thrips and the effect of trap colour and semiochemicals on sticky trap capture of thrips (Thysanoptera) and beneficial insects (Syrphidae, Hemerobiidae) in deciduous fruit trees in Western Australia Sonya Broughton*, Jessica Harrison Department of Agriculture and Food Western Australia, 3 Baron-Hay Court, South Perth, WA 6151, Australia article info abstract Article history: Western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), plague thrips Received 3 May 2012 (Thrips imaginis Bagnall), and onion thrips (Thrips tabaci Lindeman) are pests of deciduous fruit trees in Accepted 7 May 2012 Australia. Yellow sticky traps and tapping buds and flowers for thrips are currently recommended for monitoring, but it is not known whether one method is more efficient than the other, or if selectivity Keywords: Ò could be optimised by trap colour, or addition of semiochemicals Thriplineams or Lurem-TR lures to traps. Frankliniella occidentalis The number and species of thrips caught by trapping and tapping of flowers and leaves, on different trap Thrips imaginis colours (black, blue, green, red, yellow, white), including a control (clear) and thrips semiochemicals, Thrips tabaci Semiochemicals were evaluated in a series of trials in commercial deciduous fruit orchards in the Perth Hills, Western 2 ¼ Lurem-TR Australia. There was poor correlation between thrips caught on traps and tapping samples (R 0.00 Ò e Thriplineams 0.05), with tapping less likely to trigger the action threshold and yielding less than 1% of the Beneficial insects number of thrips caught on sticky traps.
    [Show full text]
  • Bionomics of Micromus Posticus (Walker) (Neuroptera: Hemerobiidae) with Descriptions of the Immature Stages
    PROC. ENTOMOL. SOC. WASH. 89(4), 1987, pp. 776-789 BIONOMICS OF MICROMUS POSTICUS (WALKER) (NEUROPTERA: HEMEROBIIDAE) WITH DESCRIPTIONS OF THE IMMATURE STAGES Department of Entomology, Auburn University, Alabama 36849. Abstract. -The egg and larva of Micromus posticus (Walker) are redescribed and illus- trated. While setal patterns appear similar for all instars, head capsule dimensions can be used to distinguish between instars. A key to the instars is provided. The life history of M. posticus was studied using Aphis gossypii Glover as prey. Laboratory-reared females survived an average of 6 1 days and males an average of 74 days. Adult female survivorship was 100% up to 25 days. Mean total egg production was 933.2 eggdfemale, with a maximum of 1484. Net reproductive rate was 461.3 females/female/generation, mean generation time was 56.3 days, intrinsic rate of increase was 0.153 females/female/day, doubling time was 4.5 days, and finite rate of increase was 1.17/individual/day. Laboratory and field observations in east-central Alabama indicated that females oviposited most often on fibrous material such as cotton fibers and spider mite webbing. Pupation in the field on cotton occurred within bracts on bolls and in folds of leaves. Charitopes mellicornis (Ashmead) and Anacharis melanoneura Ashmead together parasitized 6% of the M. pos- ticus larvae in an unsprayed cotton field. The Hemerobiidae continue to be over- er) has been collected in the eastern United looked despite the widely held belief that States from Massachusetts west to Minne- they are important predators. Withycombe sota and south to Florida and Texas (Car- (1 924) ranked them as one of the three most penter, 1940) and as far north as Manitoba, economically important Neuroptera fami- Canada (Batulla and Robinson, 1983).
    [Show full text]
  • Identification, Biology, & Control of Aboveground Pests in FL Citrus
    Identification, Biology, & Control of Aboveground Pests in FL Citrus January 23, 2019 • What is IPM? • What kind of information do you need to develop an IPM program? Managing pests effectively requires knowledge of their population, phenology, and host association(s) Citrus Production in FL • Perennial crop • Historically stable ecosystem regarding insect management • Low insecticide inputs prior to ACP • Retention of beneficial species (e.g. lady beetles) within/near crops • More cases of successful biological control than any other cropping system • ACP + higher insecticide inputs: • T.B.D. Introduction of invasive citrus pests 1964- Diaprepes root weevil 1993- Citrus Leafminer (CLM) 1995- Brown citrus aphid L. Buss UF/IFAS 1998- Asian citrus psyllid (ACP) Arthropod Pests Affecting Florida Citrus Production Vedalia lady beetle (Rodolia cardinalis) • Introduced into California in 1888 • First outstanding success in the field of classical biological control • Successfully repeated in Florida in 1899 Cottony cushion scale (Icerya purchasi) Arthropod aboveground impacts on citrus • Fruit damage • Cosmetic vs destructive damage • Foliage damage • Reduces photosynthetic capacity • Reduces new growth • Disease vectors • Insects that move diseases between hosts Fruit Damage Direct damage to fruit Damage to peel • Feeding reduces fruit quality, • Largely cosmetic shape, or size • Problem for fresh market • Reduction in yield or cause fruit to drop • Problem for fruit grown for fresh & processed markets Damage from leaf-footed bug feeding. Thrips feeding damage on peel. Weeks UF/IFAS CREC UF/IFAS CREC Stinkbugs and Leaf-footed bugs Weeks UF/IFAS CREC Weeks UF/IFAS CREC Weeks UF/IFAS CREC Weeks UF/IFAS CREC Use piercing-sucking mouthpart to puncture fruit & feed.
    [Show full text]
  • Predatory and Parasitic Lepidoptera: Carnivores Living on Plants
    Journal of the Lepidopterists' Society 49(4), 1995, 412-453 PREDATORY AND PARASITIC LEPIDOPTERA: CARNIVORES LIVING ON PLANTS NAOMI E. PIERCE Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, 02138, USA ABSTRACT. Moths and butterflies whose larvae do not feed on plants represent a decided minority slice of lepidopteran diversity, yet offer insights into the ecology and evolution of feeding habits. This paper summarizes the life histories of the known pred­ atory and parasitic lepidopteran taxa, focusing in detail on current research in the butterfly family Lycaenidae, a group disproportionately rich in aphytophagous feeders and myr­ mecophilous habits. More than 99 percent of the 160,000 species of Lepidoptera eat plants (Strong et al. 1984, Common 1990). Plant feeding is generally associated with high rates of evolutionary diversification-while only 9 of the 30 extant orders of insects (Kristensen 1991) feed on plants, these orders contain more than half of the total number of insect species (Ehrlich & Raven 1964, Southwood 1973, Mitter et al. 1988, cf. Labandiera & Sepkoski 1993). Phytophagous species are characterized by specialized diets, with fewer than 10 percent having host ranges of more than three plant families (Bernays 1988, 1989), and butterflies being particularly host plant-specific (e.g., Remington & Pease 1955, Remington 1963, Ehrlich & Raven 1964). This kind of life history specialization and its effects on population structure may have contributed to the diversification of phytophages by promoting population subdivision and isolation (Futuyma & Moreno 1988, Thompson 1994). Many studies have identified selective forces giving rise to differences in niche breadth (Berenbaum 1981, Scriber 1983, Rausher 1983, Denno & McClure 1983, Strong et al.
    [Show full text]
  • Brown Lacewing (406) Relates To: Biocontrol
    Pacific Pests, Pathogens & Weeds - Fact Sheets https://apps.lucidcentral.org/ppp/ Brown lacewing (406) Relates to: Biocontrol Photo 2. Translucent egg of brown lacewing, Micromus Photo 1. Adult brown lacewing, Micromus tasmaniae. tasmaniae. Photo 3. Eggs of brown lacewing, Micromus Photo 4. Larva of a brown lacewing, Micromus tasmaniae, fastened to a spider web. tasmaniae. Note, the pincer-like mouth parts. Photo 5. A pupa of a brown lacewing, Micromus tasmaniae. Common Name Brown lacewing Scientific Name Brown lacewings belong to the family Hemerobiidae. Green lacewings belong to the family Chrysopidae (see Fact Sheet no. 270). There are many genera and species; this fact sheet uses Micromus tasmaniae as an example (Photo 1). Distribution Worldwide. Asia, Africa, North, South and Central America, Europe, Oceania. Recorded from American Samoa. Australia, Fiji, New Caledonia, New Zealand, Papua New Guinea, Samoa, and Vanuatu. Some species are widespread, but most are restricted to one of the eight major biogeographical regions (ttps://en.wikipedia.org/wiki/Biogeographic_realm). Prey Both adults and larvae prey on soft, sap-sucking insects and other foliage-dwelling insects (see under Impact). The jaws of adults are used for holding and chewing the prey, and the whole of the prey may be eaten. The jaws of the larvae are hollow; they are used to hold onto the prey and to suck up the body contents. Impact Brown lacewing larvae and adults prey mostly on aphids, but also attack scale insects, mealybugs, whiteflies, leafhoppers, thrips, psyllids, caterpillars, moth eggs, and many other small insects as well as mites. The larvae are fast moving and voracious feeders; depending on their size, larvae can eat up to 25 aphids a day, and adults can eat a similar number.
    [Show full text]
  • First Record of a Fossil Larva of Hemerobiidae (Neuroptera) from Baltic Amber
    TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3417: 53–63 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) First record of a fossil larva of Hemerobiidae (Neuroptera) from Baltic amber VLADIMIR N. MAKARKIN1,4, SONJA WEDMANN2 & THOMAS WEITERSCHAN3 1Institute of Biology and Soil Sciences, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia 2Senckenberg Forschungsinstitut und Naturmuseum, Forschungsstation Grube Messel, Markstrasse 35, D-64409 Messel, Germany 3Forsteler Strasse 1, 64739 Höchst Odw., Germany 4Corresponding author. E-mail: [email protected] Abstract A fossil larva of Hemerobiidae (Neuroptera) is recorded for the first time from Baltic amber. The subfamilial and generic affinities of this larva are discussed. It is assumed that it may belong to Prolachlanius resinatus, the most common hemer- obiid species from the Eocene Baltic amber forest. An updated list of extant species of Hemerobiidae with described larvae is provided. Key words: Insecta, Neuroptera, Hemerobiidae, Baltic amber, Eocene, larva Introduction The Hemerobiidae is the most widely distributed family of Neuroptera. Hemerobiid species occur from the subpo- lar tundra to tropical regions, but with approximately 550 species they are not particularly speciose (Oswald 2007). Their fossil record extends to the Late Jurassic (Makarkin et al. 2003); however, records of fossils older than the Eocene are rare. The larvae of Hemerobiidae feed on small arthropods (e.g., aphids, mites) and are often used for pest control.
    [Show full text]
  • Tasman Lacewing for Aphid, Whitefly and Mealybug Control
    Tasman Lacewing for Aphid, Whitefly and Mealybug Control Micromus tasmaniae – Predatory insect Tasman Lacewings are a small predatory insect that predates on a large variety of prey including aphids, citrus whitefly and psyllids. Tasman Lacewings are known to be useful in indoor and outdoor crops such as, capsicum, cucumber, citrus, and other ornamentals as part of an integrated pest management programme. The Pest – Aphids Many different species of aphid are present in New Zealand. Some species are quite specific to particular crops, while other species infest a wide range of crops. Aphids are soft-bodied insects that have globular bodies, long thin legs and antennae. Adult body length is normally 2-3 mm, and colour varies from pale yellow, green to dark brown or black. Some forms have wings and they can Tasman Lacewing Larvae disperse rapidly. Under optimum conditions, the life cycle of an aphid can be completed in 10- 12 days. Many species reproduce asexually, and therefore populations can build up very rapidly. Aphids feed with piercing-sucking mouthparts and can cause stunting and distortion, especially to younger leaves. Aphids are often plant virus vectors, and therefore rapid and effective control is essential to minimize crop losses. Symptoms and signs of aphids include: Visit www.bioforce.net.nz/shop to make online purchases! 1 . Stunting and distortion of the leaves and flowers . Yellowing and wilting of leaves . Honey dew and sooty mould present on the plants . Aphids visible on the stem, leaves and flower buds The Solution – Micromus tasmaniae Tasman Lacewings are a predatory insect which as an adult grow to 7.5 - 10 mm in length.
    [Show full text]