The Rock and Fossil Record the Rock and Fossil Record the Rock And

Total Page:16

File Type:pdf, Size:1020Kb

The Rock and Fossil Record the Rock and Fossil Record the Rock And TheThe RockRock andand FossilFossil RecordRecord Earth’s Story and Those Who First Listened . 426 Apply . 427 Internet Connect . 428 When on Earth? . 429 Activity . 430 MathBreak . 434 Internet Connect 432, 435 Looking at Fossils . 436 QuickLab . 438 Internet Connect . 440 Time Marches On . 441 QuickLab . 443 Internet Connect . 445 Chapter Lab . 446 Chapter Review . 449 TEKS/TAKS Practice Tests . 451, 452 Feature Article . 453 Time Stands Still Pre-Reading Questions Sealed in darkness for 49 million years, this beetle still shimmers with the same metallic hues that once helped it hide among ancient plants. This rare fossil 1. How do scientists study was found in Messel, Germany. In the same rock formation, the Earth’s history? scientists have found fossilized crocodiles, bats, birds, and 2. How can you tell the age frogs. A living stag beetle (above) has a similar form and of rocks and fossils? color. Do you think that these two beetles would live in 3. What natural or human similar environments? What do you think Messel, Germany, events have caused mass was like 49 million years ago? In this chapter, you will extinctions in Earth’s learn how scientists answer these kinds of questions. history? 424 Chapter 16 Copyright © by Holt, Rinehart and Winston. All rights reserved. MAKING FOSSILS Procedure 1. You and three or four of your classmates will be given several pieces of modeling clay and a paper sack containing a few small objects. 2. Press each object firmly into a piece of clay. Try to leave an imprint showing as much detail as possible. 3. After you have made an imprint of each object, exchange your model fossils with another group. 4. In your ScienceLog, describe the fossils you have received. List as many details as possible. What patterns and textures do you observe? 5. Work as a group to identify each fossil, and check your results. Were you right? Analysis 6. What kinds of details were important in identifying your fossil? What kinds of details were not preserved in the imprints? For example, can you tell the colors of the objects? 7. Explain how Earth scientists follow similar methods when studying fossils. The Rock and Fossil Record 425 Copyright © by Holt, Rinehart and Winston. All rights reserved. Earth’s Story and Those Who First Listened How do mountains form? How is new rock created? How old is the Earth? Have you ever asked these questions? Nearly 250 years ago, a Scottish farmer and amateur scientist named James Hutton did. Terms to Learn Searching for answers to his questions, Hutton spent more uniformitarianism than 30 years studying rock formations in Scotland and Great catastrophism Britain. As you can see, geology, the scientific study of the Earth’s history, got a pretty late start. It wasn’t until the nineteenth What You’ll Do century that we began to understand the incredible history of G Contrast uniformitarianism the planet right beneath our feet. with catastrophism. G Predict land features that result from gradual geologic The Present Is the Key to the Past change. In 1795, two years before he died, James Hutton collected his G Describe how the science of notes and wrote Theory of the Earth. In that series of books, geology has developed over he stated that the key to understanding Earth’s history was all the past 200 years. around us. In other words, processes that we observe today— such as erosion and deposition—remain uniform, or do not change, over time. This assumption is now called uniformi- tarianism. Uniformitarianism is the idea that the same geologic processes shaping the Earth today have been at work through- Figure 1 Hutton observed out Earth’s history. Figure 1 shows how Hutton developed the gradual, uniform geologic idea of uniformitarianism. change. Judging by the rate of change, he concluded that the Earth must be incredibly old. 1 Hutton observed that rock is broken down into smaller particles. 2 He watched as rivers carried these particles downstream. 4 Hutton thought that in time the new rock would be raised, forming new landforms, and that the cycle would 3 begin again. He knew that rock particles formed layers of sediment. He predicted that these deposits would form new rock over time. 426 Chapter 16 Copyright © by Holt, Rinehart and Winston. All rights reserved. Uniformitarianism Versus Catastrophism Hutton’s theories sparked a scientific debate because he sug- gested that the Earth was much older than previously thought. Biology In Hutton’s time, most people thought that the Earth was only a few thousand years old. To explain the Earth’s history, most CONNECTION scientists supported catastrophism, the idea that all geologic It’s no coincidence that the theory of change happens suddenly. Supporters of this idea claimed that evolution was developed soon after all of the Earth’s features, such as mountains, canyons, and Lyell introduced his ideas. Lyell and oceans, formed during rare, sudden events called catastrophes. Charles Darwin were good friends, These unpredictable events caused rapid geologic change over and their talks greatly influenced large areas—even across the entire Earth. Darwin’s theories. Similar to uniformitarianism, Darwin’s theory Slow and Steady Wins the Race! of evolution proposes that changes Despite Hutton’s work, people still thought that the Earth’s in species happen gradually over history could be explained by catastrophism. It took the work long periods of time. of Charles Lyell, another Scottish scientist, for people to seri- ously consider uniformitarianism. Armed with Hutton’s notes and new evidence of his own, Lyell successfully challenged catastrophism in the 1830s. Lyell’s victory inspired generations of geologists to interpret rock formations and unlock the Earth’s long and sometimes bizarre history. For example, fossil evidence showed that there were once great oceans where deserts now exist. Geologists learned that rocks formed by the gradual deposition of sediment on the ocean floor could be a twisted and deformed by incredible pressures and temperatures inside the c Earth. Scientists began to see layers of rock as if they were pages in the book of Earth’s history. Every stone told a tale. d Making Assumptions b Examine these photographs. List them in the order you think they were taken. Now write down all of the assumptions that you made to infer that order. Were your assumptions similar to those of your classmates? Briefly explain the importance of making assumptions in science. How does this apply to uniformitarianism? The Rock and Fossil Record 427 Copyright © by Holt, Rinehart and Winston. All rights reserved. Modern Geology—Rethinking the Past Today geologists understand that sudden catastrophes are also a part of Earth’s history. Although most geologic change is slow and uniform, rare catastrophes have left their mark in the rock and fossil record. For example, enormous craters have been found where asteroids and comets struck the Earth in Did you know that dinosaur the past. Some of these impacts may have been catastrophic. bones were not identified until 1841? Hutton and Lyell devel- Such an asteroid impact, illustrated in Figure 2, may have led oped their ideas unaware that to the extinction of the dinosaurs. The impact would have these giants dominated 180 spread dust and smoke into the Earth’s atmosphere, blocking million years of Earth’s history. the sun’s rays and causing major changes in the global cli- mate. Unable to adapt to the changes, the dinosaurs died out. Figure 2 Today scientists think that sudden events are responsible for some changes in Earth’s past. For example, an asteroid impact may have led to the extinction of the dinosaurs 65 million years ago. Why did Hutton’s theories suggest that the Earth is much older than previously thought? How has the role of catastrophism in Earth science TOPIC: Earth’s Story changed? sciLINKS NUMBER: HSTE130 Making Predictions Apply the principle of uniformi- tarianism to predict how land features such as river channels, rock layers, and mountains form. 428 Chapter 16 Copyright © by Holt, Rinehart and Winston. All rights reserved. When on Earth? Imagine that you are a detective investigating a crime scene. What is the first thing you would do? You might begin by dusting for fingerprints or by searching for witnesses. As a detective, your goal is to figure out the order of events that happened before you reached the crime scene. Terms to Learn You could think of the Earth as an enormous geologic crime relative dating scene. Like detectives, geologists try to figure out the order of superposition events in the Earth’s history. But instead of fingerprints and geologic column witnesses, geologists study rocks and fossils, and they use a unconformity method called relative dating. Relative dating is the process of absolute dating determining the order in which events happened. Relative dat- isotopes ing also compares the ages of objects such as rocks or fossils. radiometric dating half-life Relative Dating: Which Came First? What You’ll Do Suppose you have an older brother who takes a lot of photo- graphs of your family and piles them in a box. Over the years, G Describe relative dating. he keeps adding new pictures to the top of the stack. Think G Demonstrate an understand- about the family history recorded in those pictures. Where are ing of the geologic column and superposition. the oldest pictures—the ones taken when you were a baby? G Identify four events that alter Where are the most recent pictures—those taken last week? rock layers. Rock layers, such as those shown in Figure 3, are like stacked G Explain radioactive decay, pictures. As you move from top to bottom, the layers are older.
Recommended publications
  • Coprolites of Deinosuchus and Other Crocodylians from the Upper Cretaceous of Western Georgia, Usa
    Milàn, J., Lucas, S.G., Lockley, M.G. and Spielmann, J.A., eds., 2010, Crocodyle tracks and traces. New Mexico Museum of Natural History and Science, Bulletin 51. 209 COPROLITES OF DEINOSUCHUS AND OTHER CROCODYLIANS FROM THE UPPER CRETACEOUS OF WESTERN GEORGIA, USA SAMANTHA D. HARRELL AND DAVID R. SCHWIMMER Department of Earth and Space Sciences, Columbus State University, Columbus, GA 31907 USA, [email protected] Abstract—Associated with abundant bones, teeth and osteoderms of the giant eusuchian Deinosuchus rugosus are larger concretionary masses of consistent form and composition. It is proposed that these are crocodylian coprolites, and further, based on their size and abundance, that these are coprolites of Deinosuchus. The associated coprolite assemblage also contains additional types that may come from smaller crocodylians, most likely species of the riverine/estuarine genus Borealosuchus, which is represented by bones, osteoderms and teeth in fossil collections from the same site. INTRODUCTION The Upper Cretaceous Blufftown Formation in western Georgia contains a diverse perimarine and marine vertebrate fauna, including many sharks and bony fish (Case and Schwimmer, 1988), mosasaurs, plesio- saurs, turtles (Schwimmer, 1986), dinosaurs (Schwimmer et al., 1993), and of particular interest here, abundant remains of the giant eusuchian crocodylian Deinosuchus rugosus (Schwimmer and Williams, 1996; Schwimmer, 2002). Together with bite traces attributable to Deinosuchus (see Schwimmer, this volume), there are more than 60 coprolites recov- ered from the same formation, including ~30 specimens that appear to be of crocodylian origin. It is proposed here that the larger coprolites are from Deinosuchus, principally because that is the most common large tetrapod in the vertebrate bone assemblage from the same locality, and it is assumed that feces scale to the producer (Chin, 2002).
    [Show full text]
  • Mary Anning of Lyme Regis: 19Th Century Pioneer in British Palaeontology
    Headwaters Volume 26 Article 14 2009 Mary Anning of Lyme Regis: 19th Century Pioneer in British Palaeontology Larry E. Davis College of St. Benedict / St. John's University, [email protected] Follow this and additional works at: https://digitalcommons.csbsju.edu/headwaters Part of the Geology Commons, and the Paleontology Commons Recommended Citation Davis, Larry E. (2009) "Mary Anning of Lyme Regis: 19th Century Pioneer in British Palaeontology," Headwaters: Vol. 26, 96-126. Available at: https://digitalcommons.csbsju.edu/headwaters/vol26/iss1/14 This Article is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for inclusion in Headwaters by an authorized editor of DigitalCommons@CSB/SJU. For more information, please contact [email protected]. LARRY E. DAVIS Mary Anning of Lyme Regis 19th Century Pioneer in British Palaeontology Ludwig Leichhardt, a 19th century German explorer noted in a letter, “… we had the pleasure of making the acquaintance of the Princess of Palaeontology, Miss Anning. She is a strong, energetic spinster of about 28 years of age, tanned and masculine in expression …” (Aurousseau, 1968). Gideon Mantell, a 19th century British palaeontologist, made a less flattering remark when he wrote in his journal, “… sallied out in quest of Mary An- ning, the geological lioness … we found her in a little dirt shop with hundreds of specimens piled around her in the greatest disorder. She, the presiding Deity, a prim, pedantic vinegar looking female; shred, and rather satirical in her conversation” (Curwin, 1940). Who was Mary Anning, this Princess of Palaeontology and Geological Lioness (Fig.
    [Show full text]
  • Geologic Time and Geologic Maps
    NAME GEOLOGIC TIME AND GEOLOGIC MAPS I. Introduction There are two types of geologic time, relative and absolute. In the case of relative time geologic events are arranged in their order of occurrence. No attempt is made to determine the actual time at which they occurred. For example, in a sequence of flat lying rocks, shale is on top of sandstone. The shale, therefore, must by younger (deposited after the sandstone), but how much younger is not known. In the case of absolute time the actual age of the geologic event is determined. This is usually done using a radiometric-dating technique. II. Relative geologic age In this section several techniques are considered for determining the relative age of geologic events. For example, four sedimentary rocks are piled-up as shown on Figure 1. A must have been deposited first and is the oldest. D must have been deposited last and is the youngest. This is an example of a general geologic law known as the Law of Superposition. This law states that in any pile of sedimentary strata that has not been disturbed by folding or overturning since accumulation, the youngest stratum is at the top and the oldest is at the base. While this may seem to be a simple observation, this principle of superposition (or stratigraphic succession) is the basis of the geologic column which lists rock units in their relative order of formation. As a second example, Figure 2 shows a sandstone that has been cut by two dikes (igneous intrusions that are tabular in shape).The sandstone, A, is the oldest rock since it is intruded by both dikes.
    [Show full text]
  • Soils in the Geologic Record
    in the Geologic Record 2021 Soils Planner Natural Resources Conservation Service Words From the Deputy Chief Soils are essential for life on Earth. They are the source of nutrients for plants, the medium that stores and releases water to plants, and the material in which plants anchor to the Earth’s surface. Soils filter pollutants and thereby purify water, store atmospheric carbon and thereby reduce greenhouse gasses, and support structures and thereby provide the foundation on which civilization erects buildings and constructs roads. Given the vast On February 2, 2020, the USDA, Natural importance of soil, it’s no wonder that the U.S. Government has Resources Conservation Service (NRCS) an agency, NRCS, devoted to preserving this essential resource. welcomed Dr. Luis “Louie” Tupas as the NRCS Deputy Chief for Soil Science and Resource Less widely recognized than the value of soil in maintaining Assessment. Dr. Tupas brings knowledge and experience of global change and climate impacts life is the importance of the knowledge gained from soils in the on agriculture, forestry, and other landscapes to the geologic record. Fossil soils, or “paleosols,” help us understand NRCS. He has been with USDA since 2004. the history of the Earth. This planner focuses on these soils in the geologic record. It provides examples of how paleosols can retain Dr. Tupas, a career member of the Senior Executive Service since 2014, served as the Deputy Director information about climates and ecosystems of the prehistoric for Bioenergy, Climate, and Environment, the Acting past. By understanding this deep history, we can obtain a better Deputy Director for Food Science and Nutrition, and understanding of modern climate, current biodiversity, and the Director for International Programs at USDA, ongoing soil formation and destruction.
    [Show full text]
  • Teacher's Booklet
    Ideas and Evidence at the Sedgwick Museum of Earth Sciences Teacher’s Booklet Acknowledgements Shawn Peart Secondary Consultant Annette Shelford Sedgwick Museum of Earth Sciences Paul Dainty Great Cornard Upper School Sarah Taylor St. James Middle School David Heap Westley Middle School Thanks also to Dudley Simons for photography and processing of the images of objects and exhibits at the Sedgwick Museum, and to Adrienne Mayor for kindly allowing us to use her mammoth and monster images (see picture credits). Picture Credits Page 8 “Bag of bones” activity adapted from an old resource, source unknown. Page 8 Iguanodon images used in the interpretation of the skeleton picture resource from www.dinohunters.com Page 9 Mammoth skeleton images from ‘The First Fossil Hunters’ by Adrienne Mayor, Princeton University Press ISBN: 0-691-05863 with kind permission of the author Page 9 Both paintings of Mary Anning from the collections of the Natural History Museum © Natural History Museum, London 1 Page 12 Palaeontologists Picture from the photographic archive of the Sedgwick Museum © Sedgwick Museum of Earth Sciences Page 14 Images of Iguanodon from www.dinohunters.com Page 15 “Duria Antiquior - a more ancient Dorsetshire” by Henry de la Beche from the collection of the National Museums and Galleries of Wales © National Museum of Wales Page 17 Images of Deinotherium giganteum skull cast © Sedgwick Museum of Earth Sciences Page 19 Image of red sandstone slab © Sedgwick Museum of Earth Sciences 2 Introduction Ideas and evidence was introduced as an aspect of school science after the review of the National Curriculum in 2000. Until the advent of the National Strategy for Science it was an area that was often not planned for explicitly.
    [Show full text]
  • A GEOLOGIC RECORD of the FIRST BILLION YEARS of MARS HISTORY. John F. Mustard1 and James W. Head1 1Department of Earth, Environm
    49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 2604.pdf A GEOLOGIC RECORD OF THE FIRST BILLION YEARS OF MARS HISTORY. John F. Mustard1 and James W. Head1 1Department of Earth, Environmental and Planetary Sciences, Box 1846, Brown University, Provi- dence, RI 02912 ([email protected]) Introduction: A compelling record of the first bil- standing solar system evolution question is the exist- lion years of Mars geologic evolution is spectacularly ence, or not, of a period of heavy bombardment ≈500 presented in a compact region at the intersection of Myr after accretion of the terrestrial planets. Except Isidis impact basin and Syrtis Major volcanic province for the Moon, we have no definitive dates for basins (Fig. 1). In this well-exposed region is a well-ordered formed in the Solar System. Radiometric systems in stratigraphy of geologic units spanning Noachian to crystalline igneous rocks exposed by Isidis would like- Early Hesperian times [1]. Geologic units can be de- ly have been reset and thus contain evidence of the finitively associated with the Isidis basin-forming im- impact providing a key data point for understanding pact (≈3.9 Ga, [2]) as well as pristine igneous and basin forming processes in the Solar System. Further- aqueously altered Noachian crust that pre-date the more the Isidis basin impacted onto the rim of the hy- Isidis event. The rich collection of well defined units pothesized Borealis Basin [7]. Given this proximity spanning ≈500 Myr of time in a compact region is at- there is a possibility that some fragments may have tractive for the collection of samples.
    [Show full text]
  • Utah's Geologic Timeline Utah Seed Standard 7.2.6: Make an Argument from Evidence for How the Geologic Time Scale Shows the Ag
    Utah’s Geologic Timeline Utah SEEd Standard 7.2.6: Make an argument from evidence for how the geologic time scale shows the age and history of Earth. Emphasize scientific evidence from rock strata, the fossil record, and the principles of relative dating, such as superposition, uniformitarianism, and recognizing unconformities. (ESS1.C) Activity Details: The students begin with a blank calendar and a list of events in the Earth’s, and additionally Utah’s, history. These events span billions of years, but such numbers are too large to visualize and compare. In order to help the mind understand such enormous lengths of time, the year of the event is scaled to what it would Be proportionate to a calendar year (numBers are from The Utah Geological Survey and Kentucky Geological Survey). The students go through the list and fill out their calendar to visualize the geologic timeline of the Earth and Utah, and then answer some analysis questions to help solidify their understanding. Students will need four differently-colored colored pencils or crayons to complete the activity. Background: The following information is taken from The Utah Geological Survey, written by Mark Milligan. It may Be helpful to define some of the terms with the students so they understand where and how ages come from. Geologists generally know the age of a rock By determining the age of the group of rocks, or formation, that it is found in. The age of formations is marked on a geologic calendar known as the geologic time scale. Development of the geologic time scale and dating of formations and rocks relies upon two fundamentally different ways of telling time: relative and absolute.
    [Show full text]
  • Fossil Lagerstätte from Ya Ha Tinda, Alberta, Canada
    A new Early Jurassic (ca. 183 Ma) fossil Lagerstätte from Ya Ha Tinda, Alberta, Canada Rowan C. Martindale1,2*, Theodore R. Them II3,4, Benjamin C. Gill3, Selva M. Marroquín1,3, and Andrew H. Knoll2 1Department of Geological Sciences, The University of Texas at Austin, 1 University Station C1100, Austin, Texas 78712, USA 2Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138, USA 3Department of Geosciences, Virginia Polytechnic Institute and State University, 4044 Derring Hall (0420), Blacksburg, Virginia 24061, USA 4Department of Earth, Ocean and Atmospheric Science & National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, USA ABSTRACT Figure 1. Global paleoge- Lagerstätten—deposits of exceptionally preserved fossils—offer ography during Toarcian vital insights into evolutionary history. To date, only three Konservat- and location of Ya Ha Tinda Hispanic (Alberta, Canada; yellow Lagerstätten are known from Early Jurassic marine rocks (Osteno, Corridor Tethys star), Strawberry Bank (UK; Posidonia Shale, and Strawberry Bank), all located in Europe. We gray star), and Posidonia report a new assemblage of exceptionally preserved fossils from Panthalassa Shale (Germany; black star) Alberta, Canada, the first marine Konservat-Lagerstätte described Lagerstätten. Green areas are Pangea landmasses, light-blue areas from the Jurassic of North America. The Ya Ha Tinda assemblage are shallow seas, and dark includes articulated vertebrates (fish,
    [Show full text]
  • Mary Anning: Princess of Palaeontology and Geological Lioness
    The Compass: Earth Science Journal of Sigma Gamma Epsilon Volume 84 Issue 1 Article 8 1-6-2012 Mary Anning: Princess of Palaeontology and Geological Lioness Larry E. Davis College of St. Benedict / St. John's University, [email protected] Follow this and additional works at: https://digitalcommons.csbsju.edu/compass Part of the Paleontology Commons Recommended Citation Davis, Larry E. (2012) "Mary Anning: Princess of Palaeontology and Geological Lioness," The Compass: Earth Science Journal of Sigma Gamma Epsilon: Vol. 84: Iss. 1, Article 8. Available at: https://digitalcommons.csbsju.edu/compass/vol84/iss1/8 This Article is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for inclusion in The Compass: Earth Science Journal of Sigma Gamma Epsilon by an authorized editor of DigitalCommons@CSB/SJU. For more information, please contact [email protected]. Figure. 1. Portrait of Mary Anning, in oils, probably painted by William Gray in February, 1842, for exhibition at the Royal Academy, but rejected. The portrait includes the fossil cliffs of Lyme Bay in the background. Mary is pointing at an ammonite, with her companion Tray dutifully curled beside the ammonite protecting the find. The portrait eventually became the property of Joseph, Mary‟s brother, and in 1935, was presented to the Geology Department, British Museum, by Mary‟s great-great niece Annette Anning (1876-1938). The portrait is now in the Earth Sciences Library, British Museum of Natural History. A similar portrait in pastels by B.J.M. Donne, hangs in the entry hall of the Geological Society of London.
    [Show full text]
  • Museum of Natural History & Science Gallery Guide for Lost Voices
    Museum of Natural History & Science Gallery Guide for Lost Voices Lost Voices is a multi-part exhibit focusing on the varied life forms that have inhabited our planet in the past. This exhibit allows for a greater understanding of the history of our planet and also of our place on it. Concepts: background extinction, Cenozoic, Cretaceous, crust, environment, eons, epoch, era, evolution, extinction, fossil, fossil record, geologic record, geologist, Holocene, Jurassic, limestone, mantle, mass extinction, Mesozoic, period, plate tectonics, Quaternary, sandstone, Tertiary, tilt, Triassic, wobble Background Information: Scientists calculate the age of the Earth at approximately 4.6 billion years, and the planet has sustained life for over three million years. During this time, many changes have taken place in climate, placement of the continents and life forms. To assist in understanding this vast period of time, scientists have divided the time into sections. The longest period of time are called eons, which are divided into eras, which are then divided into periods, which are finally divided into epochs. Most people are familiar with the Mesozoic era, which consists of the Triassic, Jurassic, and Cretaceous periods. We currently live in the Cenozoic era, the Quaternary period and the Holocene epoch. The divisions between geologic time spans are often defined by a break in the fossil record or a geologic occurrence of some magnitude, such as a sudden widespread volcanic activity. For example, all available evidence points to the division of the Cretaceous and Tertiary periods caused by a giant asteroid strike off the coast of Mexico. The asteroid strike caused the extinction of over 80 percent of the planet’s life forms and created widespread geologic activity.
    [Show full text]
  • Tectonics and Crustal Evolution
    Tectonics and crustal evolution Chris J. Hawkesworth, Department of Earth Sciences, University peaks and troughs of ages. Much of it has focused discussion on of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, the extent to which the generation and evolution of Earth’s crust is UK; and Department of Earth Sciences, University of St. Andrews, driven by deep-seated processes, such as mantle plumes, or is North Street, St. Andrews KY16 9AL, UK, c.j.hawkesworth@bristol primarily in response to plate tectonic processes that dominate at .ac.uk; Peter A. Cawood, Department of Earth Sciences, University relatively shallow levels. of St. Andrews, North Street, St. Andrews KY16 9AL, UK; and Bruno The cyclical nature of the geological record has been recog- Dhuime, Department of Earth Sciences, University of Bristol, Wills nized since James Hutton noted in the eighteenth century that Memorial Building, Queens Road, Bristol BS8 1RJ, UK even the oldest rocks are made up of “materials furnished from the ruins of former continents” (Hutton, 1785). The history of ABSTRACT the continental crust, at least since the end of the Archean, is marked by geological cycles that on different scales include those The continental crust is the archive of Earth’s history. Its rock shaped by individual mountain building events, and by the units record events that are heterogeneous in time with distinctive cyclic development and dispersal of supercontinents in response peaks and troughs of ages for igneous crystallization, metamor- to plate tectonics (Nance et al., 2014, and references therein). phism, continental margins, and mineralization. This temporal Successive cycles may have different features, reflecting in part distribution is argued largely to reflect the different preservation the cooling of the earth and the changing nature of the litho- potential of rocks generated in different tectonic settings, rather sphere.
    [Show full text]
  • GEOLOGY Geology Major GEO. GEOLOGY
    GEOLOGY 14 Geology Major Fifth Semester The major leading to the B.S. degree emphasizes the fundamental of the [[CE-346]] Rock Engineering 3 science of geology with upper-level courses that provide both breadth and [[ENV-321]] Hydrology 3 depth in the curriculum. The program is designed to optimize classroom, [[ENV-323]] Hydrology Lab 1 lab, and field experiences and prepare students for the modern demands of [[GEO-345]] Stratigraphy and 4 a geoscientist or entry into graduate school. Total credits - 122 Sedimentation Geology B.S. Degree- Required Courses [[GIS-271]] Intro to GPS & GIS 3 and Recommended Course Sequence 14 First Semester Credits Sixth Semester [[CHM-115]] Elements & 3 [[EES-302]] Literature Methods 1 Compounds [[EES-304]] Environmental Data 2 [[CHM-113]] Elements & 1 Analysis Compounds Lab [[GEO-349]] Structure and 4 [[ENG-101]] Composition 4 Tectonics [[FYF-101]] First-Year Foundations 3 [[GEO-351]] Paleoclimatology 3 [[MTH-111]] Calculus I 4 [[GEO-352]] Hydrogeology 3 15 [[GIS-272]] Advanced GIS & 3 Remote Sensing Second Semester 16 [[CHM-116]] The Chemical 3 Reaction Summer Session [[CHM-114]] The Chemical 1 [[GEO-380]] Geology Field Camp 4 Reaction Lab [[GEO-101]] Intro to Geology 3 [[GEO-103]] Intro to Geology Lab 1 Seventh Semester [[MTH-112]] Calculus II 4 [[GEO-390]] Applied Geophysics 3 Distribution Requirement 3 [[GEO-391]] Senior Projects I 1 15 Distribution Requirements 6 Third Semester Program Elective 3 13 [[GEO-212]] Historical Geology 3 [[GEO-281]] Mineralogy 4 Eighth Semester [[MTH-150]] Elementary Statistics 3 [[GEO-370]] Geomorphology 3 [[PHY-171]] Principles of Classical 4 [[GEO-392]] Senior Projects II 2 and Modern Physics Distribution Requirements 3 Distribution Requirement 3 Free Elective 3 17 Program Elective 3 Fourth Semester 14 [[EES-240]] Principles of 3 Environmental Engineering & GEO.
    [Show full text]