GEOLOGY Geology Major GEO. GEOLOGY

Total Page:16

File Type:pdf, Size:1020Kb

GEOLOGY Geology Major GEO. GEOLOGY GEOLOGY 14 Geology Major Fifth Semester The major leading to the B.S. degree emphasizes the fundamental of the [[CE-346]] Rock Engineering 3 science of geology with upper-level courses that provide both breadth and [[ENV-321]] Hydrology 3 depth in the curriculum. The program is designed to optimize classroom, [[ENV-323]] Hydrology Lab 1 lab, and field experiences and prepare students for the modern demands of [[GEO-345]] Stratigraphy and 4 a geoscientist or entry into graduate school. Total credits - 122 Sedimentation Geology B.S. Degree- Required Courses [[GIS-271]] Intro to GPS & GIS 3 and Recommended Course Sequence 14 First Semester Credits Sixth Semester [[CHM-115]] Elements & 3 [[EES-302]] Literature Methods 1 Compounds [[EES-304]] Environmental Data 2 [[CHM-113]] Elements & 1 Analysis Compounds Lab [[GEO-349]] Structure and 4 [[ENG-101]] Composition 4 Tectonics [[FYF-101]] First-Year Foundations 3 [[GEO-351]] Paleoclimatology 3 [[MTH-111]] Calculus I 4 [[GEO-352]] Hydrogeology 3 15 [[GIS-272]] Advanced GIS & 3 Remote Sensing Second Semester 16 [[CHM-116]] The Chemical 3 Reaction Summer Session [[CHM-114]] The Chemical 1 [[GEO-380]] Geology Field Camp 4 Reaction Lab [[GEO-101]] Intro to Geology 3 [[GEO-103]] Intro to Geology Lab 1 Seventh Semester [[MTH-112]] Calculus II 4 [[GEO-390]] Applied Geophysics 3 Distribution Requirement 3 [[GEO-391]] Senior Projects I 1 15 Distribution Requirements 6 Third Semester Program Elective 3 13 [[GEO-212]] Historical Geology 3 [[GEO-281]] Mineralogy 4 Eighth Semester [[MTH-150]] Elementary Statistics 3 [[GEO-370]] Geomorphology 3 [[PHY-171]] Principles of Classical 4 [[GEO-392]] Senior Projects II 2 and Modern Physics Distribution Requirements 3 Distribution Requirement 3 Free Elective 3 17 Program Elective 3 Fourth Semester 14 [[EES-240]] Principles of 3 Environmental Engineering & GEO. GEOLOGY Science GEO-101. INTRODUCTION TO GEOLOGY [[EES-241]] Principles of 1 Credits: 3 Environmental Engineering & Science Lab Description, analysis, and studies of earth materials, structures, and processes, including Earth’s surface, interior, age, and origin. Three hours of [[GEO-282]] Petrology 3 lecture per week. [[PHY-174]] Appl of Classical and 4 Modern Physics Distribution Requirement 3 1 Wilkes University Undergraduate Bulletin 2021 - 2022 Geology GEO-103. INTRODUCTION TO GEOLOGY LAB GEO-349. STRUCTURE AND TECTONICS Credits: 1 Credits: 4 Fees: $115 The study of rock deformational processes and resulting structures in the This lab entails lab and field experiences where rocks and minerals are Earth's crust with application to global and regional tectonics. Lab work studied. The interpretation of topographic and geologic maps and exercises and field trips emphasize the use of methods to assist in the geometric and in the fundamental procedures of geologic investigations are also included. kinematic interpretation of rock structures. Three hours of lecture and three Three hours of lab per week. hours of lab per week. Click here for course fee. Pre-Requisites Co-Requisites [[GEO-282]], [[GEO-345]], [[MTH-111]], [[PHY-171]] or permission of the [[GEO-101]] instructor GEO-212. HISTORICAL GEOLOGY GEO-351. PALEOCLIMATOLOGY Credits: 3 Credits: 3 A study of the geologic record of the earth’s formation and evolution, The goal of this course is to present an overview of the methods used to including methods of dating. Two hours of lecture and three hours of lab per reconstruct the earth’s climate history and the techniques used to determine week. the timing of environmental changes. Paleoclimate data from proxy records, Click here for course fee. such as ice cores or tree rings, provides a longer perspective on climatic variability than is possible from instrumental or historical records. Particular Pre-Requisites emphasis will be given to the natural controls on Earth’s climate across [[GEO-211]] or permission of the instructor. a variety of timescales, including plate tectonic, orbital, and millennial, to centennial and sub-decadal variations. The course will focus on the climatic GEO-281. MINERALOGY changes during the late Cenozoic – the time of the ice ages. Topics to be Credits: 4 discussed will include: paleoclimatic reconstruction, climate and climatic The systematic study of the major classes of the mineral kingdom utilizing variation, dating methods, ice cores, marine and lake sediments, corals, the department's collection. Concepts in crystal chemistry, crystal structure, speleothems, soils, pollen, dendrochronology, documentary data, and mineral behavior, crystallography and optical mineralogy are studied and paleoclimate models. Two hours of lecture and three hours of lab. advanced techniques in mineral analysis are used. Three hours of lecture and three hours of lab per week. Click here for course fee. Click here for course fee. Pre-Requisites Pre-Requisites [[GEO-211]]. [[GEO-211]] and [[CHM-115]]. GEO-352. HYDROGEOLOGY GEO-282. PETROLOGY Credits: 3 Credits: 3 An introduction to the study of groundwater: groundwater flow, well A study of the identification, classification, composition, genesis, and hydraulics, groundwater quality and pollution, and resource exploration, alteration of igneous, sedimentary, and metamorphic rocks and their relation evaluation, and management. Lab activities use a mix of field, wet lab, to crustal processes and tectonic environments. Two hours of lecture and computer and mapping skills. Two hours of lecture and three hours of lab three hours of lab per week. per week. Click here for course fee. Click here for course fee. Pre-Requisites Pre-Requisites [[GEO-281]] [[GEO-211]]. GEO-345. STRATIGRAPHY AND SEDIMENTATION GEO-370. GEOMORPHOLOGY Credits: 4 Credits: 3 The study of the formation and interpretation of sedimentary systems, from Fees: sediment grains to depositional basins. The course starts from the grain Land forms, their evolution, and the human role in changing the surface scale and moves up to basin and global scales. Three hours of lecture and of the earth, utilization of geologic and hydrologic information, and field three hours of lab per week. investigations. Two hours of lecture and three hours of lab per week. Click here for course fee. Click here for course fee. Pre-Requisites Pre-Requisites [[GEO-211]] or permission of the instructor. [[GEO-211]]. 2 Wilkes University Undergraduate Bulletin 2021 - 2022 Geology GEO-375. GEOLOGICAL HAZARDS GEO-391. SENIOR PROJECTS I Credits: 3 Credits: 1 Fees: Fees: This course examines geologic processes that are a natural consequence Design and development of selected research projects in geology under of plate tectonics and hazardous to life and property. After establishing a the direction of a faculty member. Capstone research deliverables include framework for geologic hazards study, principle geologic hazards will be a proposal, detailed progress reports and a formal mid-year report. investigated. Emphasis will be placed on current scientific understanding, Requirements: Senior standing in Geology and department permission. event frequency, forecasting and monitoring and mitigation. Several case (See the department for more details about the department permission.) studies will be included. Three hours of lecture per week. Click here for course fee. Pre-Requisites GEO-392. SENIOR PROJECTS II [[GEO-211]], [[GEO-212]]. Credits: 2 Fees: GEO-380. GEOLOGY FIELD CAMP Second semester continuation of Senior Projects I. Capstone research Credits: 4 deliverables include detailed progress reports, a professional-grade poster, Fees: a final written report, and a formal oral presentation of research project. A four-week summer field course designed to train students in traditional Requirements: Senior standing in Geology and department permission. and modern methods of geologic investigations. Students learn to develop (See the department for more details about the department permission.) research strategies, collect field observations and measurements, compile Click here for course fee. detailed rock descriptions, measure stratigraphic sections and construct geologic maps and cross sections. Field locations may range from local/ Pre-Requisites regional to western U.S. depending on course emphasis and resources. [[GEO-391]] Click here for course fee. GEO-395. INDEPENDENT STUDY Pre-Requisites Credits: Varies with topic [[GEO-281]], [[GEO-282]], [[GEO-345]], [[GEO-349]] Fees: Departmental courses on advanced topics of special interest, not GEO-383. GEOCHEMISTRY extensively treated in regularly scheduled offerings, will be presented Credits: 3 under this course number on an occasional basis. Available for either Fees: undergraduate or graduate credit. Maybe repeated for credit Application of chemistry to study the distribution and cycling of elements Pre-Requisites in the crust of the earth. Includes chemical bonding and crystallization, Senior or graduate standing phase rules and phase diagrams, chemical equilibria, radiogenic and stable isotopes and origin of elements. Geochemical environments of study GEO-396. INDEPENDENT STUDY include low-temperature aqueous solutions and high-temperature magmatic Credits: Varies with topic systems. Two hours of lecture and three hours of lab per week. Fees: Click here for course fee. Departmental courses on advanced topics of special interest, not extensively treated in regularly scheduled offerings, will be presented Pre-Requisites under this course number on an occasional basis. Available for either [[CHM-115]], [[CHM-116]], [[GEO-211]], [[GEO-281]], [[GEO-282]] undergraduate
Recommended publications
  • GE OS 1234-101 Historical Geology Lecture Syllabus Instructor
    G E OS 1234-101 Historical Geology Lecture Syllabus Instructor: Dr. Jesse Carlucci ([email protected]), (940) 397-4448 Class: MWF, 10am -10:50am, BO 100 Office hours: Bolin Hall 131, MWF, 11am ± 2pm, Tuesday, noon - 2pm. You can arrange to meet with me at any time, by appointment. Textbook: Earth System History by Steven M. Stanley, 3rd edition. I will occasionally post articles and other readings on blackboard. I will also upload Power Point presentations to blackboard before each class, if possible. Course Objectives: Historical Geology provides the student with a comprehensive survey of the history of life, and major events in the physical development of Earth. Most importantly, this class addresses how processes like plate tectonics and climate interact with life, forming an integrated system. The first half of the class focuses on concepts, and the second on a chronologic overview of major biological and physical events in different geologic periods. L E C T UR E SC H E DU L E Aug 27-31: Overview of course; what is science? The Earth as a planet Stanley (pg. 244-247) Sep 5-7: Earth materials, rocks and minerals Stanley (pg. 13-17; 25-34) Sep 10-14: Rocks & minerals continued; plate tectonics. Stanley (pg. 3-12; 35-46; 128-141; 175-186) Sep 17-21: Geological time and dating of the rock record; chemical systems, the climate system through time. Quiz 1 (Sep 19; 5%). Stanley (pg. 187-194; 196-207; 215-223; 232-238) Sep 24-28: Sedimentary environments and life; paleoecology. Stanley (pg. 76-80; 84-96; 99-123) Oct 1-5: Biological evolution and the fossil record.
    [Show full text]
  • GEOL 1104 Historical Geology
    Administrative Master Syllabus Course Information Course Title Historical Geology Laboratory Course Prefix, Num. and Title GEOL 1104 Division Life Sciences Department Geology Course Type Academic WCJC Core Course Course Catalog Description This laboratory-based course accompanies GEOL 1304, Historical Geography. Laboratory activities will introduce methods used by scientists to interpret the history of life and major events in the physical development of Earth from rocks and fossils. Pre-Requisites Credit for or concurrent enrollment in GEOL1304 Co-Requisites Enter Co-Requisites Here. Semester Credit Hours Total Semester Credit Hours (SCH): Lecture Hours: 1:0:2 Lab/Other Hours Equated Pay Hours 1.2 Lab/Other Hours Breakdown: Lab Hours 2 Lab/Other Hours Breakdown: Clinical Hours Enter Clinical Hours Here. Lab/Other Hours Breakdown: Practicum Hours Enter Practicum Hours Here. Other Hours Breakdown List Total Lab/Other Hours Here. Approval Signatures Title Signature Date Prepared by: Department Head: Division Chair: Dean/VPI: Approved by CIR: Rev. January 2020 Additional Course Information Topical Outline: Each offering of this course must include the following topics (be sure to include information regarding lab, practicum, and clinical or other non-lecture instruction). 1. The Sedimentary Environment 2. Geochronology Part I: Relative Dating of Strata 3. Geochronology Part II: Absolute or Radiometric Dating of Strata 4. Fossils, Taxonomy, and the Species Concept 5. The Sponges: Early Multi-celled Animals 6. The Corals and their Relatives 7. The Bryozoans: “Lacy Animals” 8. The Brachiopods: Bivalved Lophophorates 9. The Bivalves: Clams, Oysters, and Relatives 10. The Gastropods: Snails, Slugs, and Relativesacticum, and clinical or other non-lecture instruction).
    [Show full text]
  • The Rock and Fossil Record the Rock and Fossil Record the Rock And
    TheThe RockRock andand FossilFossil RecordRecord Earth’s Story and Those Who First Listened . 426 Apply . 427 Internet Connect . 428 When on Earth? . 429 Activity . 430 MathBreak . 434 Internet Connect 432, 435 Looking at Fossils . 436 QuickLab . 438 Internet Connect . 440 Time Marches On . 441 QuickLab . 443 Internet Connect . 445 Chapter Lab . 446 Chapter Review . 449 TEKS/TAKS Practice Tests . 451, 452 Feature Article . 453 Time Stands Still Pre-Reading Questions Sealed in darkness for 49 million years, this beetle still shimmers with the same metallic hues that once helped it hide among ancient plants. This rare fossil 1. How do scientists study was found in Messel, Germany. In the same rock formation, the Earth’s history? scientists have found fossilized crocodiles, bats, birds, and 2. How can you tell the age frogs. A living stag beetle (above) has a similar form and of rocks and fossils? color. Do you think that these two beetles would live in 3. What natural or human similar environments? What do you think Messel, Germany, events have caused mass was like 49 million years ago? In this chapter, you will extinctions in Earth’s learn how scientists answer these kinds of questions. history? 424 Chapter 16 Copyright © by Holt, Rinehart and Winston. All rights reserved. MAKING FOSSILS Procedure 1. You and three or four of your classmates will be given several pieces of modeling clay and a paper sack containing a few small objects. 2. Press each object firmly into a piece of clay. Try to leave an imprint showing as much detail as possible.
    [Show full text]
  • Geologic Timeline
    SCIENCE IN THE PARK: GEOLOGY GEOLOGIC TIME SCALE ANALOGY PURPOSE: To show students the order of events and time periods in geologic time and the order of events and ages of the physiographic provinces in Virginia. BACKGROUND: Exact dates for events change as scientists explore geologic time. Dates vary from resource to resource and may not be the same as the dates that appear in your text book. Analogies for geologic time: a 24 hour clock or a yearly calendar. Have students or groups of students come up with their own original analogy. Before you assign this activity, you may want to try it, depending on the age of the student, level of the class, or time constraints, you may want to leave out the events that have a date of less than 1 million years. ! Review conversions in the metric system before you begin this activity ! References L.S. Fichter, 1991 (1997) http://csmres.jmu.edu/geollab/vageol/vahist/images/Vahistry.PDF http://pubs.usgs.gov/gip/geotime/age.html Wicander, Reed. Historical Geology. Fourth Edition. Toronto, Ontario: Brooks/Cole, 2004. Print. VIRGINIA STANDARDS OF LEARNING ES.10 The student will investigate and understand that many aspects of the history and evolution of the Earth can be inferred by studying rocks and fossils. Key concepts include: relative and absolute dating; rocks and fossils from many different geologic periods and epochs are found in Virginia. Developed by C.P. Anderson Page 1 SCIENCE IN THE PARK: GEOLOGY Building a Geologic Time Scale Time: Materials Meter stick, 5 cm adding machine tape, pencil, colored pencils Procedure 1.
    [Show full text]
  • Geologic Time and Geologic Maps
    NAME GEOLOGIC TIME AND GEOLOGIC MAPS I. Introduction There are two types of geologic time, relative and absolute. In the case of relative time geologic events are arranged in their order of occurrence. No attempt is made to determine the actual time at which they occurred. For example, in a sequence of flat lying rocks, shale is on top of sandstone. The shale, therefore, must by younger (deposited after the sandstone), but how much younger is not known. In the case of absolute time the actual age of the geologic event is determined. This is usually done using a radiometric-dating technique. II. Relative geologic age In this section several techniques are considered for determining the relative age of geologic events. For example, four sedimentary rocks are piled-up as shown on Figure 1. A must have been deposited first and is the oldest. D must have been deposited last and is the youngest. This is an example of a general geologic law known as the Law of Superposition. This law states that in any pile of sedimentary strata that has not been disturbed by folding or overturning since accumulation, the youngest stratum is at the top and the oldest is at the base. While this may seem to be a simple observation, this principle of superposition (or stratigraphic succession) is the basis of the geologic column which lists rock units in their relative order of formation. As a second example, Figure 2 shows a sandstone that has been cut by two dikes (igneous intrusions that are tabular in shape).The sandstone, A, is the oldest rock since it is intruded by both dikes.
    [Show full text]
  • Soils in the Geologic Record
    in the Geologic Record 2021 Soils Planner Natural Resources Conservation Service Words From the Deputy Chief Soils are essential for life on Earth. They are the source of nutrients for plants, the medium that stores and releases water to plants, and the material in which plants anchor to the Earth’s surface. Soils filter pollutants and thereby purify water, store atmospheric carbon and thereby reduce greenhouse gasses, and support structures and thereby provide the foundation on which civilization erects buildings and constructs roads. Given the vast On February 2, 2020, the USDA, Natural importance of soil, it’s no wonder that the U.S. Government has Resources Conservation Service (NRCS) an agency, NRCS, devoted to preserving this essential resource. welcomed Dr. Luis “Louie” Tupas as the NRCS Deputy Chief for Soil Science and Resource Less widely recognized than the value of soil in maintaining Assessment. Dr. Tupas brings knowledge and experience of global change and climate impacts life is the importance of the knowledge gained from soils in the on agriculture, forestry, and other landscapes to the geologic record. Fossil soils, or “paleosols,” help us understand NRCS. He has been with USDA since 2004. the history of the Earth. This planner focuses on these soils in the geologic record. It provides examples of how paleosols can retain Dr. Tupas, a career member of the Senior Executive Service since 2014, served as the Deputy Director information about climates and ecosystems of the prehistoric for Bioenergy, Climate, and Environment, the Acting past. By understanding this deep history, we can obtain a better Deputy Director for Food Science and Nutrition, and understanding of modern climate, current biodiversity, and the Director for International Programs at USDA, ongoing soil formation and destruction.
    [Show full text]
  • A GEOLOGIC RECORD of the FIRST BILLION YEARS of MARS HISTORY. John F. Mustard1 and James W. Head1 1Department of Earth, Environm
    49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 2604.pdf A GEOLOGIC RECORD OF THE FIRST BILLION YEARS OF MARS HISTORY. John F. Mustard1 and James W. Head1 1Department of Earth, Environmental and Planetary Sciences, Box 1846, Brown University, Provi- dence, RI 02912 ([email protected]) Introduction: A compelling record of the first bil- standing solar system evolution question is the exist- lion years of Mars geologic evolution is spectacularly ence, or not, of a period of heavy bombardment ≈500 presented in a compact region at the intersection of Myr after accretion of the terrestrial planets. Except Isidis impact basin and Syrtis Major volcanic province for the Moon, we have no definitive dates for basins (Fig. 1). In this well-exposed region is a well-ordered formed in the Solar System. Radiometric systems in stratigraphy of geologic units spanning Noachian to crystalline igneous rocks exposed by Isidis would like- Early Hesperian times [1]. Geologic units can be de- ly have been reset and thus contain evidence of the finitively associated with the Isidis basin-forming im- impact providing a key data point for understanding pact (≈3.9 Ga, [2]) as well as pristine igneous and basin forming processes in the Solar System. Further- aqueously altered Noachian crust that pre-date the more the Isidis basin impacted onto the rim of the hy- Isidis event. The rich collection of well defined units pothesized Borealis Basin [7]. Given this proximity spanning ≈500 Myr of time in a compact region is at- there is a possibility that some fragments may have tractive for the collection of samples.
    [Show full text]
  • Utah's Geologic Timeline Utah Seed Standard 7.2.6: Make an Argument from Evidence for How the Geologic Time Scale Shows the Ag
    Utah’s Geologic Timeline Utah SEEd Standard 7.2.6: Make an argument from evidence for how the geologic time scale shows the age and history of Earth. Emphasize scientific evidence from rock strata, the fossil record, and the principles of relative dating, such as superposition, uniformitarianism, and recognizing unconformities. (ESS1.C) Activity Details: The students begin with a blank calendar and a list of events in the Earth’s, and additionally Utah’s, history. These events span billions of years, but such numbers are too large to visualize and compare. In order to help the mind understand such enormous lengths of time, the year of the event is scaled to what it would Be proportionate to a calendar year (numBers are from The Utah Geological Survey and Kentucky Geological Survey). The students go through the list and fill out their calendar to visualize the geologic timeline of the Earth and Utah, and then answer some analysis questions to help solidify their understanding. Students will need four differently-colored colored pencils or crayons to complete the activity. Background: The following information is taken from The Utah Geological Survey, written by Mark Milligan. It may Be helpful to define some of the terms with the students so they understand where and how ages come from. Geologists generally know the age of a rock By determining the age of the group of rocks, or formation, that it is found in. The age of formations is marked on a geologic calendar known as the geologic time scale. Development of the geologic time scale and dating of formations and rocks relies upon two fundamentally different ways of telling time: relative and absolute.
    [Show full text]
  • GEOLOGY THEME STUDY Page 1
    NATIONAL HISTORIC LANDMARKS Dr. Harry A. Butowsky GEOLOGY THEME STUDY Page 1 Geology National Historic Landmark Theme Study (Draft 1990) Introduction by Dr. Harry A. Butowsky Historian, History Division National Park Service, Washington, DC The Geology National Historic Landmark Theme Study represents the second phase of the National Park Service's thematic study of the history of American science. Phase one of this study, Astronomy and Astrophysics: A National Historic Landmark Theme Study was completed in l989. Subsequent phases of the science theme study will include the disciplines of biology, chemistry, mathematics, physics and other related sciences. The Science Theme Study is being completed by the National Historic Landmarks Survey of the National Park Service in compliance with the requirements of the Historic Sites Act of l935. The Historic Sites Act established "a national policy to preserve for public use historic sites, buildings and objects of national significance for the inspiration and benefit of the American people." Under the terms of the Act, the service is required to survey, study, protect, preserve, maintain, or operate nationally significant historic buildings, sites & objects. The National Historic Landmarks Survey of the National Park Service is charged with the responsibility of identifying America's nationally significant historic property. The survey meets this obligation through a comprehensive process involving thematic study of the facets of American History. In recent years, the survey has completed National Historic Landmark theme studies on topics as diverse as the American space program, World War II in the Pacific, the US Constitution, recreation in the United States and architecture in the National Parks.
    [Show full text]
  • Museum of Natural History & Science Gallery Guide for Lost Voices
    Museum of Natural History & Science Gallery Guide for Lost Voices Lost Voices is a multi-part exhibit focusing on the varied life forms that have inhabited our planet in the past. This exhibit allows for a greater understanding of the history of our planet and also of our place on it. Concepts: background extinction, Cenozoic, Cretaceous, crust, environment, eons, epoch, era, evolution, extinction, fossil, fossil record, geologic record, geologist, Holocene, Jurassic, limestone, mantle, mass extinction, Mesozoic, period, plate tectonics, Quaternary, sandstone, Tertiary, tilt, Triassic, wobble Background Information: Scientists calculate the age of the Earth at approximately 4.6 billion years, and the planet has sustained life for over three million years. During this time, many changes have taken place in climate, placement of the continents and life forms. To assist in understanding this vast period of time, scientists have divided the time into sections. The longest period of time are called eons, which are divided into eras, which are then divided into periods, which are finally divided into epochs. Most people are familiar with the Mesozoic era, which consists of the Triassic, Jurassic, and Cretaceous periods. We currently live in the Cenozoic era, the Quaternary period and the Holocene epoch. The divisions between geologic time spans are often defined by a break in the fossil record or a geologic occurrence of some magnitude, such as a sudden widespread volcanic activity. For example, all available evidence points to the division of the Cretaceous and Tertiary periods caused by a giant asteroid strike off the coast of Mexico. The asteroid strike caused the extinction of over 80 percent of the planet’s life forms and created widespread geologic activity.
    [Show full text]
  • Tectonics and Crustal Evolution
    Tectonics and crustal evolution Chris J. Hawkesworth, Department of Earth Sciences, University peaks and troughs of ages. Much of it has focused discussion on of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, the extent to which the generation and evolution of Earth’s crust is UK; and Department of Earth Sciences, University of St. Andrews, driven by deep-seated processes, such as mantle plumes, or is North Street, St. Andrews KY16 9AL, UK, c.j.hawkesworth@bristol primarily in response to plate tectonic processes that dominate at .ac.uk; Peter A. Cawood, Department of Earth Sciences, University relatively shallow levels. of St. Andrews, North Street, St. Andrews KY16 9AL, UK; and Bruno The cyclical nature of the geological record has been recog- Dhuime, Department of Earth Sciences, University of Bristol, Wills nized since James Hutton noted in the eighteenth century that Memorial Building, Queens Road, Bristol BS8 1RJ, UK even the oldest rocks are made up of “materials furnished from the ruins of former continents” (Hutton, 1785). The history of ABSTRACT the continental crust, at least since the end of the Archean, is marked by geological cycles that on different scales include those The continental crust is the archive of Earth’s history. Its rock shaped by individual mountain building events, and by the units record events that are heterogeneous in time with distinctive cyclic development and dispersal of supercontinents in response peaks and troughs of ages for igneous crystallization, metamor- to plate tectonics (Nance et al., 2014, and references therein). phism, continental margins, and mineralization. This temporal Successive cycles may have different features, reflecting in part distribution is argued largely to reflect the different preservation the cooling of the earth and the changing nature of the litho- potential of rocks generated in different tectonic settings, rather sphere.
    [Show full text]
  • GEOL 5 Historical Geology & Paleontology(C-ID GEOL 111)
    Lassen Community College Course Outline GEOL-5 Historical Geology & Paleontology 4.0 Units I. Catalog Description This course is designed to provide a descriptive geological history of the earth using the principles and methods of interpretation and reconstruction of the changes that have occurred on the earth in the fossil record. Recommended Preparation: Successful completion of ENGL105 or equivalent multiple measures placement. Transfers to both UC/CSU General Education Area: A CSU GE Area: B1 & B3 IGETC GE Area: 5A & 5C C-ID GEOL 111 51 Hours Lecture, 51 Hours Lab Scheduled: Spring II. Coding Information Repeatability: Not Repeatable, Take 1 Time Grading Option: Graded or Pass/No Pass Credit Type: Credit - Degree Applicable TOP Code: 191400 III. Course Objectives A. Course Student Learning Outcomes Upon completion of this course the student will be able to: 1. Outline the earth's history through construction of a geological time scale and evolution of organisms. 2. Apply proper lab techniques and knowledge of theoretical concepts in geology to acquire and interpret geologic data and formulate new questions in a laboratory setting. B. Course Objectives Upon completion of this course the student will be able to: 1. Explain and practically apply the principles of the scientific method. 2. Discuss earth's origin and evolution. 3. Identify the basic physical features of the earth. 4. Describe how the record of the past is expressed in the sedimentary rocks of the earth. 5. Examine and interpret evidence of geologic activity and the presence of life in the major areas of geologic time. 6. Discuss how the past is the key to the present.
    [Show full text]