Multi-Gene Phylogenies Indicate Ascomal Wall Morphology Is a Better

Total Page:16

File Type:pdf, Size:1020Kb

Multi-Gene Phylogenies Indicate Ascomal Wall Morphology Is a Better Molecular Phylogenetics and Evolution 35 (2005) 60–75 www.elsevier.com/locate/ympev Multi-gene phylogenies indicate ascomal wall morphology is a better predictor of phylogenetic relationships than ascospore morphology in the Sordariales (Ascomycota, Fungi) Andrew N. Miller a,¤, Sabine M. Huhndorf b a Illinois Natural History Survey, Center for Biodiversity, 607 E. Peabody Dr., Champaign, IL 61820, USA b The Field Museum of Natural History, Botany Department, 1400 S. Lake Shore Dr., Chicago, IL 60605-2496, USA Received 3 December 2003; revised 20 October 2004 Abstract Ascospore characters have commonly been used for distinguishing ascomycete taxa, while ascomal wall characters have received little attention. Although taxa in the Sordariales possess a wide range of variation in their ascomal walls and ascospores, genera have traditionally been delimited based on diVerences in their ascospore morphology. Phylogenetic relationships of multiple representa- tives from each of several genera representing the range in ascomal wall and ascospore morphologies in the Sordariales were esti- mated using partial nuclear DNA sequences from the 28S ribosomal large subunit (LSU), -tubulin, and ribosomal polymerase II subunit 2 (RPB2) genes. These genes also were compared for their utility in predicting phylogenetic relationships in this group of fungi. Maximum parsimony and Bayesian analyses conducted on separate and combined data sets indicate that ascospore morphol- ogy is extremely homoplastic and not useful for delimiting genera. Genera represented by more than one species were paraphyletic or polyphyletic in nearly all analyses; 17 species of Cercophora segregated into at least nine diVerent clades, while six species of Podos- pora occurred in Wve clades in the LSU tree. However, taxa with similar ascomal wall morphologies clustered in Wve well-supported clades suggesting that ascomal wall morphology is a better indicator of generic relationships in certain clades in the Sordariales. The RPB2 gene possessed over twice the number of parsimony-informative characters than either the LSU or -tubulin gene and conse- quently, provided the most support for the greatest number of clades. 2005 Elsevier Inc. All rights reserved. Keywords: Ascomycota; Bayesian inference; -Tubulin; LSU; Morphological characters; RPB2; Phylogenetics; Sordariales; Systematics 1. Introduction decaying wood, leaf litter, and soil (Lundqvist, 1972). The Sordariales also was one of the most taxonomically The Sordariales is one of the most economically and diverse orders being comprised of 114 genera divided ecologically important groups within the ascomycetes in among 10 families (Eriksson and Hawksworth, 1998; that it contains species of Chaetomium, which are Eriksson et al., 2004), but recently has been reduced to responsible for the destruction of paper and fabrics, and ca. 35 genera within three families, the Chaetomiaceae, the “fruit Xies” of the fungal world (i.e., Neurospora Lasiosphaeriaceae, and Sordariaceae (Huhndorf et al., crassa, Podospora anserina, and Sordaria Wmicola). Taxa 2004). Since only one of these families (Sordariaceae) within the order occur worldwide as saprobes on dung, was shown to be monophyletic by Huhndorf et al. (2004), families within the Sordariales will not be further discussed. ¤ Corresponding author. Fax: +1 217 333 4949. The Sordariales is one of several orders in the Class E-mail address: [email protected] (A.N. Miller). Sordariomycetes (Eriksson et al., 2004). Taxa in the 1055-7903/$ - see front matter 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2005.01.007 A.N. Miller, S.M. Huhndorf / Molecular Phylogenetics and Evolution 35 (2005) 60–75 61 Sordariomycetes (historically known as pyrenomyce- Ascomal wall morphology also has been suggested as tes) usually form minute fruiting bodies ( D ascomata) an alternative means of delimiting certain genera within containing hymenial layers commonly composed of this group (Lundqvist, 1972) (Fig. 2). All members of sterile hyphae intermixed among asci (with single wall Bombardia and Bombardioidea possess a similar ascomal layers) possessing ascospores (Alexopolous et al., 1996). wall referred to as a bombardioid wall, which contains a Few morphological characters exist with which to putatively stromatic ( D arising from vegetative hyphae) delimit taxa in the Sordariomycetes most likely due to gelatinized layer composed of interwoven hyphae their small stature and simple structure. Taxa within (Lundqvist, 1972) (Fig. 2C). Three other genera (Arnium, the Sordariomycetes have traditionally been distin- Cercophora, and Podospora) also contain species that guished based on characters of the ascomata and possess a similar gelatinized layer in their ascomal wall, ascospores, although centrum and ascus morphologies but since the wall is non-stromatic, it is termed pseudo- also have been used at higher taxonomic levels (Barr, bombardioid (Miller, 2003) (Figs. 2A and B). However, 1990; Luttrell, 1951; Parguey-Leduc and Janex-Favre, all of these species have been placed into diVerent genera 1981). Ascomata can have single- or multi-layered walls based primarily on diVerences in their ascospore mor- and may possess various types of outside covering such phologies (Fig. 1). Certain species of Cercophora and as tomentum, hairs, or setae. Although considerable Lasiosphaeria also have been placed into separate genera variation in ascomal wall morphology exists in the based on diVerences in their ascospore morphologies Sordariomycetes, its potential use in systematics has even though they possess similar three-layered ascomal seldom been recognized (Jensen, 1985). Several work- walls in which the outer layer is composed of hyphae ers, however, have noted similarities in ascomal wall that form a tomentum (Fig. 2D). Finally, certain species characters among taxa (von Arx et al., 1984; Barr, 1978; of Podospora possess ascomata with outer wall layers Carroll and Munk, 1964; Jensen, 1985; Lundqvist, that form swollen protruding cells or agglutinated hairs 1972). (Fig. 2E), and some of these species have been trans- Genera within the Sordariales have been delimited ferred into a separate genus, Schizothecium (Lundqvist, primarily on diVerences in their ascospore morphology 1972). These genera, which contain species that possess (Lundqvist, 1972) (Fig. 1). While ascospore morphology ascomata with obvious morphological diVerences in varies little within a genus, ascospores among genera in their ascomal walls, are the focus of this paper. Addi- the Sordariales range from a cylindrical, hyaline asco- tional genera in the Sordariales (e.g., Apiosordaria, Jugu- spore in Lasiosphaeria (Fig. 1A) to an ellipsoidal, brown lospora, and Triangularia), which contain species that ascospore in Sordaria (Fig. 1I). Intermixed between these possess ascomata with morphologically simple ascomal two extremes are many genera which possess two-celled walls, require further study and will be treated in future ascospores with cylindrical to ellipsoidal, brown cells studies. Our study is the Wrst to evaluate ascomal wall and diVerent degrees of cylindrical to triangular (often characters for their phylogenetic potential in delimiting basal), hyaline cells (Figs. 1B–G) (Lundqvist, 1972). Sev- certain genera in the Sordariales. eral earlier workers (Boedijn, 1962; Chenantais, 1919; Several nuclear and mitochondrial ribosomal and Lundqvist, 1972; Munk, 1953) hypothesized that asco- protein-coding genes have been employed for assessing spore evolution within this group may have occurred phylogenetic relationships of Wlamentous ascomycetes. along this continuum either through the gain or loss of a Nuclear ribosomal genes such as 18S small subunit hyaline cell, resulting in either Lasiosphaeria or Sordaria (SSU) and 28S LSU are commonly used due to their being the derived genus. ease in ampliWcation resulting from their high copy num- Fig. 1. Ascospores of representative genera in the Sordariales. (A) Lasiosphaeria. (B) Cercophora. (C) Podospora. (D) Apiosordaria. (E) Triangularia. (F) ZopWella. (G) Jugulospora. (H) Bombardioidea. (I) Sordaria. Ascospore evolution has been hypothesized to have occurred through the loss (A ! I) or gain (I ! A) of a hyaline tail resulting in either Sordaria or Lasiosphaeria being the derived genus. Ascospores not to scale. 62 A.N. Miller, S.M. Huhndorf / Molecular Phylogenetics and Evolution 35 (2005) 60–75 Fig. 2. Ascomal walls occurring in members of the Wve wall clades (A–E); outer layer to the right. (A) Pseudo-bombardioid wall (Podospora Wmiseda). (B) Pseudo-bombardioid wall (Cercophora scortea). (C) Bombardioid wall (Bombardioidea anartia). (D) Three-layered wall with outer layer of hyphae forming tomentum (Lasiosphaeria ovina). (E) Wall with agglutinated hairs (Schizothecium vesticola). Ascomal walls not to scale. ber and the availability of numerous universal primers The primary purpose of this study was to test whether (Vilgalys and Hester, 1990; White et al., 1990). Most ascospore morphology is phylogenetically informative for studies utilize the Wrst 1100 bp of the 5Ј end of LSU, predicting generic relationships within the Sordariales which contains three variable domains. Nuclear protein- using a multi-gene approach. Multiple species, which pos- coding genes such as -tubulin and RPB2 are increas- sess the range of ascospore morphologies known to occur ingly being used in ascomycete phylogenetic studies in the order, were sampled from each of several genera. To incorporating multiple,
Recommended publications
  • Monilochaetes and Allied Genera of the Glomerellales, and a Reconsideration of Families in the Microascales
    available online at www.studiesinmycology.org StudieS in Mycology 68: 163–191. 2011. doi:10.3114/sim.2011.68.07 Monilochaetes and allied genera of the Glomerellales, and a reconsideration of families in the Microascales M. Réblová1*, W. Gams2 and K.A. Seifert3 1Department of Taxonomy, Institute of Botany of the Academy of Sciences, CZ – 252 43 Průhonice, Czech Republic; 2Molenweg 15, 3743CK Baarn, The Netherlands; 3Biodiversity (Mycology and Botany), Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada *Correspondence: Martina Réblová, [email protected] Abstract: We examined the phylogenetic relationships of two species that mimic Chaetosphaeria in teleomorph and anamorph morphologies, Chaetosphaeria tulasneorum with a Cylindrotrichum anamorph and Australiasca queenslandica with a Dischloridium anamorph. Four data sets were analysed: a) the internal transcribed spacer region including ITS1, 5.8S rDNA and ITS2 (ITS), b) nc28S (ncLSU) rDNA, c) nc18S (ncSSU) rDNA, and d) a combined data set of ncLSU-ncSSU-RPB2 (ribosomal polymerase B2). The traditional placement of Ch. tulasneorum in the Microascales based on ncLSU sequences is unsupported and Australiasca does not belong to the Chaetosphaeriaceae. Both holomorph species are nested within the Glomerellales. A new genus, Reticulascus, is introduced for Ch. tulasneorum with associated Cylindrotrichum anamorph; another species of Reticulascus and its anamorph in Cylindrotrichum are described as new. The taxonomic structure of the Glomerellales is clarified and the name is validly published. As delimited here, it includes three families, the Glomerellaceae and the newly described Australiascaceae and Reticulascaceae. Based on ITS and ncLSU rDNA sequence analyses, we confirm the synonymy of the anamorph generaDischloridium with Monilochaetes.
    [Show full text]
  • Morinagadepsin, a Depsipeptide from the Fungus Morinagamyces Vermicularis Gen. Et Comb. Nov
    microorganisms Article Morinagadepsin, a Depsipeptide from the Fungus Morinagamyces vermicularis gen. et comb. nov. Karen Harms 1,2 , Frank Surup 1,2,* , Marc Stadler 1,2 , Alberto Miguel Stchigel 3 and Yasmina Marin-Felix 1,* 1 Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; [email protected] (K.H.); [email protected] (M.S.) 2 Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany 3 Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Tarragona, Spain; [email protected] * Correspondence: [email protected] (F.S.); [email protected] (Y.M.-F.) Abstract: The new genus Morinagamyces is introduced herein to accommodate the fungus Apiosordaria vermicularis as inferred from a phylogenetic study based on sequences of the internal transcribed spacer region (ITS), the nuclear rDNA large subunit (LSU), and partial fragments of ribosomal polymerase II subunit 2 (rpb2) and β-tubulin (tub2) genes. Morinagamyces vermicularis was analyzed for the production of secondary metabolites, resulting in the isolation of a new depsipeptide named morinagadepsin (1), and the already known chaetone B (3). While the planar structure of 1 was elucidated by extensive 1D- and 2D-NMR analysis and high-resolution mass spectrometry, the absolute configuration of the building blocks Ala, Val, and Leu was determined as -L by Marfey’s method. The configuration of the 3-hydroxy-2-methyldecanyl unit was assigned as 22R,23R by Citation: Harms, K.; Surup, F.; Stadler, M.; Stchigel, A.M.; J-based configuration analysis and Mosher’s method after partial hydrolysis of the morinagadepsin Marin-Felix, Y.
    [Show full text]
  • Discovery of the Teleomorph of the Hyphomycete, Sterigmatobotrys Macrocarpa, and Epitypification of the Genus to Holomorphic Status
    available online at www.studiesinmycology.org StudieS in Mycology 68: 193–202. 2011. doi:10.3114/sim.2011.68.08 Discovery of the teleomorph of the hyphomycete, Sterigmatobotrys macrocarpa, and epitypification of the genus to holomorphic status M. Réblová1* and K.A. Seifert2 1Department of Taxonomy, Institute of Botany of the Academy of Sciences, CZ – 252 43, Průhonice, Czech Republic; 2Biodiversity (Mycology and Botany), Agriculture and Agri- Food Canada, Ottawa, Ontario, K1A 0C6, Canada *Correspondence: Martina Réblová, [email protected] Abstract: Sterigmatobotrys macrocarpa is a conspicuous, lignicolous, dematiaceous hyphomycete with macronematous, penicillate conidiophores with branches or metulae arising from the apex of the stipe, terminating with cylindrical, elongated conidiogenous cells producing conidia in a holoblastic manner. The discovery of its teleomorph is documented here based on perithecial ascomata associated with fertile conidiophores of S. macrocarpa on a specimen collected in the Czech Republic; an identical anamorph developed from ascospores isolated in axenic culture. The teleomorph is morphologically similar to species of the genera Carpoligna and Chaetosphaeria, especially in its nonstromatic perithecia, hyaline, cylindrical to fusiform ascospores, unitunicate asci with a distinct apical annulus, and tapering paraphyses. Identical perithecia were later observed on a herbarium specimen of S. macrocarpa originating in New Zealand. Sterigmatobotrys includes two species, S. macrocarpa, a taxonomic synonym of the type species, S. elata, and S. uniseptata. Because no teleomorph was described in the protologue of Sterigmatobotrys, we apply Article 59.7 of the International Code of Botanical Nomenclature. We epitypify (teleotypify) both Sterigmatobotrys elata and S. macrocarpa to give the genus holomorphic status, and the name S.
    [Show full text]
  • On a New Species of Chaetomidium, C. Vicugnae, with a Cephalothecoid
    On a new species of Chaetomidium, C. vicugnae, with a cepha- lothecoid peridium and its relationships with Chaetomiaceae (Sordariales) Francesco DOVERI Abstract: a sample of vicuña dung from a Chilean coastal desert was submitted to the attention of the au- thor, who at first sight noticed the presence of different pyrenomycetes. several hairy cleistothecia particu- larly caught his attention and were subjected to a morphological study that proved them to belong to a new species of Chaetomidium. after mentioning the main features of Sordariales and Chaetomiaceae, the author describes in detail the macro-and microscopic characters of the new species Chaetomidium vicugnae Ascomycete.org, 10 (2) : 86–96 and compares it with all the other Chaetomidium spp. with a cephalothecoid peridium. The extensive dis- Mise en ligne le 22/04/2018 cussion focuses on the characterization and relationships of the genus Chaetomidium and Chaetomidium 10.25664/ART-0231 vicugnae within the complex family Chaetomiaceae. all collections of the related species are recorded and dung is regarded as the preferential substrate. Keys are provided to sexual morph genera of Chaetomiaceae and to Chaetomidium species with a cephalothecoid peridium. Keywords: ascomycota, coprophily, germination, homoplasy, morphology, peridial frame, systematics. Introduction zing the importance of a future systematic study of vicuña dung for a better knowledge of the generic relationships in this family. My studies on coprophilous ascomycetes (Doveri, 2004, 2011) al- lowed me to meet with several representatives of Sordariales Cha- Materials and methods def. ex D. Hawksw. & o.e. erikss., an order identifiable with the so called “pyrenomycetes” s.str., i.e.
    [Show full text]
  • Bionectria Pseudochroleuca, a New Host Record on Prunus Sp. in Northern Thailand
    Studies in Fungi 5(1): 358–367 (2020) www.studiesinfungi.org ISSN 2465-4973 Article Doi 10.5943/sif/5/1/17 Bionectria pseudochroleuca, a new host record on Prunus sp. in northern Thailand Huanraluek N1, Jayawardena RS1,2, Aluthmuhandiram JVS 1, 2,3, Chethana KWT1,2 and Hyde KD1,2,4* 1Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 2School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 3Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, People’s Republic of China 4Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China Huanraluek N, Jayawardena RS, Aluthmuhandiram JVS, Chethana KWT, Hyde KD 2020 – Bionectria pseudochroleuca, a new host record on Prunus sp. in northern Thailand. Studies in Fungi 5(1), 358–367, Doi 10.5943/sif/5/1/17 Abstract This study presents the first report of Bionectria pseudochroleuca (Bionectriaceae) on Prunus sp. (Rosaceae) from northern Thailand, based on both morphological characteristics and multilocus phylogenetic analyses of internal transcribe spacer (ITS) and Beta-tubulin (TUB2). Key words – Bionectriaceae – Clonostachys – Hypocreales – Nectria – Prunus spp. – Sakura Introduction Bionectriaceae are commonly found in soil, on woody substrates and on other fungi (Rossman et al. 1999, Schroers 2001). Bionectria is a member of Bionectriaceae (Rossman et al. 2013, Maharachchikumbura et al. 2015, 2016) and is distinct from other genera in the family as it has characteristic ascospores and ascus morphology, but none of these are consistently found in all Bionectria species (Schroers 2001). Some species of this genus such as B.
    [Show full text]
  • Taxonomic Re-Examination of Nine Rosellinia Types (Ascomycota, Xylariales) Stored in the Saccardo Mycological Collection
    microorganisms Article Taxonomic Re-Examination of Nine Rosellinia Types (Ascomycota, Xylariales) Stored in the Saccardo Mycological Collection Niccolò Forin 1,* , Alfredo Vizzini 2, Federico Fainelli 1, Enrico Ercole 3 and Barbara Baldan 1,4,* 1 Botanical Garden, University of Padova, Via Orto Botanico, 15, 35123 Padova, Italy; [email protected] 2 Institute for Sustainable Plant Protection (IPSP-SS Torino), C.N.R., Viale P.A. Mattioli, 25, 10125 Torino, Italy; [email protected] 3 Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli, 25, 10125 Torino, Italy; [email protected] 4 Department of Biology, University of Padova, Via Ugo Bassi, 58b, 35131 Padova, Italy * Correspondence: [email protected] (N.F.); [email protected] (B.B.) Abstract: In a recent monograph on the genus Rosellinia, type specimens worldwide were revised and re-classified using a morphological approach. Among them, some came from Pier Andrea Saccardo’s fungarium stored in the Herbarium of the Padova Botanical Garden. In this work, we taxonomically re-examine via a morphological and molecular approach nine different Rosellinia sensu Saccardo types. ITS1 and/or ITS2 sequences were successfully obtained applying Illumina MiSeq technology and phylogenetic analyses were carried out in order to elucidate their current taxonomic position. Only the Citation: Forin, N.; Vizzini, A.; ITS1 sequence was recovered for Rosellinia areolata, while for R. geophila, only the ITS2 sequence was Fainelli, F.; Ercole, E.; Baldan, B. recovered. We proposed here new combinations for Rosellinia chordicola, R. geophila and R. horridula, Taxonomic Re-Examination of Nine R. ambigua R.
    [Show full text]
  • Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two
    (topsheet) Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113. Fieldiana, Botany H. Thorsten Lumbsch Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7881 fax: 312-665-7158 e-mail: [email protected] Sabine M. Huhndorf Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7855 fax: 312-665-7158 e-mail: [email protected] 1 (cover page) FIELDIANA Botany NEW SERIES NO 00 Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 H. Thorsten Lumbsch Sabine M. Huhndorf [Date] Publication 0000 PUBLISHED BY THE FIELD MUSEUM OF NATURAL HISTORY 2 Table of Contents Abstract Part One. Outline of Ascomycota - 2009 Introduction Literature Cited Index to Ascomycota Subphylum Taphrinomycotina Class Neolectomycetes Class Pneumocystidomycetes Class Schizosaccharomycetes Class Taphrinomycetes Subphylum Saccharomycotina Class Saccharomycetes Subphylum Pezizomycotina Class Arthoniomycetes Class Dothideomycetes Subclass Dothideomycetidae Subclass Pleosporomycetidae Dothideomycetes incertae sedis: orders, families, genera Class Eurotiomycetes Subclass Chaetothyriomycetidae Subclass Eurotiomycetidae Subclass Mycocaliciomycetidae Class Geoglossomycetes Class Laboulbeniomycetes Class Lecanoromycetes Subclass Acarosporomycetidae Subclass Lecanoromycetidae Subclass Ostropomycetidae 3 Lecanoromycetes incertae sedis: orders, genera Class Leotiomycetes Leotiomycetes incertae sedis: families, genera Class Lichinomycetes Class Orbiliomycetes Class Pezizomycetes Class Sordariomycetes Subclass Hypocreomycetidae Subclass Sordariomycetidae Subclass Xylariomycetidae Sordariomycetes incertae sedis: orders, families, genera Pezizomycotina incertae sedis: orders, families Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 Introduction Literature Cited 4 Abstract Part One presents the current classification that includes all accepted genera and higher taxa above the generic level in the phylum Ascomycota.
    [Show full text]
  • Discovered and Re- Evaluation of Pleurophragmium
    Fungal Diversity Teleomorph of Rhodoveronaea (Sordariomycetidae) discovered and re- evaluation of Pleurophragmium 1* Martina Réblová 1Department of Plant Taxonomy, Institute of Botany, Academy of Sciences, CZ-252 43 Průhonice, Czech Republic Réblová, M. (2009). Teleomorph of Rhodoveronaea (Sordariomycetidae) discovered and re-evolution of Pleurophragmium. Fungal Diversity 36: 129-139. An undescribed teleomorph was discovered for Rhodoveronaea (Sordariomycetidae), a previously known anamorph genus with the single species R. varioseptata characterized by pigmented, septate conidia and holoblastic-denticulate conidiogenesis. The teleomorph is a lignicolous perithecial ascomycete with nonstromatic, dark perithecia, consisting of a globose immersed venter and stout conical emerging neck; cylindrical long-stipitate asci, nonamyloid apical annulus and fusiform, septate, hyaline ascospores. The fertile conidiophores of R. varioseptata were associated with the perithecia on the natural substratum and they were also obtained in vitro. Because no teleomorph was designated in the protologue of Rhodoveronaea, the new Article 59.7 of the International Code of Botanical Nomenclature is applied in this case and Rhodoveronaea is expanded to holomorphic application by teleomorphic epitypification of the type species R. varioseptata. The name R. varioseptata is fully adopted for the discovered teleomorph. On the basis of detailed morphology, cultivation studies and phylogenetic analyses of ncLSU rDNA sequences, Rhodoveronaea is segregated from the morphologically similar genera Lentomitella and Ceratosphaeria; its relationship with Ceratosphaeria fragilis and C. rhenana is discussed. The relationship of Rhodoveronaea with the morphologically similar Dactylaria parvispora is investigated using morphological features and molecular sequence data. Phylogenetic findings based on ncLSU rDNA sequence data indicate that Dactylaria is polyphyletic. The genus Pleurophragmium is excluded from the synonymy of Dactylaria and is re-evaluated for P.
    [Show full text]
  • Molecular Systematics of the Sordariales: the Order and the Family Lasiosphaeriaceae Redefined
    Mycologia, 96(2), 2004, pp. 368±387. q 2004 by The Mycological Society of America, Lawrence, KS 66044-8897 Molecular systematics of the Sordariales: the order and the family Lasiosphaeriaceae rede®ned Sabine M. Huhndorf1 other families outside the Sordariales and 22 addi- Botany Department, The Field Museum, 1400 S. Lake tional genera with differing morphologies subse- Shore Drive, Chicago, Illinois 60605-2496 quently are transferred out of the order. Two new Andrew N. Miller orders, Coniochaetales and Chaetosphaeriales, are recognized for the families Coniochaetaceae and Botany Department, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605-2496 Chaetosphaeriaceae respectively. The Boliniaceae is University of Illinois at Chicago, Department of accepted in the Boliniales, and the Nitschkiaceae is Biological Sciences, Chicago, Illinois 60607-7060 accepted in the Coronophorales. Annulatascaceae and Cephalothecaceae are placed in Sordariomyce- Fernando A. FernaÂndez tidae inc. sed., and Batistiaceae is placed in the Euas- Botany Department, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605-2496 comycetes inc. sed. Key words: Annulatascaceae, Batistiaceae, Bolini- aceae, Catabotrydaceae, Cephalothecaceae, Ceratos- Abstract: The Sordariales is a taxonomically diverse tomataceae, Chaetomiaceae, Coniochaetaceae, Hel- group that has contained from seven to 14 families minthosphaeriaceae, LSU nrDNA, Nitschkiaceae, in recent years. The largest family is the Lasiosphaer- Sordariaceae iaceae, which has contained between 33 and 53 gen- era, depending on the chosen classi®cation. To de- termine the af®nities and taxonomic placement of INTRODUCTION the Lasiosphaeriaceae and other families in the Sor- The Sordariales is one of the most taxonomically di- dariales, taxa representing every family in the Sor- verse groups within the Class Sordariomycetes (Phy- dariales and most of the genera in the Lasiosphaeri- lum Ascomycota, Subphylum Pezizomycotina, ®de aceae were targeted for phylogenetic analysis using Eriksson et al 2001).
    [Show full text]
  • Fungal Biodiversity in Extreme Environments and Wood Degradation Potential
    http://waikato.researchgateway.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. Fungal biodiversity in extreme environments and wood degradation potential A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Sciences at The University of Waikato by Joel Allan Jurgens 2010 Abstract This doctoral thesis reports results from a multidisciplinary investigation of fungi from extreme locations, focusing on one of the driest and thermally broad regions of the world, the Taklimakan Desert, with comparisons to polar region deserts. Additionally, the capability of select fungal isolates to decay lignocellulosic substrates and produce degradative related enzymes at various temperatures was demonstrated. The Taklimakan Desert is located in the western portion of the People’s Republic of China, a region of extremes dominated by both limited precipitation, less than 25 mm of rain annually and tremendous temperature variation.
    [Show full text]
  • Rinaldiella Pentagonospora Fungal Planet Description Sheets 301
    300 Persoonia – Volume 32, 2014 Rinaldiella pentagonospora Fungal Planet description sheets 301 Fungal Planet 279 – 10 June 2014 Rinaldiella D.A. Sutton, Y. Marín, Guarro & E.H. Thomps., gen. nov. Etymology. Named in honour of the eminent medical mycologist Michael hyaline, filiform, septate. Ascospores biseriate to uniseriate, G. Rinaldi. clavate, hyaline, and aseptate when young, finally becoming Ascomata immersed, ostiolate, pyriform to subglobose, dark transversely 1-septate; upper cell polygonal, 5-angled in side brown to black, covered with hyphal-like hairs, with a con- view, truncate at the base and with a slightly acuminate apex, spicuous conical neck. Peridium membranaceous, translu- brown, thick-walled, warted, with an apical germ pore; lower cent, brown to yellowish brown, textura epidermoidea. Asci cell subhyaline, conical and slightly warted. 8-spored, fasciculate, clavate to cylindrical, without apical ring, Type species. Rinaldiella pentagonospora. short stipitate, early evanescent. Paraphyses and periphyses MycoBank MB807137. Rinaldiella pentagonospora D.A. Sutton, Y. Marín, Guarro & E.H. Thomps., sp. nov. Etymology. Named after the shape of the upper cell of the ascospore. Notes — This fungus was found contaminating a lesion in a man probably acquired when he struck his hand against a Mycelium composed of brown to pale olive brown, septate, tree. Morphologically, Rinaldiella resembles Apiosordaria branched, smooth-walled hyphae, 1–6 µm diam. Ascomata (Sordariales, Ascomycota). However, the genetic distances immersed, ostiolate, pyriform to subglobose, dark brown to between the present species and the members of that genus, black, 180–300 × 160–230 µm, covered with long, yellowish in our unpublished DNA sequence database, are too long to be brown, septate hypha-like hairs, 2–3 µm diam, with a conspicu- considered the same genus, and are closer to other genera of ous conical neck; neck 20–40 µm long, 50–90 µm wide at the the same order.
    [Show full text]
  • Monilochaetes and Allied Genera of the Glomerellales, and a Reconsideration of Families in the Microascales
    available online at www.studiesinmycology.org StudieS in Mycology 68: 163–191. 2011. doi:10.3114/sim.2011.68.07 Monilochaetes and allied genera of the Glomerellales, and a reconsideration of families in the Microascales M. Réblová1*, W. Gams2 and K.A. Seifert3 1Department of Taxonomy, Institute of Botany of the Academy of Sciences, CZ – 252 43 Průhonice, Czech Republic; 2Molenweg 15, 3743CK Baarn, The Netherlands; 3Biodiversity (Mycology and Botany), Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada *Correspondence: Martina Réblová, [email protected] Abstract: We examined the phylogenetic relationships of two species that mimic Chaetosphaeria in teleomorph and anamorph morphologies, Chaetosphaeria tulasneorum with a Cylindrotrichum anamorph and Australiasca queenslandica with a Dischloridium anamorph. Four data sets were analysed: a) the internal transcribed spacer region including ITS1, 5.8S rDNA and ITS2 (ITS), b) nc28S (ncLSU) rDNA, c) nc18S (ncSSU) rDNA, and d) a combined data set of ncLSU-ncSSU-RPB2 (ribosomal polymerase B2). The traditional placement of Ch. tulasneorum in the Microascales based on ncLSU sequences is unsupported and Australiasca does not belong to the Chaetosphaeriaceae. Both holomorph species are nested within the Glomerellales. A new genus, Reticulascus, is introduced for Ch. tulasneorum with associated Cylindrotrichum anamorph; another species of Reticulascus and its anamorph in Cylindrotrichum are described as new. The taxonomic structure of the Glomerellales is clarified and the name is validly published. As delimited here, it includes three families, the Glomerellaceae and the newly described Australiascaceae and Reticulascaceae. Based on ITS and ncLSU rDNA sequence analyses, we confirm the synonymy of the anamorph generaDischloridium with Monilochaetes.
    [Show full text]