Triassic Rocks and Fossils Edwin H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Late Triassic) Adrian P
New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/56 Definition and correlation of the Lamyan: A new biochronological unit for the nonmarine Late Carnian (Late Triassic) Adrian P. Hunt, Spencer G. Lucas, and Andrew B. Heckert, 2005, pp. 357-366 in: Geology of the Chama Basin, Lucas, Spencer G.; Zeigler, Kate E.; Lueth, Virgil W.; Owen, Donald E.; [eds.], New Mexico Geological Society 56th Annual Fall Field Conference Guidebook, 456 p. This is one of many related papers that were included in the 2005 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. -
Vorläufige Mitteilung Über Einen Neuen Phytosaurus-Schädel Aus Dem Schwäbischen Keuper
— © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/;www.zobodat.at F. v. Huene, Vorläufige Mitteilung etc. 583 Vorläufige Mitteilung über einen neuen Phytosaurus-Schädel aus dem schwäbischen Keuper. Von F. v. Huene in Tübingen. Mit 7 Textfiguren. Im Jahre 1905 erhielt das geologische Museum in Tübingen aus dem Stubensandstein des Steinbruches der Unteren Mühle bei Trossingen (im südwestlichen Württemberg) einen sehr großen Phgtosaurus-SchÄiel, dessen Präparation erst im Herbst 1908 voll- endet wurde. Von Herrn Prof. Koken wurde mir freundlichst die Bearbeitung desselben übertragen. Der Schädel gehört zu Pliytosanrus Plieningeri H. v. Meyer, er ist wesentlich größer als die bisher vorhandenen Exemplare, er übertrifft auch alle sonst bekannten Pliytosanrier an Größe (103 cm Länge). Die Erhaltung ist eine vorzügliche, es ließen sich alle Nähte sehr genau verfolgen. Namentlich gelang es auch durch mühsame Präparation die Gaumenknochen von beiden Seiten freizulegen. , Der Unterkiefer ist nicht vorhanden. Es sollen hier nur einige der wichtigsten Punkte heraus- gegriffen werden : 1. Das Vorhandensein von Septomaxillaria. Schon H. v. Meyer war 1862 (Paläontogr. 10. p. 242 und Taf. 41 Fig. 2) an seinem Bdodon planirostris aufgefallen, daß „der innere Teil der Nasenbeine, welcher von dem äußeren durch die vom vorderen (Nasen-)Locliwinkel nach vorne verlaufende Naht getrennt wird, dreizinkig in den Zwischen- kiefer eingreift“. Drei Jahre später (Paläontogr. 14. p. 106, Taf. 25) nennt derselbe diesen „inneren Teil der Nasenbeine“ zögernd „ein überzähliges Knochenpaar“. Von dieser Stelle hat auch Koken (Paläont. Abh. 3. 1886. p. 404 [96]) ohne eigene Anschauung dasselbe übernommen. Alle anderen Beobachter haben — soweit ich mich in der Literatur davon überzeugen konnte - diese meist deutlich sichtbaren Suturen , weil sie unverständlich schienen, völlig ignoriert. -
A Beaked Herbivorous Archosaur with Dinosaur Affinities from the Early Late Triassic of Poland
Journal of Vertebrate Paleontology 23(3):556±574, September 2003 q 2003 by the Society of Vertebrate Paleontology A BEAKED HERBIVOROUS ARCHOSAUR WITH DINOSAUR AFFINITIES FROM THE EARLY LATE TRIASSIC OF POLAND JERZY DZIK Instytut Paleobiologii PAN, Twarda 51/55, 00-818 Warszawa, Poland, [email protected] ABSTRACTÐAn accumulation of skeletons of the pre-dinosaur Silesaurus opolensis, gen. et sp. nov. is described from the Keuper (Late Triassic) claystone of KrasiejoÂw in southern Poland. The strata are correlated with the late Carnian Lehrberg Beds and contain a diverse assemblage of tetrapods, including the phytosaur Paleorhinus, which in other regions of the world co-occurs with the oldest dinosaurs. A narrow pelvis with long pubes and the extensive development of laminae in the cervical vertebrae place S. opolensis close to the origin of the clade Dinosauria above Pseudolagosuchus, which agrees with its geological age. Among the advanced characters is the beak on the dentaries, and the relatively low tooth count. The teeth have low crowns and wear facets, which are suggestive of herbivory. The elongate, but weak, front limbs are probably a derived feature. INTRODUCTION oped nutrient foramina in its maxilla. It is closely related to Azendohsaurus from the Argana Formation of Morocco (Gauf- As is usual in paleontology, with an increase in knowledge fre, 1993). The Argana Formation also has Paleorhinus, along of the fossil record of early archosaurian reptiles, more and with other phytosaurs more advanced than those from Krasie- more lineages emerge or extend their ranges back in time. It is joÂw (see Dutuit, 1977), and it is likely to be somewhat younger. -
Heptasuchus Clarki, from the ?Mid-Upper Triassic, Southeastern Big Horn Mountains, Central Wyoming (USA)
The osteology and phylogenetic position of the loricatan (Archosauria: Pseudosuchia) Heptasuchus clarki, from the ?Mid-Upper Triassic, southeastern Big Horn Mountains, Central Wyoming (USA) † Sterling J. Nesbitt1, John M. Zawiskie2,3, Robert M. Dawley4 1 Department of Geosciences, Virginia Tech, Blacksburg, VA, USA 2 Cranbrook Institute of Science, Bloomfield Hills, MI, USA 3 Department of Geology, Wayne State University, Detroit, MI, USA 4 Department of Biology, Ursinus College, Collegeville, PA, USA † Deceased author. ABSTRACT Loricatan pseudosuchians (known as “rauisuchians”) typically consist of poorly understood fragmentary remains known worldwide from the Middle Triassic to the end of the Triassic Period. Renewed interest and the discovery of more complete specimens recently revolutionized our understanding of the relationships of archosaurs, the origin of Crocodylomorpha, and the paleobiology of these animals. However, there are still few loricatans known from the Middle to early portion of the Late Triassic and the forms that occur during this time are largely known from southern Pangea or Europe. Heptasuchus clarki was the first formally recognized North American “rauisuchian” and was collected from a poorly sampled and disparately fossiliferous sequence of Triassic strata in North America. Exposed along the trend of the Casper Arch flanking the southeastern Big Horn Mountains, the type locality of Heptasuchus clarki occurs within a sequence of red beds above the Alcova Limestone and Crow Mountain formations within the Chugwater Group. The age of the type locality is poorly constrained to the Middle—early Late Triassic and is Submitted 17 June 2020 Accepted 14 September 2020 likely similar to or just older than that of the Popo Agie Formation assemblage from Published 27 October 2020 the western portion of Wyoming. -
THE GENERA of REPTILES. By
T he Genera of Re pt il e s. By BARON FRANCIS NOPCSA (Budapest). (Eingelangt am 11. Mai 1927.) Among all the Paleontologists living none has dealt with the recent and fossil reptiles with a wider grasp than Prof. L. D o l l o and at his anniversary it seems quite appropriate to review their whole array. The classification used in the following enumeration of all genera of reptiles is much the same as in my hook „Die Familien der Reptilien“; at this instance however an effort has been made to give a precise definition of every systematic unit. Alteration of the classification became necessary among the Dino- cephalians, the Nothosaurians, the Lacertilians (called here Sauroidea), the Coelurosauroidea and the Crocodilia. The new classification of the Sauroidea is intermediate between the classifications proposed by B o u l e n g e r and C a m p . Naturally as a rule only those fossil genera are referred to, that are more than simple catalogue numbers that facilitate the finding of the respective piece in a collection; indeterminable problematic genera of small interest have mostly been omitted. Extinct units and genera are marked in the lists with a cross ("j*). Difficulties of classification have been encountered in the Lacertilia and Ophidia, for in the new system the conventional families of recent Lizards and Serpents has been given subfamily rank and conse quently the different recent subfamilies had to be dropped. Instead of these subfamilies the minor units were separated by greek letters. — The tedious and complicated revision of the genera of recent Lizards and Snakes was done by Prof. -
A New Phylogenetic Analysis of Phytosauria (Archosauria: Pseudosuchia) with the Application of Continuous and Geometric Morphometric Character Coding
A new phylogenetic analysis of Phytosauria (Archosauria: Pseudosuchia) with the application of continuous and geometric morphometric character coding Andrew S. Jones and Richard J. Butler School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK ABSTRACT Phytosauria is a clade of large, carnivorous, semi-aquatic archosauromorphs which reached its peak diversity and an almost global distribution in the Late Triassic (c. 230–201 Mya). Previous phylogenetic analyses of Phytosauria have either focused primarily on the relationships of specific subclades, or were limited in taxonomic scope, and no taxonomically comprehensive dataset is currently available. We here present the most taxonomically comprehensive cladistic dataset of phytosaurs to date, based on extensive first-hand study, identification of novel characters and synthesis of previous matrices. This results in an almost twofold increase in phylogenetic information scored per taxon over previous analyses. Alongside a traditional discrete character matrix, three variant matrices were analysed in which selected characters were coded using continuous and landmarking methods, to more rigorously explore phytosaur relationships. Based on these four data matrices, four tree topologies were recovered. Relationships among non-leptosuchomorph phytosaurs are largely consistent between these four topologies, whereas those of more derived taxa are more variable. Rutiodon carolinensis consistently forms a sister relationship with Angistorhinus. In three topologies Nicrosaurus nests deeply within a group of traditionally Submitted 24 April 2018 non-Mystriosuchini taxa, leading us to redefine Mystriosuchini by excluding 9 October 2018 Accepted Nicrosaurus as an internal specifier. Two distinct patterns of relationships within Published 10 December 2018 Mystriosuchini are present in the four topologies, distinguished largely by the Corresponding author Andrew S. -
Vertebrate Fauna of the Dockum Group, Triassic, Eastern New Mexico and West Texas Joseph P
New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/23 Vertebrate fauna of the Dockum Group, Triassic, eastern New Mexico and West Texas Joseph P. Gregory, 1972, pp. 120-123 in: East-Central New Mexico, Kelley, V. C.; Trauger, F. D.; [eds.], New Mexico Geological Society 23rd Annual Fall Field Conference Guidebook, 236 p. This is one of many related papers that were included in the 1972 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. -
(Diapsida, Archosauriformes) from the Late Triassic of the Iberian Peninsula
Journal of Vertebrate Paleontology ISSN: 0272-4634 (Print) 1937-2809 (Online) Journal homepage: https://www.tandfonline.com/loi/ujvp20 The first phytosaur (Diapsida, Archosauriformes) from the Late Triassic of the Iberian Peninsula Octávio Mateus, Richard J. Butler, Stephen L. Brusatte, Jessica H. Whiteside & J. Sébastien Steyer To cite this article: Octávio Mateus, Richard J. Butler, Stephen L. Brusatte, Jessica H. Whiteside & J. Sébastien Steyer (2014) The first phytosaur (Diapsida, Archosauriformes) from the Late Triassic of the Iberian Peninsula, Journal of Vertebrate Paleontology, 34:4, 970-975, DOI: 10.1080/02724634.2014.840310 To link to this article: https://doi.org/10.1080/02724634.2014.840310 Published online: 08 Jul 2014. Submit your article to this journal Article views: 229 View related articles View Crossmark data Citing articles: 7 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ujvp20 Journal of Vertebrate Paleontology 34(4):970–975, July 2014 © 2014 by the Society of Vertebrate Paleontology SHORT COMMUNICATION THE FIRST PHYTOSAUR (DIAPSIDA, ARCHOSAURIFORMES) FROM THE LATE TRIASSIC OF THE IBERIAN PENINSULA OCTAVIO´ MATEUS,*,1,2 RICHARD J. BUTLER,3,4 STEPHEN L. BRUSATTE,5 JESSICA H. WHITESIDE,6 and J. SEBASTIEN´ STEYER7; 1GeoBioTec, DCT, Faculdade de Cienciasˆ e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, [email protected]; 2Museu da Lourinha,˜ 2530-157 Lourinha,˜ Portugal; 3GeoBio-Center, Ludwig-Maximilians-Universitat¨ -
Triassic Vertebrate Fossils in Arizona
Heckert, A.B., and Lucas, S.G., eds., 2005, Vertebrate Paleontology in Arizona. New Mexico Museum of Natural History and Science Bulletin No. 29. 16 TRIASSIC VERTEBRATE FOSSILS IN ARIZONA ANDREW B. HECKERT1, SPENCER G. LUCAS2 and ADRIAN P. HUNT2 1Department of Geology, Appalachian State University, ASU Box 32067, Boone, NC 28608-2607; [email protected]; 2New Mexico Museum of Natural History & Science, 1801 Mountain Road NW, Albuquerque, NM 87104-1375 Abstract—The Triassic System in Arizona has yielded numerous world-class fossil specimens, includ- ing numerous type specimens. The oldest Triassic vertebrates from Arizona are footprints and (largely) temnospondyl bones from the Nonesian (Early Triassic: Spathian) Wupatki Member of the Moenkopi Formation. The Perovkan (early Anisian) faunas of the Holbrook Member of the Moenkopi Formation are exceptional in that they yield both body- and trace fossils of Middle Triassic vertebrates and are almost certainly the best-known faunas of this age in the Americas. Vertebrate fossils of Late Triassic age in Arizona are overwhelmingly body fossils of temnospondyl amphibians and archosaurian reptiles, with trace fossils largely restricted to coprolites. Late Triassic faunas in Arizona include rich assemblages of Adamanian (Carnian) and Revueltian (early-mid Norian) age, with less noteworthy older (Otischalkian) assemblages. The Adamanian records of Arizona are spectacular, and include the “type” Adamanian assemblage in the Petrified Forest National Park, the world’s most diverse Late Triassic vertebrate fauna (that of the Placerias/Downs’ quarries), and other world-class records such as at Ward’s Terrace, the Blue Hills, and Stinking Springs Mountain. The late Adamanian (Lamyan) assemblage of the Sonsela Member promises to yield new and important information on the Adamanian-Revueltian transition. -
DINOSAUR SUCCESS in the TRIASSIC: a NONCOMPETITIVE ECOLOGICAL MODEL This Content Downloaded from 137.222.248.217 on Sat, 17
VOLUME 58, No. 1 THE QUARTERLY REVIEW OF BIOLOGY MARCH 1983 DINOSAUR SUCCESS IN THE TRIASSIC: A NONCOMPETITIVE ECOLOGICAL MODEL MICHAEL J. BENTON University Museum, Parks Road, Oxford OX] 3PW, England, UK ABSTRACT The initial radiation of the dinosaurs in the Triassic period (about 200 million years ago) has been generally regarded as a result of successful competition with the previously dominant mammal- like reptiles. A detailed review of major terrestrial reptile faunas of the Permo- Triassic, including estimates of relative abundance, gives a different picture of the pattern of faunal replacements. Dinosaurs only appeared as dominant faunal elements in the latest Triassic after the disappear- ance of several groups qf mammal-like reptiles, thecondontians (ancestors of dinosaurs and other archosaurs), and rhynchosaurs (medium-sized herbivores). The concepts of differential survival ("competitive") and opportunistic ecological replacement of higher taxonomic categories are contrasted (the latter involves chance radiation to fill adaptive zones that are already empty), and they are applied to the fossil record. There is no evidence that either thecodontians or dinosaurs demonstrated their superiority over mammal-like reptiles in massive competitive take-overs. Thecodontians arose as medium-sized carnivores after the extinction of certain mammal-like reptiles (opportunism, latest Permian). Throughout most of the Triassic, the thecodontians shared carnivore adaptive zones with advanced mammal-like reptiles (cynodonts) until the latter became extinct (random processes, early to late Triassic). Among herbivores, the dicynodont mammal-like reptiles were largely replaced by diademodontoid mammal-like reptiles and rhynchosaurs (differential survival, middle to late Triassic). These groups then became extinct and dinosaurs replaced them and radiated rapidly (opportunism, latest Triassic). -
ON the PRINCIPLES of GLOBAL CORRELATION of the CONTINENTAL TRIASSIC on the TETRAPODS the Triassic Was a Time of Transition From
Acta Palaeontologica Polonica Vol. 34, No. 2 pp. 149-173 Warszawa, 1989 V. G. OCHEV and M. A. SHISHKIN ON THE PRINCIPLES OF GLOBAL CORRELATION OF THE CONTINENTAL TRIASSIC ON THE TETRAPODS OCHEV, V. G. and SHISHKIN, M. A.: On the principles of global correlation af the continental Triassic on the tetsapods. Acta Palaeont. Polonica, 34, 2, 143--173, 1989. History of the Triassic land vertebrates comprises three successive global epoches referred to as proterosuchian, kannemeyeroid and dinosaur ones. The earliest and the middle epoches are typified by the regional faunal sequence of East Europe. The proterosuchian time spaas here the Neorhachitome and Paroto- suchus faunas, the former being directly correlated with the Induan-Lower Olenekian, and the latter with the Upper Olenekian (Spathian). The Eryosuchus and Mastodonsaurus faunas of the kannemeyeroid epoch in East Europe are Middle Triassic in age and correspond to the Muschelkalk and Lettenkohle respectively. An evidence is brought for contemporaneity of the protero- suchian-kannemeyeroid biotic replacement in Laurasia and Gondwana. This implies the Middle Triassic age of the Cynognathus Zone of South Africa and its equivalents in South America. The bulk of Lystrosausus fauna in Gondwana is suggested to range over the most of, or the whole, Early Triassic. K e y w 0 r d s: Triassic tetrapods, biotic epoches, correlation. V. G. Ochev, Saratov State University, Saratov, USSR; M. A. Shtshktn, PaUleontologtcal Institute, Academy of Sciences of the USSR, Profsoyuznaya, 123 Moscow, USSR. Received: December 1988. INTRODUCTION The Triassic was a time of transition from the late Palaeozoic (the- rapsid) to the true Mesozoic (archosaur) stage of the tetrapod faunal evolution. -
THE PHYTOSAURIA of the TRIAS Some Time Ago the Writer Gave A
THE PHYTOSAURIA OF THE TRIAS MAURICE G. MEHL University of Wisconsin Some time ago the writer gave a brief notice of a new genus of phytosaurs of which Angistorhinus grandis Mehl was the type.' It is the purpose of this paper primarily to give a fuller description of this form and of another specimen mentioned in the above paper which further study has shown to be a new species of the same genus. Angistorhinus grandis MEHL The general characteristics of the specimen upon which this form is based were set forth in the previous paper and deserve but brief mention here. The skull is elongate with the rostrum pro- duced into a long, slender, depressed snout and the nares elevated on a prominence at its posterior end. It is among the largest of the phytosaurian skulls, with a total length of about 977 mm. The squamosals extend a considerable distance beyond the posterior border of the quadrates and are produced downward into stout, hooklike processes. The supratemporal vacuities are closed pos- teriorly by a well-developed parieto-squamosal arcade that lies in the plane of the roof of the cranium. A marked depression is seen on the dorsal surface surrounded by the orbits and supratemporal vacuities. The irregular pitting of the surface is confined almost entirely to the lateral and posterior sides of the prominence upon which the nares are situated, and the flat dorsal surface of the cranium back of this, and in front of the supratemporal vacuities. In a lateral view the skull resembles that of Mystriosuchus Fraas2 more than any of the other phytosaurs.