Investigating Labdane-Related Diterpenoids Biosynthetic Network In

Total Page:16

File Type:pdf, Size:1020Kb

Investigating Labdane-Related Diterpenoids Biosynthetic Network In Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 Investigating labdane-related diterpenoids biosynthetic network in rice: characterization of cytochromes P450 and short-chain alcohol dehydrogenases/reductase Yisheng Wu Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biochemistry Commons Recommended Citation Wu, Yisheng, "Investigating labdane-related diterpenoids biosynthetic network in rice: characterization of cytochromes P450 and short-chain alcohol dehydrogenases/reductase" (2012). Graduate Theses and Dissertations. 12680. https://lib.dr.iastate.edu/etd/12680 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Investigating labdane-related diterpenoids biosynthetic network in rice: Characterization of cytochromes P450 and short-chain alcohol dehydrogenases/reductase by Yisheng Wu A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Biochemistry Program of Study Committee: Reuben Peters, Major Professor Gustavo MacIntosh Thomas Bobik Bing Yang Mark Hargrove Iowa State University Ames, Iowa 2012 Copyright © Yisheng Wu , 2012. All rights reserved. ii TABLE OF CONTENT Chapter I: General Introduction 1 Overview and significance 1 Terpenoids 2 Rice phytoalexins biosynthesis network 4 Cytochromes P450 and metabolic engineering 7 Short-chain alcohol dehydrogenase/reductase 9 Reference 11 Figures 13 Chapter II: Functional characterization of wheat copalyl diphosphate synthases elucidates the early evolution of labdane-related diterpenoid metabolism in the cereals 17 Abstract 17 Introduction 18 Results 20 Discussion 24 Conclusion 25 Experimental 26 Acknowledgements 27 References 28 Figures and Tables 30 Chapter III: Parsing a multifunctional biosynthetic gene cluster from rice: iii Biochemical characterization of CYP71Z6 & 7 36 Abstract 36 Introduction 36 Results 42 Discussion 45 Acknowledgements 47 References 47 Figures 49 Supporting Information 53 Chapter IV: CYP76M6 and CYP76M8, two cytochromes P450 involved in oryzalexin D and E biosynthesis in rice 60 Abstract 60 Introduction 60 Results 62 Discussion 64 Material and methods 66 Acknowledgements 70 References 70 Figures 72 Supplementary data 77 Chapter V: Elucidating final oxygenation steps to produce oryzaelxin A, B and C: biochemical characterization of OsMAS, OsMASL1 and OsMASL2 78 iv Abstract 78 Introduction 79 Results 80 Discussion 83 Material and methods 86 Acknowledgements 88 References 88 Figures 91 Supplementary data 100 Chapter VI: Mutagenesis study in substrate recognition site changes substrate specificity 101 Abstract 101 Introduction 101 Results 103 Discussion 105 Material and methods 107 Acknowledgements 107 References 108 Figures 109 Chapter VII: Conclusion and future direction 119 Characterization of cytochromes P450 involved in rice labdane-related diterpenoids (LRD) production 119 v Characterization of short-chain dehydrogenase/reductase (SDR) involved in rice labdane-related diterpenoids (LRD) production 120 Mutagenesis analysis of functional characterized CYPs 121 Future directions 121 References 124 Figures 125 Acknowledgements 129 1 Chapter I: General Introduction Overview and significance Terpenoids are a large and diverse class of naturally occurring compounds with a range of biological functions in plants such as hormones (i.e. gibberellic acid) and phytoalexins against microbial infection. Terpenoids are also used as pharmaceuticals such as anti-malarial (i.e. artimisinin) and anti-cancer drug (i.e. taxol). Because of the biological and pharmaceutical importance, it is desirable to obtain terpenoids in large quantity. However, it is futile to isolate terpenoids directly from plant tissues due to their low abundance. Moreover, chemical synthesis is difficult because of their complex structure. For these reasons, an attractive alternative strategy is to engineer enzymes and pathways to produce functional terpenoids in a heterologous microbial system. Transferring pathways into microbial host requires good understanding of terpenoids biosynthetic pathways, most of which are only partially defined. Rice (Oryza sativa), one of the most important staple crops, can produce phytoalexins (Figure 1), which largely consist of labdane-related diterpenoids, when attacked by fungi and bacteria. Rice diterpene olefin biosynthetic pathways and the initial oxidative steps conducted by cytrochrome P450s (CYP) have been elucidated by our previous studies. In this dissertation we propose to use rice as a model system to further investigate diterpenoid biosynthesis pathways, with an emphasis on identifying downstream decorating oxygenases and oxidoreductase. This will further elucidate the complex diterpenoid network of rice, and elaborate our ability to engineer terpenoid biosynthesis pathways in microbial systems. 2 With defined enzymes and biosynthetic pathways in rice LRD phytoalexin biosynthesis, we are also interested in understanding how substrate specificity and product diversity are achieved by phylogenetically directed mutagenesis study. The mutants obtained around CYP’s substrate recognition sites (SRS) provide us information concerning how amino acids in SRS can affect substrate specificity and product outcome. These findings will eventually help us to rationally engineer the SRS to efficiently desired compounds. Terpenoids Terpenoids are one of the largest families of natural products with more than 50,000 have been discovered in nature with the majority found in plants. Consistent with their tremendous structural diversity, the functions of terpenoids are also varied. In plants, terpenoids function as primary structural and physiological molecules including membrane components (i.e. phytosterols), photosynthetic pigment (i.e. carotenoids), hormones (i.e. gibberellins), and electron carriers (i.e. ubiquinone)(1). In addition, many plants produce unique terpenoids repertoire that function as communicating and defense compounds, such as attractant for pollinators, herbivore repellents and antibiotics (1). Moreover, many terpenoids have pharmaceutical value for human such as anti-cancer drug taxol and anti-malaria drug artemisinin (1). Biosynthesis of all the terpenoids starts from five carbon isoprene unit: isopentenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate (DMAPP). IPP can be biosynthesized via mevalonate-dependent isoprenoid (MEV) pathway or mevalonate- independent methylerythritol phosphate (MEP) pathways (2, 3). In MEV pathway, three acetyl-coenzyme A (acetyl-coA) molecules condense successively to produce HMG-CoA, 3 which is then reduced to mevalonate, following by phosphorylation and decarboxylation reaction to produce IPP(3). MEV pathway operates in eukaryotes, archaebacteria, and cytosols of higher plants, whereas MEP pathway is used by many eubacteria, green algae, and chloroplast of higher plants, and is discovered more recently. MEP pathway starts from the condensation reaction between pyruvate and glyceraldehyde-3-phosphate to produce 1- deoxy-D-xylulose 5-phosphate (DXP), which is then rearranged to produce 2-C- methylerythrose-4-phosphate (MEP), followed by a series of complex reactions to produce IPP(3). IPP produced by both pathways can be converted to DMAPP by IPP isomerase(3). IPP and DMAPP are condensed to linear terpenoids precursor by prenyltransferase via ‘head to tail’ fashion. Depending on the number of isoprene units used in condensation reaction, the linear molecules can be geranyl diphosphate (GPP, C10), farnesyl diphosphate (FPP, C15), geranylgeranyl diphosphate (GGPP, C20) (Figure 2). The longer carbon chain precursors are produced, however, by head to head condensation of two FPPs or GGPPs. Linear terpene substrates will further undergo cyclization by terpene cyclases to provide tens of thousands of remarkable and unique terpene backbones(4). Two chemical strategies for initial carbocation formation are adapted by terpene cyclase. The first one is ionization- dependent mechanism in which metal such as Mg2+ triggers the departure of a pyrophosphate (PPi) leaving group(4). They are termed as class I terpene cyclase and have a signature ‘DDXXD/E’ motif(4). The other one is class II terpene cyclase with a ‘DXDD’ motif, which triggers protonation of a carbon-carbon double bond or epxoide ring(4). The diversity of super-family of terpenoids arises largely from the subsequent decoration reactions. Indisputably, most of the decoration reactions are initialized from oxygenation 4 reaction catalyzed by CYP inserting oxygen into terpene olefins to produce functional groups such as hydroxyl, which can further undergo transformations by adding a range of functional groups to it. Depending on the functional groups added, they can form more complex hybrid terpenoids products such as steviol glycoside (5, 6). Notably, the resulting molecules sometimes can undergo rearrangement of carbon backbone, adding complexity for terpenoids super-family. Rice phytoalexins biosynthesis network Because of their sessile nature, plants produce a broad range of compounds against biotic stress. Those compounds, named phytoalexins,
Recommended publications
  • Redalyc.Microorganisms Screening for Limonene Oxidation
    Ciência e Tecnologia de Alimentos ISSN: 0101-2061 [email protected] Sociedade Brasileira de Ciência e Tecnologia de Alimentos Brasil LERIN, Lindomar; TONIAZZO, Geciane; de OLIVEIRA, Débora; ROTTAVA, Leda; DARIVA, Cláudio; CANSIAN, Rogério Luis; TREICHEL, Helen; PADILHA, Francine; Ceva ANTUNES, Octávio Augusto Microorganisms screening for limonene oxidation Ciência e Tecnologia de Alimentos, vol. 30, núm. 2, abril-junio, 2010, pp. 399-405 Sociedade Brasileira de Ciência e Tecnologia de Alimentos Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=395940100017 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Ciência e Tecnologia de Alimentos ISSN 0101-2061 Microorganisms screening for limonene oxidation Seleção de microrganismos para oxidação de limoneno Original Lindomar LERIN1, Geciane TONIAZZO2, Débora de OLIVEIRA2*, Leda ROTTAVA1, Cláudio DARIVA3, Rogério Luis CANSIAN2, Helen TREICHEL2, Francine PADILHA3, Octávio Augusto Ceva ANTUNES1 Abstract Limonene is a monoterpene obtained in large amounts from essential oils and is used as a raw material for the synthesis of flavors and fine chemicals. Several pathways or routes for the microbial degradation of limonene making use of the cytochrome P450-dependent monooxygenases have been described. In this study, we present a fermentative screening of microorganisms in order to verify their ability to perform the desirable conversion. In parallel, the PCR technique was used to select the microorganisms that contain the limC gene, which is responsible for the conversion of carveol to carvone.
    [Show full text]
  • De Novo Sequencing and Analysis of the American Ginseng Root
    Sun et al. BMC Genomics 2010, 11:262 http://www.biomedcentral.com/1471-2164/11/262 RESEARCH ARTICLE Open Access DeResearch novo article sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis Chao Sun†1, Ying Li†1, Qiong Wu1, Hongmei Luo1, Yongzhen Sun1, Jingyuan Song1, Edmund MK Lui2 and Shilin Chen*1 Abstract Background: American ginseng (Panax quinquefolius L.) is one of the most widely used herbal remedies in the world. Its major bioactive constituents are the triterpene saponins known as ginsenosides. However, little is known about ginsenoside biosynthesis in American ginseng, especially the late steps of the pathway. Results: In this study, a one-quarter 454 sequencing run produced 209,747 high-quality reads with an average sequence length of 427 bases. De novo assembly generated 31,088 unique sequences containing 16,592 contigs and 14,496 singletons. About 93.1% of the high-quality reads were assembled into contigs with an average 8-fold coverage. A total of 21,684 (69.8%) unique sequences were annotated by a BLAST similarity search against four public sequence databases, and 4,097 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. Based on the bioinformatic analysis described above, we found all of the known enzymes involved in ginsenoside backbone synthesis, starting from acetyl-CoA via the isoprenoid pathway. Additionally, a total of 150 cytochrome P450 (CYP450) and 235 glycosyltransferase unique sequences were found in the 454 cDNA library, some of which encode enzymes responsible for the conversion of the ginsenoside backbone into the various ginsenosides.
    [Show full text]
  • Farnesyl Phosphatase, a Corpora Allata
    Florida International University FIU Digital Commons Department of Biological Sciences College of Arts, Sciences & Education 8-5-2013 Farnesyl Phosphatase, a Corpora allata Enzyme Involved in Juvenile Hormone Biosynthesis in Aedes aegypti Pratik Nyati Department of Biological Sciences, Florida International University, [email protected] Marcela Nouzova Department of Biological Sciences, Florida International University, [email protected] Crisalejandra Rivera-Perez Department of Biological Sciences, Florida International University,, [email protected] Mark E. Clifton Department of Biological Sciences, Florida International University Jamie G. Mayoral Department of Biological Sciences, Florida International University See next page for additional authors Follow this and additional works at: https://digitalcommons.fiu.edu/cas_bio Part of the Biology Commons Recommended Citation Nyati P, Nouzova M, Rivera-Perez C, Clifton ME, Mayoral JG, et al. (2013) Farnesyl Phosphatase, a Corpora allata Enzyme Involved in Juvenile Hormone Biosynthesis in Aedes aegypti. PLoS ONE 8(8): e71967. doi:10.1371/journal.pone.0071967 This work is brought to you for free and open access by the College of Arts, Sciences & Education at FIU Digital Commons. It has been accepted for inclusion in Department of Biological Sciences by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. Authors Pratik Nyati, Marcela Nouzova, Crisalejandra Rivera-Perez, Mark E. Clifton, Jamie G. Mayoral, and Fernando G. Noriega This article is available at FIU Digital Commons: https://digitalcommons.fiu.edu/cas_bio/131 Farnesyl Phosphatase, a Corpora allata Enzyme Involved in Juvenile Hormone Biosynthesis in Aedes aegypti Pratik Nyati, Marcela Nouzova, Crisalejandra Rivera-Perez, Mark E. Clifton, Jaime G. Mayoral, Fernando G.
    [Show full text]
  • The Role of Bile Acids in Overcoming Resistance to Chemotherapy By
    The Role of Bile Acids in Overcoming Resistance to Chemotherapy by Simon Chewchuk A thesis submitted as a partial fulfillment of the Requirements for the degree of Doctor of Philosophy (Ph.D.) in Biomolecular Sciences The Faculty of Graduate Studies Laurentian University Sudbury, Ontario, Canada © Simon Chewchuk, 2017 ii Abstract: In the context of cancer therapy, resistance to chemotherapy agents is a serious threat to patient welfare. In these circumstances, patients can either present with cancers that are naturally resistant to conventional therapy, referred to as innate resistance, or with cancers that become resistant following treatment, referred to as acquired resistance. In this thesis, we address the phenomenon of acquired drug resistance, involving cell lines selected for resistance to the anthracycline, doxorubicin. In the first study, we examined the role of the aldo-keto reductases AKR1C3 and AKR1B10 in doxorubicin resistance, enzymes that can hydroxylate doxorubicin to a less toxic form (doxorubicinol). Additionally, these enzymes can function to promote estrogen biosynthesis from estrone, which can have significant effects on cell growth and survival. We demonstrated in the first study that AKR1C3 and AKR1B10 are expressed at higher levels in doxorubicin resistant MCF-7 cells than their isogenic control counterparts. This change in expression correlated very well with increased estrogen synthesis. siRNA-mediated reduction in AKR1C3 and/or AKR1B10 transcript expression had no major effect on doxorubicin resistance, suggesting that these enzymes are not sufficient to mediate the doxorubicin resistance phenotype and that other mechanisms of doxorubicin resistance exist in these cells. We did, however, note that a pharmacological inhibitor of AKR enzymes (a bile acid termed β-cholanic acid) was effective in reversing doxorubicin resistance in doxorubicin-selected cell lines.
    [Show full text]
  • On Skin Cells and Mitochondria Isolated from Melanoma Induced Mouse
    Original Research Article 2019;2(1):e5 Selective Toxicity of Standardized Extracts of Persian Gulf Sponge (Irciniamutans) on Skin Cells and Mitochondria isolated from Melanoma induced mouse a b c d e Yalda Arast , Nina SeyedRazi , Melika Nazemi , Enayatollah Seydi , Jalal Pourahmad * a. Department of Occupational Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran. b. Pharmaceutical Sciences Research Center, ShahidBeheshti University of Medical Sciences, Tehran, Iran. c. Persian Gulf and Oman Sea Ecological Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bandar Abbas, Iran. d. Research Center for Health, Safety and Environment (RCHSE), Department of Occupational Health Engineering, Alborz University of Medical Sciences, Karaj, Iran. e. Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Article Info: ABSTRACT: Received: March 2019 Melanoma is an aggressive and highly lethal cancer with poor prognosis and Accepted: June 2019 resistance to current treatments. Apoptosis signaling is believed to be suppressed in Published online: melanoma. Evidence suggests that compounds isolated from marine sponges have June 2019 anti-cancer properties. This study was designed to evaluate the apoptotic effect of methanolic, diethyl ether, and n-hexane extracts of Irciniamutans (I.mutans) on skin mitochondria isolated from mice animal
    [Show full text]
  • Biosynthesis of New Alpha-Bisabolol Derivatives Through a Synthetic Biology Approach Arthur Sarrade-Loucheur
    Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach Arthur Sarrade-Loucheur To cite this version: Arthur Sarrade-Loucheur. Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach. Biochemistry, Molecular Biology. INSA de Toulouse, 2020. English. NNT : 2020ISAT0003. tel-02976811 HAL Id: tel-02976811 https://tel.archives-ouvertes.fr/tel-02976811 Submitted on 23 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l'Institut National des Sciences Appliquées de Toulouse Présentée et soutenue par Arthur SARRADE-LOUCHEUR Le 30 juin 2020 Biosynthèse de nouveaux dérivés de l'α-bisabolol par une approche de biologie synthèse Ecole doctorale : SEVAB - Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingenieries Spécialité : Ingénieries microbienne et enzymatique Unité de recherche : TBI - Toulouse Biotechnology Institute, Bio & Chemical Engineering Thèse dirigée par Gilles TRUAN et Magali REMAUD-SIMEON Jury
    [Show full text]
  • A Comprehensive Review on Phyllanthus Derived Natural Products As Potential Chemotherapeutic and Immunomodulators for a Wide Range of T Human Diseases
    Biocatalysis and Agricultural Biotechnology 17 (2019) 529–537 Contents lists available at ScienceDirect Biocatalysis and Agricultural Biotechnology journal homepage: www.elsevier.com/locate/bab A comprehensive review on Phyllanthus derived natural products as potential chemotherapeutic and immunomodulators for a wide range of T human diseases Mohamed Ali Seyed Department of Clinical Biochemistry, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia ARTICLE INFO ABSTRACT Keywords: Treatment options for most cancers are still insufficient, despite developments and technology advancements. It Cancer has been postulated that the immune response to progressive tumors is insufficient due to a deficiency in afferent Phyllanthus amarus/niruri mechanisms responsible for the development of tumor-reactive T cells. Many patients treated for cancer will Phyllanthin have their cancer recurrence, often after a long remission period. This suggests that there are a small number of Hypophyllanthin tumor cells that remain alive after standard treatment(s) – alone or in combination and have been less effective Chemotherapeutic in combating metastasis that represents the most elaborate hurdle to overcome in the cure of the disease. Immunomodulation Therefore, any new effective and safe therapeutic agents will be highly demanded. To circumvent many plant extracts have attributed for their chemoprotective potentials and their influence on the human immune system. It is now well recognized that immunomodulation of immune response could provide an alternative or addition to conventional chemotherapy for a variety of disease conditions. However, many hurdles still exist. In recent years, there has been a tremendous interest either in harnessing the immune system or towards plant-derived immunomodulators as anticancer agents for their efficacy, safety and their targeted drug action and drug de- livery mechanisms.
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • The Biosynthesis of Sesquiterpene Lactones in Chicory (Cichorium Intybus L.) Roots Promotor Prof
    The Biosynthesis of Sesquiterpene Lactones in Chicory (Cichorium intybus L.) Roots Promotor Prof. dr. Æ. de Groot, hoogleraar in de bio-organische chemie, Wageningen Universiteit Co-promotoren Dr. M.C.R. Franssen, universitair hoofddocent, Laboratorium voor Organische Chemie, Wageningen Universiteit Dr. ir. H.J. Bouwmeester, senior onderzoeker, Business Unit Celcybernetica, Plant Research International Promotiecommissie Prof. dr. J. Gershenzon (Max Planck Institute for Chemical Ecology, Germany) Prof. dr. L.H.W. van der Plas (Wageningen Universiteit) Prof. dr. ir. I.M.C.M. Rietjens (Wageningen Universiteit) Prof. dr. E.J.R. Sudhölter (Wageningen Universiteit) Jan-Willem de Kraker The Biosynthesis of Sesquiterpene Lactones in Chicory (Cichorium intybus L.) Roots Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit prof. dr. ir. L. Speelman in het openbaar te verdedigen op woensdag 9 januari 2002 des namiddags te vier uur in de Aula de Kraker, J.-W. The Biosynthesis of Sesquiterpene Lactones in Chicory (Cichorium intybus L.) Roots Thesis Wageningen University – with summaries in English and Dutch ISBN 90-5808-531-7 Voorwoord — Preface De afgelopen vijf jaar was het voor mij witlof, dag in dag uit. Waarschijnlijk is dit ook de reden dat ik al ruim 3 jaar geen witlof meer kan ruiken, laat staan eet. Als je dan ongeacht waar je in Europa bent overal in de wegberm uitsluitend blauwe bloemen ziet opduiken, is het wel goed en verstandig er eens een punt achter te zetten. Hoewel het eind van dit promotie- onderzoek door al het ‘wachtgeldgedoe’ en bijbehorende ‘dode mussen’ wel erg abrupt en weinig chique kwam, kan ik me nu met goed gevoel weer eens op wat anders storten.
    [Show full text]
  • Characterization of Juvenile Hormone Biosynthetic Enzymes in the Mosquito, Aedes Aegypti Pratik Nyati Florida International University, [email protected]
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-5-2014 Characterization of Juvenile Hormone Biosynthetic Enzymes in the Mosquito, Aedes aegypti Pratik Nyati Florida International University, [email protected] Follow this and additional works at: http://digitalcommons.fiu.edu/etd Part of the Biochemistry, Biophysics, and Structural Biology Commons, Biology Commons, and the Entomology Commons Recommended Citation Nyati, Pratik, "Characterization of Juvenile Hormone Biosynthetic Enzymes in the Mosquito, Aedes aegypti" (2014). FIU Electronic Theses and Dissertations. Paper 1688. http://digitalcommons.fiu.edu/etd/1688 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida CHARACTERIZATION OF JUVENILE HORMONE BIOSYNTHETIC ENZYMES IN THE MOSQUITO, AEDES AEGYPTI A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Pratik Nyati 2014 To: Interim Dean Michael R. Heithaus College of Arts and Sciences This dissertation, written by Pratik Nyati, and entitled Characterization of Juvenile Hormone Biosynthetic Enzymes in the Mosquito, Aedes aegypti, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. ______________________________________ Alejandro Barbieri ______________________________________ Lidia Kos ______________________________________ Lou W. Kim ______________________________________ Kalai Mathee ______________________________________ Fernando G. Noriega, Major Professor Date of Defense: November 5, 2014 This dissertation of Pratik Nyati is approved.
    [Show full text]
  • Production De Terpènes Fonctionnalisés Par Les Cytochromes P450 De Plantes Recombinants
    Université de Strasbourg Ecole doctorale des Sciences de la Vie et de la Santé (ED 414) Institut de Biologie Moléculaire des Plantes (CNRS, UPR2357) THESE Présentée pour obtenir le grade de DOCTEUR de l’Université de Strasbourg Discipline : Biochimie et biologie moléculaire par Carole Gavira Production de terpènes fonctionnalisés par les cytochromes P450 de plantes recombinants Soutenue le 26 février 2013 à Strasbourg devant le jury composé de : Dr. D. Werck-Reichhart Directeur de Recherche au CNRS, IBMP, Strasbourg Directeur de thèse Pr. F. Bourgaud Professeur à l’ENSAIA de Nancy Rapporteur Pr. A. Tissier Professeur à l’IPB Leibniz Institut, Halle, Allemagne Rapporteur Pr. T. Bach Professeur à l’Université de Strasbourg Examinateur Dr. R. Feyereisen Directeur de Recherche à l’INRA, Sophia-Antipolis Examinateur Remerciements J’adresse mes plus sincères remerciements à Mme Danièle Werck-Reichhart, ma Directrice de thèse, pour m’avoir donné l’opportunité de réaliser ces travaux et pour la confiance et la liberté qu’elle m’a accordée. Je remercie également M. Joseph Zucca, mon co- Directeur, et Mme Fanny Lambert, sa Collaboratrice, de la Société V. MANE Fils, qui ont été les initiateurs de ce projet réalisé en harmonie sous convention CIFRE, et qui m’ont permis de participer à deux congrès de renommée internationale. Je souhaite, d’une part, remercier vivement M. Thomas Bach, M. Frédéric Bourgaud, M. Alain Tissier et M. René Feyereisen d’avoir accepté d’être membres de mon jury. Je voudrais, d’autre part, remercier M. Christophe Crocoll, pour son aide précieuse et sa disponibilité, M. Erich Glawischnig et Mme Laurence Miesch pour leur collaboration.
    [Show full text]
  • 9, 10-Phenanthrenequinone Induces Monocytic Differentiation of U937
    1598 Note Biol. Pharm. Bull. 35(9) 1598–1602 (2012) Vol. 35, No. 9 9,10-Phenanthrenequinone Induces Monocytic Differentiation of U937 Cells through Regulating Expression of Aldo-Keto Reductase 1C3 Toshiyuki Matsunaga,*,a Mika Hosogai,a Marina Arakaki,a Satoshi Endo,a Ossama El-Kabbani,b and Akira Haraa a Laboratory of Biochemistry, Gifu Pharmaceutical University; Gifu 501–1196, Japan: and b Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences; Victoria 3052, Australia. Received March 9, 2012; accepted June 5, 2012 Persistent inhalation of diesel exhaust particles results in damaged lung cells through formation of re- active oxygen species (ROS), but the details of the toxicity mechanism against monocytes are poorly under- stood. In this study, we used human promyelomonocytic U937 cells as surrogates of monocytes and investi- gated the toxicity mechanism initiated by exposure to 9,10-phenanthrenequinone (9,10-PQ), a major quinone component in diesel exhaust particles. A 24-h incubation with 9,10-PQ provoked apoptotic cell death, which was due to signaling through the enhanced ROS generation and concomitant caspase activation. Flow cy- tometric analyses of U937 cells after long-term exposure to 9,10-PQ revealed induction of differentiation that was evidenced by increasing expression of CD11b/CD18, a cell-surface marker for monocytic differentiation into macrophages. The 9,10-PQ-induced differentiation was significantly abolished by ROS inhibitors, sug- gesting that ROS generation contributes to cell differentiation. The 9,10-PQ treatment increased the expres- sion of aldo-keto reductase (AKR) 1C3, which reached a peak at 1 to 2 d post-treatment and then declined.
    [Show full text]