University of Southampton Research Repository Eprints Soton
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Helianthus Annuus L.) Plastidial Lipoyl Synthases Genes Expression In
Impact of sunflower (Helianthus annuus L.) plastidial lipoyl synthases genes expression in glycerolipids composition of transgenic Arabidopsis plants Raquel Martins-Noguerol, Antonio Javier Moreno-Pérez, Acket Sebastien, Manuel Adrián Troncoso-Ponce, Rafael Garcés, Brigitte Thomasset, Joaquín Salas, Enrique Martínez-Force To cite this version: Raquel Martins-Noguerol, Antonio Javier Moreno-Pérez, Acket Sebastien, Manuel Adrián Troncoso- Ponce, Rafael Garcés, et al.. Impact of sunflower (Helianthus annuus L.) plastidial lipoyl synthases genes expression in glycerolipids composition of transgenic Arabidopsis plants. Scientific Reports, Nature Publishing Group, 2020, 10, pp.3749. 10.1038/s41598-020-60686-z. hal-02881038 HAL Id: hal-02881038 https://hal.archives-ouvertes.fr/hal-02881038 Submitted on 25 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. www.nature.com/scientificreports OPEN Impact of sunfower (Helianthus annuus L.) plastidial lipoyl synthases genes expression in glycerolipids composition of transgenic Arabidopsis plants Raquel Martins-Noguerol1,2, Antonio Javier Moreno-Pérez 1,2, Acket Sebastien2, Manuel Adrián Troncoso-Ponce2, Rafael Garcés1, Brigitte Thomasset2, Joaquín J. Salas1 & Enrique Martínez-Force 1* Lipoyl synthases are key enzymes in lipoic acid biosynthesis, a co-factor of several enzyme complexes involved in central metabolism. -
Crystallographic Snapshots of Sulfur Insertion by Lipoyl Synthase
Crystallographic snapshots of sulfur insertion by lipoyl synthase Martin I. McLaughlina,b,1, Nicholas D. Lanzc, Peter J. Goldmana, Kyung-Hoon Leeb, Squire J. Bookerb,c,d, and Catherine L. Drennana,e,f,2 aDepartment of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139; bDepartment of Chemistry, The Pennsylvania State University, University Park, PA 16802; cDepartment of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; dHoward Hughes Medical Institute, The Pennsylvania State University, University Park, PA 16802; eDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; and fHoward Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139 Edited by Vern L. Schramm, Albert Einstein College of Medicine, Bronx, NY, and approved July 5, 2016 (received for review March 8, 2016) Lipoyl synthase (LipA) catalyzes the insertion of two sulfur atoms substrate and at an intermediate stage in the reaction, just after at the unactivated C6 and C8 positions of a protein-bound octanoyl insertion of the C6 sulfur atom but before sulfur insertion at C8. chain to produce the lipoyl cofactor. To activate its substrate for sulfur insertion, LipA uses a [4Fe-4S] cluster and S-adenosylmethio- Results nine (AdoMet) radical chemistry; the remainder of the reaction The crystal structure of LipA from M. tuberculosis was de- mechanism, especially the source of the sulfur, has been less clear. termined to 1.64-Å resolution by iron multiwavelength anoma- One controversial proposal involves the removal of sulfur from a lous dispersion phasing (Table S1). The overall fold of LipA consists second (auxiliary) [4Fe-4S] cluster on the enzyme, resulting in de- of a (β/α)6 partial barrel common to most AdoMet radical enzymes struction of the cluster during each round of catalysis. -
Nematicidal, Phytotoxic and Brine Shrimp Lethality Activity of Some Allium Species and Their Bioactive Sulfur Compounds
Nematicidal, Phytotoxic and Brine Shrimp Lethality Activity of Some Allium Species and Their Bioactive Sulfur Compounds Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Pharmazie der Philipps-Universität Marburg vorgelegt von Sevda Jivishova aus Baku, Aserbaidschan Marburg/Lahn Jahr 2018 Erstgutachter: Prof. Dr. Michael Keusgen Zweitgutachter: Prof. Dr. Shuming Li Eingereicht am ........................ Tag der ndlichen Prüfung am 21.12.2016 Hochschulkennziffer: 1180 Dedicated to my husband and life partner Emil, our little hearts-children Said and Esma, my beloved parents and my proud brother Pervin, to the supporting parents-in-law and brother-in-law Orkhan. If I have seen further than others, it is by standing upon the shoulders of giants. Isaac Newton TABLE OF CONTENTS TABLE OF CONTENTS ........................................................................................... 1 Acknowledgments .................................................................................................... 5 List of Figures........................................................................................................... 7 List of Tables .......................................................................................................... 10 List of Abbreviations ............................................................................................... 11 Summary ................................................................................................................ 14 -
Metabolomics and Complementary Techniques to Investigate the Plant
Natural Product Reports View Article Online REVIEW View Journal Metabolomics and complementary techniques to investigate the plant phytochemical cosmos† Cite this: DOI: 10.1039/d1np00014d Hiroshi Tsugawa, *abcd Amit Rai, ae Kazuki Saito ae and Ryo Nakabayashi *a Covering: up to 2021 Plants and their associated microbial communities are known to produce millions of metabolites, a majority of which are still not characterized and are speculated to possess novel bioactive properties. In addition to their role in plant physiology, these metabolites are also relevant as existing and next-generation medicine candidates. Elucidation of the plant metabolite diversity is thus valuable for the successful exploitation of natural resources for humankind. Herein, we present a comprehensive review on recent metabolomics approaches to illuminate molecular networks in plants, including chemical isolation and enzymatic Creative Commons Attribution 3.0 Unported Licence. production as well as the modern metabolomics approaches such as stable isotope labeling, ultrahigh- resolution mass spectrometry, metabolome imaging (spatial metabolomics), single-cell analysis, cheminformatics, and computational mass spectrometry. Mass spectrometry-based strategies to characterize plant metabolomes through metabolite identification and annotation are described in detail. Received 3rd March 2021 We also highlight the use of phytochemical genomics to mine genes associated with specialized DOI: 10.1039/d1np00014d metabolites' biosynthesis. Understanding the metabolic diversity through biotechnological advances is rsc.li/npr fundamental to elucidate the functions of the plant-derived specialized metabolome. This article is licensed under a 1. Introduction 3. Cutting-edge technologies to identify unknown 2. Grand challenges in metabolomics: general approaches metabolites to natural product chemistry 3.1. Technological advances in biology, chemistry, and 2.1. -
Elucidating Lipoic Acid Synthbsis Ani)
Elucidating Lipoic Acid Synthesis and Attachment in Saccharomyces Cerevisiae Item Type Electronic Thesis; text Authors Nguyen, Amy Mailan Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 24/09/2021 12:57:42 Link to Item http://hdl.handle.net/10150/144912 ELUCIDATING LIPOIC ACID SYNTHBSIS ANI) ATTACHMENT TT!{ SACCHAROMYCES CE REW S IAE By AMY MAILAN NGIIYEN A Thesis Submitted to the Honors College In Partial Fulfillment ofthe Bachelor's Degree With Honors in Biochemistry & Molecular Biophysics, Molecular & Cellular Biology THE UNTVERSITY OF ARIZONA MAY 2O1I Department of Molecular & Cellular Biology The University of Arizona Electronic Theses and Dissertations Reproduction and Distribution Rights Form Name (Last, First, Middle) --' , , Ngryrn , Ary , Mailan Degree title (eg BA5 BS, BSq BSB, BFA): AS pnglisL Honors area (eg Molocular and Cellulr Biologr, Studio Art\: B;otWna\stva Date thesis submitted to Honors College: O€ /e I /ao t t Title ofHonors thesis: DtuLidniy l,a po t L Aci{ 5,7 ,.tl,rcsis an4 Atachvn ertt tn fa ccho't"'- * r;7t.sP15 ia<-€- / :The University of I hereby grant to the University of Arizona Library the nonexclusive Arizona Library Release worldwide right to reproduce and distribute my disserktion or thesis and abstract (herein, the "licensed materials"), in whole or in part, in any and all media of distribution and in any format in existence now or develaped in the fuhne. -
Genetic Dissection of the Mitochondrial Lipoylation Pathway in Yeast
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.24.395780; this version posted November 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Genetic dissection of the mitochondrial lipoylation pathway in yeast 2 3 by 4 5 Laura P. Pietikäinen1), M. Tanvir Rahman1), J. Kalervo Hiltunen1), Carol L. Dieckmann2), Alexander J. 6 Kastaniotis1#) 7 8 1)Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, PO Box 5400, 9 Oulu FI-90014, Finland. 10 2)Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA 11 12 #)Corresponding author 13 Dr. Alexander J. Kastaniotis 14 email: [email protected] 15 16 17 18 19 20 21 22 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.24.395780; this version posted November 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 25 ABSTRACT 26 Background: Lipoylation of 2-ketoacid dehydrogenases is essential for mitochondrial function in 27 eukaryotes. While the basic principles of the lipoylation processes have been worked out, we still lack a 28 thorough understanding of the details of this important post-translational modification pathway. Here we 29 used yeast as a model organism to characterize substrate usage by the highly conserved eukaryotic 30 octanoyl/lipoyl transferases in vivo and queried how amenable the lipoylation system is to supplementation 31 with exogenous substrate. -
Green and White Asparagus (Asparagus Officinalis): a Source Of
H OH metabolites OH Review Green and White Asparagus (Asparagus officinalis): A Source of Developmental, Chemical and Urinary Intrigue Eirini Pegiou 1 , Roland Mumm 2, Parag Acharya 3, Ric C. H. de Vos 2 and Robert D. Hall 1,2,4,* 1 Laboratory of Plant Physiology, Wageningen University & Research, P.O. Box 16, 6700AA Wageningen, The Netherlands; [email protected] 2 Business Unit Bioscience, Wageningen University & Research, P.O. Box 16, 6700AA Wageningen, The Netherlands; [email protected] (R.M.); [email protected] (R.C.H.d.V.) 3 Unilever Foods Innovation Centre, Bronland 14, 6708WH Wageningen, The Netherlands; [email protected] 4 Netherlands Metabolomics Centre, Einsteinweg 55, 2333CC Leiden, The Netherlands * Correspondence: [email protected] Received: 2 December 2019; Accepted: 18 December 2019; Published: 25 December 2019 Abstract: Asparagus (Asparagus officinalis) is one of the world’s top 20 vegetable crops. Both green and white shoots (spears) are produced; the latter being harvested before becoming exposed to light. The crop is grown in nearly all areas of the world, with the largest production regions being China, Western Europe, North America and Peru. Successful production demands high farmer input and specific environmental conditions and cultivation practices. Asparagus materials have also been used for centuries as herbal medicine. Despite this widespread cultivation and consumption, we still know relatively little about the biochemistry of this crop and how this relates to the nutritional, flavour, and neutra-pharmaceutical properties of the materials used. To date, no-one has directly compared the contrasting compositions of the green and white crops. -
Crystallographic Snapshots of Sulfur Insertion by Lipoyl Synthase
Crystallographic snapshots of sulfur insertion by lipoyl synthase The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation McLaughlin, Martin I. et al. “Crystallographic Snapshots of Sulfur Insertion by Lipoyl Synthase.” Proceedings of the National Academy of Sciences 113, 34 (August 2016): 9446–9450 © 2016 National Academy of Sciences As Published http://dx.doi.org/10.1073/PNAS.1602486113 Publisher National Academy of Sciences (U.S.) Version Final published version Citable link http://hdl.handle.net/1721.1/115133 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Crystallographic snapshots of sulfur insertion by lipoyl synthase Martin I. McLaughlina,b,1, Nicholas D. Lanzc, Peter J. Goldmana, Kyung-Hoon Leeb, Squire J. Bookerb,c,d, and Catherine L. Drennana,e,f,2 aDepartment of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139; bDepartment of Chemistry, The Pennsylvania State University, University Park, PA 16802; cDepartment of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; dHoward Hughes Medical Institute, The Pennsylvania State University, University Park, PA 16802; eDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; and fHoward Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139 Edited by Vern L. Schramm, Albert Einstein College of Medicine, Bronx, NY, and approved July 5, 2016 (received for review March 8, 2016) Lipoyl synthase (LipA) catalyzes the insertion of two sulfur atoms substrate and at an intermediate stage in the reaction, just after at the unactivated C6 and C8 positions of a protein-bound octanoyl insertion of the C6 sulfur atom but before sulfur insertion at C8. -
Genetic Dissection of the Mitochondrial Lipoylation Pathway in Yeast Laura P
Pietikäinen et al. BMC Biology (2021) 19:14 https://doi.org/10.1186/s12915-021-00951-3 RESEARCH ARTICLE Open Access Genetic dissection of the mitochondrial lipoylation pathway in yeast Laura P. Pietikäinen1, M. Tanvir Rahman1, J. Kalervo Hiltunen1, Carol L. Dieckmann2 and Alexander J. Kastaniotis1* Abstract Background: Lipoylation of 2-ketoacid dehydrogenases is essential for mitochondrial function in eukaryotes. While the basic principles of the lipoylation processes have been worked out, we still lack a thorough understanding of the details of this important post-translational modification pathway. Here we used yeast as a model organism to characterize substrate usage by the highly conserved eukaryotic octanoyl/lipoyl transferases in vivo and queried how amenable the lipoylation system is to supplementation with exogenous substrate. Results: We show that the requirement for mitochondrial fatty acid synthesis to provide substrates for lipoylation of the 2-ketoacid dehydrogenases can be bypassed by supplying the cells with free lipoic acid (LA) or octanoic acid (C8) and a mitochondrially targeted fatty acyl/lipoyl activating enzyme. We also provide evidence that the S. cerevisiae lipoyl transferase Lip3, in addition to transferring LA from the glycine cleavage system H protein to the pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (KGD) E2 subunits, can transfer this cofactor from the PDH complex to the KGD complex. In support of yeast as a model system for human metabolism, we demonstrate that the human octanoyl/lipoyl transferases can substitute for their counterparts in yeast to support respiratory growth and protein lipoylation. Like the wild-type yeast enzyme, the human lipoyl transferase LIPT1 responds to LA supplementation in the presence of the activating enzyme LplA. -
The Opening of 1,2-Dithiolanes and 1,2-Diselenolanes
Article The Opening of 1,2-Dithiolanes and 1,2-Diselenolanes: Regioselectivity, Rearrangements, and Consequences for Poly(disulfide)s, Cellular Uptake and Pyruvate Dehydrogenase Complexes LAURENT, Quentin François Antoine, SAKAI, Naomi, MATILE, Stefan Abstract The thiol‐mediated opening of 3‐alkyl‐1,2‐dithiolanes and diselenolanes is described. The thiolate nucleophile is shown to react specifically with the secondary chalcogen atom, against steric demand, probably because the primary chalcogen atom provides a better leaving group. Once released, this primary chalcogen atom reacts with the obtained secondary dichalcogenide to produce the constitutional isomer. Thiolate migration to the primary dichalcogenide equilibrates within ca. 20 ms at room temperature at a 3 : 2 ratio in favor of the secondary dichalcogenide. The clarification of this focused question is important for the understanding of multifunctional poly(disulfide)s obtained by ring opening disulfide exchange polymerization of 3‐alkyl‐1,2‐dithiolanes, to rationalize the cellular uptake mediated by 3‐alkyl‐1,2‐diselenolanes as molecular walkers and, perhaps, also of the mode of action of pyruvate dehydrogenase complexes. The isolation of ring‐opened diselenolanes is particularly intriguing because dominant selenophilicity disfavors ring opening strongly. Reference LAURENT, Quentin François Antoine, SAKAI, Naomi, MATILE, Stefan. The Opening of 1,2-Dithiolanes and 1,2-Diselenolanes: Regioselectivity, Rearrangements, and Consequences for Poly(disulfide)s, Cellular Uptake and Pyruvate -
Generate Metabolic Map Poster
Authors: Pallavi Subhraveti Peter D Karp Ingrid Keseler An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Anamika Kothari Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000980815Cyc: Corynebacterium camporealensis DSM 44610 Cellular Overview Connections between pathways are omitted for legibility. Ron Caspi phosphate phosphate (S)-lactate phosphate ammonium predicted ABC RS04760 RS02955 RS06425 RS10630 transporter of phosphate phosphate (S)-lactate phosphate ammonium phosphate Amine and Tetrapyrrole Biosynthesis Amino Acid Degradation glutaminyl-tRNA gln Aminoacyl-tRNA Charging Polyamine a ring-opened 7- a DNA containing (1S,2R)-1- a [ThiI sulfur- biosynthesis via transamidation Biosynthesis an apo [peptidyl- all-trans- an L-asparaginyl- an L-cysteinyl- Polyprenyl Biosynthesis siroheme biosynthesis TCA cycle TCA cycle IV (2-oxoglutarate decarboxylase) L-valine degradation I L-asparagine methylguanine coenzyme A an apurinic/ ser C-(indol-3- carrier protein]- cys a [glutamine- L-isoleucine degradation I L-leucine degradation I L-threonine carrier protein] ATP retinyl palmitate [tRNA Asn ] [tRNA Cys ] dGDP spermidine degradation I in DNA apyrimidinic site yl)glycerol L-cysteine synthetase]- -
Open Rankin Thesis Final.Pdf
THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF BIOCHEMISTRY AND MOLECULAR BIOLOGY A MECHANISTIC INVESTIGATION OF LIPOYL SYNTHASE FROM ESCHERICHIA COLI AND STAPHYLOCOCCUS AUREUS ANANDA RANKIN SPRING 2020 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Microbiology with honors in Microbiology Reviewed and approved* by the following: Squire J. Booker Professor of Biochemistry and Molecular Biology and Chemistry Thesis Supervisor Paul Babitzke Professor of Biochemistry and Molecular Biology Honors Adviser * Electronic approvals are on file. i ABSTRACT The lipoyl cofactor plays an integral role in many metabolic processes. The second step of the de novo biosynthesis pathway of the lipoyl cofactor is catalyzed by the radical S-adenosyl-L- methionine (SAM) enzyme, lipoyl synthase (LipA). Radical SAM enzymes contain at least one [4Fe-4S] cluster, which is used to reductively cleave SAM into L-methionine and a 5′- deoxyadenosyl 5’-radical (5′-dA•). LipA contains two [4Fe-4S] clusters; one cluster is used for the SAM cleavage, while the other is sacrificed as a sulfur source for the production of lipoic acid. Two equivalents of 5′-dA• are used to abstract hydrogen atoms from the C6 and C8 positions of an octanoyl-lipoyl carrier protein (LCP) substrate, and hydrogen atoms are replaced with sulfide ions. In vitro studies show that LipA is restricted to only one turnover due to the requirement for the destruction of its auxiliary cluster, but it is currently unknown what enzymes are required to regenerate the catalytic form of this enzyme. Previous studies have implicated Nfu and SufT in the regeneration of the auxiliary cluster of LipA in Staphylococcus aureus.