Radical-Sam Enzymes with Two Iron-Sulfur Clusters: Cofactor

Total Page:16

File Type:pdf, Size:1020Kb

Radical-Sam Enzymes with Two Iron-Sulfur Clusters: Cofactor RADICAL-SAM ENZYMES WITH TWO IRON-SULFUR CLUSTERS: COFACTOR COMPOSITION AND SPECTROSCOPIC STUDIES OF ESCHERICHIA COLI AND BACILLUS SUBTILIS BIOTIN SYNTHASE, HUMAN MOCS1A, AND THERMOTOGA MARITIMA MIAB by HEATHER LOUISE HERNÁNDEZ (Under the Direction of Michael Kenneth Johnson) ABSTRACT A new class of Fe-S proteins, termed radical-SAM enzymes, catalyzes radical reactions in a variety of biosynthetic processes. These [4Fe-4S]2+,+ cluster-containing enzymes initiate radical enzymatic reactions via reductive cleavage of S-adenosyl-L-methionine (SAM) to yield methionine and an extremely reactive 5'-deoxyadenosyl radical. A growing number of radical-SAM enzymes have recently been discovered to contain a second Fe-S cluster of unknown function, although possible roles include acting as sacrificial S-donor or anchoring and possibly activating the substrate. The combination of analytical and spectroscopic studies, including EPR, Mössbauer, UV-visible absorption/circular dichroism/variable temperature magnetic circular dichroism, and resonance Raman, have been used to investigate the cofactor composition and properties of the two cluster containing radical-SAM enzymes Escherichia coli and Bacillus subtilis biotin synthase (BioB), human MOCS1A, and Thermotoga maritima MiaB. These enzymes are involved in crucial steps in the biosynthesis of biotin and molybdopterin, and in the thiomethylation of tRNA. E. coli and B. subtilis BioB are shown to house a radical-SAM [4Fe-4S] cluster and a [2Fe-2S] cluster in separate binding sites. The function and relevance of the [2Fe-2S] cluster, which has been suggested to be the S-donor to biotin, is addressed. In E. coli BioB, the most active form of the enzyme contains a 1:1 ratio of [2Fe-2S]/[4Fe-4S] clusters and the [2Fe-2S] cluster degrades during turnover. However, Mössbauer studies of E. coli BioB show that [2Fe-2S] cluster degradation is at least an order of magnitude faster than the initial rate of biotin formation and B. subtilis BioB exhibits comparable activity in samples depleted in the [2Fe-2S] cluster. Taken together, these results suggest that a [2Fe-2S] cluster degradation product may be the physiologically relevant S-donor. Both MOCS1A and T. maritima MiaB are characterized and shown to contain a radical-SAM [4Fe-4S] cluster as well as a second [4Fe-4S] cluster. In MOCS1A, the second cluster now appears to play a role in anchoring the 5’- GTP substrate. In T. maritima MiaB, the second cluster does not appear to interact with the tRNA substrate and may function as a S-donor in the thiomethylation reaction. INDEX WORDS: Radical-SAM superfamily, SAM, iron-sulfur cluster, radical generation, biotin synthase, MOCS1A, MiaB, electron paramagnetic resonance, resonance Raman, magnetic circular dichroism, Mössbauer RADICAL-SAM ENZYMES WITH TWO IRON-SULFUR CLUSTERS: COFACTOR COMPOSITION AND SPECTROSCOPIC STUDIES OF ESCHERICHIA COLI AND BACILLUS SUBTILIS BIOTIN SYNTHASE, HUMAN MOCS1A, AND THERMOTOGA MARITIMA MIAB by HEATHER LOUISE HERNÁNDEZ B.S., Michigan State University, 1998 A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY ATHENS, GEORGIA 2006 © 2006 Heather Louise Hernández All Rights Reserved RADICAL-SAM ENZYMES WITH TWO IRON-SULFUR CLUSTERS: COFACTOR COMPOSITION AND SPECTROSCOPIC STUDIES OF ESCHERICHIA COLI AND BACILLUS SUBTILIS BIOTIN SYNTHASE, HUMAN MOCS1A, AND THERMOTOGA MARITIMA MIAB by HEATHER LOUISE HERNÁNDEZ Major Professor: Michael K. Johnson Committee: Michael W. W. Adams Robert A. Scott Electronic Version Approved: Maureen Grasso Dean of the Graduate School The University of Georgia December 2006 iv DEDICATION To my husband, Noé, our daughter, Nora, and my parents, Leonard and Joanne, for their unwavering love and support. v ACKNOWLEDGEMENTS I would like to thank my advisor, Professor Michael K. Johnson, for his tutelage, direction and time. I greatly appreciated that your door was always open and you were always eager to discuss science or whatever else was on our minds. Thank you for also understanding your students have lives outside of lab (as long as we are producing enough data!). Thank you to my entire advisory committee, Professors Michael W. W. Adams, Marly K. Eidsness, Donald M. Kurtz, Jr. and Robert A. Scott. Our discussions were thought provoking and your time was appreciated. Thanks to all the lab mates that I have had the pleasure of working with during my time in the Johnson lab. Each of you has helped make life in the lab most enjoyable. Mostly, I would like to thank (in alphabetical order) Kala Chandramouli, Michele Mader Cosper, and Elizabeth Mengelt Walters for being such great friends and for providing so much encouragement and support throughout the years. You helped make the not so good times bearable and the good times great. Last, but certainly not least, thank you to my parents, Leonard and Joanne Sackett, and my husband, Noé. Thanks mom and dad for teaching me that the skies not even the limit and that I can accomplish anything that I put my mind to. Nobody could wish for better parents than the two of you. And to my husband, thank you for always being there and always being willing to “do what it takes.” I appreciate you so much. And of course to my beautiful, happy baby, Nora, thank you for being you. Your precious smiles make the rest of the world melt away. vi TABLE OF CONTENTS Page ACKNOWLEDGEMENTS.............................................................................................................v LIST OF TABLES......................................................................................................................... ix LIST OF SCHEMES........................................................................................................................x LIST OF FIGURES ....................................................................................................................... xi CHAPTER 1 Introduction....................................................................................................................1 Structure and Function of Iron-Sulfur Proteins.........................................................1 Radical-SAM Enzymes .............................................................................................6 References ...............................................................................................................21 2 Characterization of the Cofactor Composition of Escherichia coli Biotin Synthase ..54 Abstract ...................................................................................................................56 Introduction .............................................................................................................57 Materials and Methods ............................................................................................61 Results .....................................................................................................................67 Discussion ...............................................................................................................81 References ...............................................................................................................87 3 Role of the [2Fe-2S] Cluster in Recombinant Escherichia coli Biotin Synthase......115 Abstract .................................................................................................................117 Introduction ...........................................................................................................118 vii Materials and Methods ..........................................................................................121 Results ...................................................................................................................123 Discussion .............................................................................................................135 References .............................................................................................................140 4 Cofactor Composition, Spectroscopic Properties and Activity Studies of Bacillus subtilis Biotin Synthase.........................................................................................161 Abstract .................................................................................................................163 Introduction ...........................................................................................................164 Materials and Methods ..........................................................................................167 Results ...................................................................................................................172 Discussion .............................................................................................................183 References .............................................................................................................188 5 Characterization of MOCS1A, an Oxygen-sensitive Iron-Sulfur Protein Involved in Human Molybdenum Cofactor Biosynthesis ........................................................216 Abstract .................................................................................................................218 Introduction ...........................................................................................................219 Experimental Procedures.......................................................................................221
Recommended publications
  • Noncanonical Coproporphyrin-Dependent Bacterial Heme Biosynthesis Pathway That Does Not Use Protoporphyrin
    Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin Harry A. Daileya,b,c,1, Svetlana Gerdesd, Tamara A. Daileya,b,c, Joseph S. Burcha, and John D. Phillipse aBiomedical and Health Sciences Institute and Departments of bMicrobiology and cBiochemistry and Molecular Biology, University of Georgia, Athens, GA 30602; dMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439; and eDivision of Hematology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132 Edited by J. Clark Lagarias, University of California, Davis, CA, and approved January 12, 2015 (received for review August 25, 2014) It has been generally accepted that biosynthesis of protoheme of a “primitive” pathway in Desulfovibrio vulgaris (13). This path- (heme) uses a common set of core metabolic intermediates that way, named the “alternative heme biosynthesis” path (or ahb), has includes protoporphyrin. Herein, we show that the Actinobacteria now been characterized by Warren and coworkers (15) in sulfate- and Firmicutes (high-GC and low-GC Gram-positive bacteria) are reducing bacteria. In the ahb pathway, siroheme, synthesized unable to synthesize protoporphyrin. Instead, they oxidize copro- from uroporphyrinogen III, can be further metabolized by suc- porphyrinogen to coproporphyrin, insert ferrous iron to make Fe- cessive demethylation and decarboxylation to yield protoheme (14, coproporphyrin (coproheme), and then decarboxylate coproheme 15) (Fig. 1 and Fig. S1). A similar pathway exists for protoheme- to generate protoheme. This pathway is specified by three genes containing archaea (15, 16). named hemY, hemH, and hemQ. The analysis of 982 representa- Current gene annotations suggest that all enzymes for pro- tive prokaryotic genomes is consistent with this pathway being karyotic heme synthetic pathways are now identified.
    [Show full text]
  • (Helianthus Annuus L.) Plastidial Lipoyl Synthases Genes Expression In
    Impact of sunflower (Helianthus annuus L.) plastidial lipoyl synthases genes expression in glycerolipids composition of transgenic Arabidopsis plants Raquel Martins-Noguerol, Antonio Javier Moreno-Pérez, Acket Sebastien, Manuel Adrián Troncoso-Ponce, Rafael Garcés, Brigitte Thomasset, Joaquín Salas, Enrique Martínez-Force To cite this version: Raquel Martins-Noguerol, Antonio Javier Moreno-Pérez, Acket Sebastien, Manuel Adrián Troncoso- Ponce, Rafael Garcés, et al.. Impact of sunflower (Helianthus annuus L.) plastidial lipoyl synthases genes expression in glycerolipids composition of transgenic Arabidopsis plants. Scientific Reports, Nature Publishing Group, 2020, 10, pp.3749. 10.1038/s41598-020-60686-z. hal-02881038 HAL Id: hal-02881038 https://hal.archives-ouvertes.fr/hal-02881038 Submitted on 25 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. www.nature.com/scientificreports OPEN Impact of sunfower (Helianthus annuus L.) plastidial lipoyl synthases genes expression in glycerolipids composition of transgenic Arabidopsis plants Raquel Martins-Noguerol1,2, Antonio Javier Moreno-Pérez 1,2, Acket Sebastien2, Manuel Adrián Troncoso-Ponce2, Rafael Garcés1, Brigitte Thomasset2, Joaquín J. Salas1 & Enrique Martínez-Force 1* Lipoyl synthases are key enzymes in lipoic acid biosynthesis, a co-factor of several enzyme complexes involved in central metabolism.
    [Show full text]
  • Structure and Function of Benzylsuccinate Synthase and Related Fumarate-Adding Glycyl Radical Enzymes
    Review Article J Mol Microbiol Biotechnol 2016;26:29–44 Published online: March 10, 2016 DOI: 10.1159/000441656 Structure and Function of Benzylsuccinate Synthase and Related Fumarate-Adding Glycyl Radical Enzymes a d c a Johann Heider Maciej Szaleniec Berta M. Martins Deniz Seyhan a, b e Wolfgang Buckel Bernard T. Golding a Laboratory of Microbial Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps University Marburg, b c and Max-Planck-Institut für terrestrische Mikrobiologie, Marburg , and Institut für Biologie, Strukturbiologie/ d Biochemie, Humboldt-Universität zu Berlin, Berlin , Germany; Jerzy Haber Institute of Catalysis and Surface e Chemistry, Polish Academy of Sciences, Kraków , Poland; School of Chemistry, Newcastle University, Newcastle upon Tyne , UK Key Words Anaerobic Toluene Degradation Benzylsuccinate synthase · Fumarate-adding enzyme · Glycyl radical · Toluene · Alkane · Anaerobic toluene Hydrocarbons were long believed to be resistant to degradation microbial degradation in the absence of oxygen. It was therefore surprising to find that many bacteria degrade these compounds anaerobically [Aeckersberg et al., 1991; Abstract Dolfing et al., 1990; Rabus et al., 1993; Vogel and Grbic- The pathway of anaerobic toluene degradation is initiated Galic, 1986; Zeyer et al., 1986]. After the initial reports by a remarkable radical-type enantiospecific addition of the dating from 1986, the degradation pathways employed chemically inert methyl group to the double bond of a fuma- by these bacteria remained enigmatic for a decade. How- rate cosubstrate to yield (R) -benzylsuccinate as the first in- ever, over the last 20 years, various oxygen-independent termediate, as catalyzed by the glycyl radical enzyme ben- reactions have been characterized for the activation of zylsuccinate synthase.
    [Show full text]
  • Crystallographic Snapshots of Sulfur Insertion by Lipoyl Synthase
    Crystallographic snapshots of sulfur insertion by lipoyl synthase Martin I. McLaughlina,b,1, Nicholas D. Lanzc, Peter J. Goldmana, Kyung-Hoon Leeb, Squire J. Bookerb,c,d, and Catherine L. Drennana,e,f,2 aDepartment of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139; bDepartment of Chemistry, The Pennsylvania State University, University Park, PA 16802; cDepartment of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; dHoward Hughes Medical Institute, The Pennsylvania State University, University Park, PA 16802; eDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; and fHoward Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139 Edited by Vern L. Schramm, Albert Einstein College of Medicine, Bronx, NY, and approved July 5, 2016 (received for review March 8, 2016) Lipoyl synthase (LipA) catalyzes the insertion of two sulfur atoms substrate and at an intermediate stage in the reaction, just after at the unactivated C6 and C8 positions of a protein-bound octanoyl insertion of the C6 sulfur atom but before sulfur insertion at C8. chain to produce the lipoyl cofactor. To activate its substrate for sulfur insertion, LipA uses a [4Fe-4S] cluster and S-adenosylmethio- Results nine (AdoMet) radical chemistry; the remainder of the reaction The crystal structure of LipA from M. tuberculosis was de- mechanism, especially the source of the sulfur, has been less clear. termined to 1.64-Å resolution by iron multiwavelength anoma- One controversial proposal involves the removal of sulfur from a lous dispersion phasing (Table S1). The overall fold of LipA consists second (auxiliary) [4Fe-4S] cluster on the enzyme, resulting in de- of a (β/α)6 partial barrel common to most AdoMet radical enzymes struction of the cluster during each round of catalysis.
    [Show full text]
  • Abstract Gas-Phase Chemistry of Tryptophan
    ABSTRACT GAS-PHASE CHEMISTRY OF TRYPTOPHAN-BASED RADICALS Andrii Piatkivskyi, Ph.D. Department of Chemistry and Biochemistry Northern Illinois University, 2014 Victor Ryzhov, Director This work is devoted to the fundamental study of gas-phase tryptophan-based radical cations. It covers: mechanisms of the radical ion formation in the gas-phase; the description and contrast of the two types of tryptophan side chain radicals (π and N-indolyl) based on their reactivities, infrared spectra, structural energetics and fragmentation patterns; investigation of the N-indolyl tryptophan radical cation fragmentation pathways; formation of the two types of tryptophan radicals (π and N-indolyl) within short peptides; their characterization and comparison based on the fragmentation patterns and reactivity; and gas-phase study of intramolecular radical migration from tryptophan to cysteine and from tryptophan to tyrosine side chains within short peptides. Two different approaches were followed to regiospecifically form desired radicals on the tryptophan side chain. The tryptophan π-radical cation was formed via electron transfer during dissociation of ternary metal complex ([CuII(terpy)(Trp)] 2+), while N-indolyl radical was formed by the homolytic cleavage of the NO group from the N-nitrosylated tryptophan during gas-phase fragmentation. Both radicals were exposed to the low-energy collision-induced dissociation in order to elucidate and contrast their fragmentation. To estimate the fragmentation pathway of the N-indolyl tryptophan radical cation, additional experiments (including H/D exchange, dissociation of tryptophan derivatives and DFT calculations) were carried out. The radical reactivity has been tested via gas-phase ion-molecule reactions with benzeneselenol, 1-propanethiol and di-tert-butyl nitroxide.
    [Show full text]
  • Letters to Nature
    letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997).
    [Show full text]
  • Mitochondrial Serine Acetyltransferase Functions As a Pacemaker of Cysteine Synthesis in Plant Cells1[C][W][OA]
    Mitochondrial Serine Acetyltransferase Functions as a Pacemaker of Cysteine Synthesis in Plant Cells1[C][W][OA] Florian H. Haas, Corinna Heeg, Rafael Queiroz, Andrea Bauer, Markus Wirtz, and Ru¨ diger Hell* Heidelberg Institute for Plant Sciences, Heidelberg University, 69120 Heidelberg, Germany (F.H.H., C.H., M.W.,R.H.);andGermanCancerResearchCenter,69120Heidelberg,Germany(R.Q.,A.B.) Cysteine (Cys) synthesis in plants is carried out by two sequential reactions catalyzed by the rate-limiting enzyme serine acetyltransferase (SAT) and excess amounts of O-acetylserine(thiol)lyase. Why these reactions occur in plastids, mitochondria, and cytosol of plants remained unclear. Expression of artificial microRNA (amiRNA) against Sat3 encoding mitochondrial SAT3 in transgenic Arabidopsis (Arabidopsis thaliana) plants demonstrates that mitochondria are the most important compartment for the synthesis of O-acetylserine (OAS), the precursor of Cys. Reduction of RNA levels, protein contents, SAT enzymatic activity, and phenotype strongly correlate in independent amiSAT3 lines and cause significantly retarded growth. The expression of the other four Sat genes in the Arabidopsis genome are not affected by amiRNA-SAT3 according to quantitative real-time polymerase chain reaction and microarray analyses. Application of radiolabeled serine to leaf pieces revealed severely reduced incorporation rates into Cys and even more so into glutathione. Accordingly, steady-state levels of OAS are 4-fold reduced. Decrease of sulfate reduction-related genes is accompanied by an accumulation of sulfate in amiSAT3 lines. These results unequivocally show that mitochondria provide the bulk of OAS in the plant cell and are the likely site of flux regulation. Together with recent data, the cytosol appears to be a major site of Cys synthesis, while plastids contribute reduced sulfur as sulfide.
    [Show full text]
  • Product Sheet Info
    Master Clone List for NR-19274 Mycobacterium tuberculosis Gateway® Clone Set, Recombinant in Escherichia coli, Plates 1-42 Catalog No. NR-19274 Table 1: Mycobacterium tuberculosis, Gateway® Clones, Plate 1 (ZMTDA), NR-19637 Clone Well ORF Locus ID Description (Gene name) Accession Average Depth Position Length Number of Coverage 71201 A01 124 Rv1572c hypothetical protein Rv1572c NP_216088.2 2 71005 A02 151 Rv3461c 50S ribosomal protein L36 (rpmJ) NP_217978.1 2 71053 A03 181 Rv3924c 50S ribosomal protein L34 (rpmH) 2 71013 A04 184 Rv2452c hypothetical protein Rv2452c NP_216968.1 2 71167 A05 193 Rv0657c hypothetical protein Rv0657c NP_215171.1 2.69948187 71177 A06 211 Rv0666 hypothetical protein Rv0666 NP_215180.1 2 71225 A07 214 Rv1693 hypothetical protein Rv1693 NP_216209.1 2 71073 A08 217 Rv2099c PE family protein (PE21) 2 70874 A09 220 Rv0810c hypothetical protein Rv0810c NP_215325.1 2 70913 A10 223 Rv2371 PE-PGRS family protein (PE_PGRS40) YP_177875.1 2 71141 A11 229 Rv2806 hypothetical protein Rv2806 NP_217322.1 2 71121 A12 235 Rv1113 hypothetical protein Rv1113 NP_215629.1 1.99574468 71181 B01 241 Rv3648c cold shock protein A (cspA) NP_218165.1 2 70937 B02 244 Rv0763c ferredoxin NP_215277.1 2 70966 B03 247 Rv1054 integrase NP_215570.2 1.27530364 71145 B04 253 Rv2377c putative protein MbtH (mbtH) NP_216893.1 2 70861 B05 253 Rv2830c hypothetical protein Rv2830c NP_217346.1 2 70853 B06 253 Rv3221c anti-sigma factor YP_177945.1 2 71210 B07 256 Rv1893 hypothetical protein Rv1893 NP_216409.1 2 71062 B08 259 Rv0378 glycine rich protein
    [Show full text]
  • The Crystal Structure of Biotin Synthase, an S-Adenosylmethionine-Dependent Radical Enzyme F
    2-74 LIFE SCIENCES SCIENCE HIGHLIGHTS 2-75 The Crystal Structure of Biotin Synthase, an S-Adenosylmethionine-Dependent Radical Enzyme F. Berkovitch1, Y. Nicolet1, J.T. Wan2, J.T. Jarrett2, and C.L. Drennan1 1Department of Chemistry, Massachusetts Institute of Technology; 2Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania BEAMLINE X25 The crystal structure of biotin synthase addresses how “AdoMet radical” enzymes, also called “Radical SAM” enzymes, use an Fe S cluster and S-adenosyl-L-methionine to 4 4 Funding generate organic radicals. Biotin synthase catalyzes the radical-mediated insertion of National Institutes of Health; Searle Scholars Program; sulfur into dethiobiotin (DTB) to form biotin (vitamin B8). The structure places the substrates, i.e. DTB and AdoMet, between the Fe S cluster (essential for radical gen- Cecil and Ida Green Career 4 4 Development Fund; Lester eration) and the Fe2S2 cluster (postulated to be the source of sulfur), with both clusters Wolfe Predoctoral Fellowship; in unprecedented coordination environments. Cellular, Biochemical, and Molecular Sciences training Biotin is an essential vitamin that plays a ubiquitous role in human growth and grant; U.S. Department of Energy; National Institute of metabolism. Biotin deficiency results in skin lesions, abnormal fat distribution, General Medical Sciences neurological symptoms, and immunodeficiency. A low biotin level has also been correlated to an increased incidence of type II diabetes mellitus. Biotin is a valuable Publication commercial commodity, used as an additive in food, health, and cosmetic prod- F. Berkovitch, Y. Nicolet, J.T. Wan, J.T. Jarrett, and ucts, and as a research tool in the biochemical sciences.
    [Show full text]
  • Benzylsuccinate Synthase of Azoarcus Sp. Strain T: Cloning, Sequencing, Transcriptional Organization, and Its Role in Anaerobic Toluene and M-Xylene Mineralization
    JOURNAL OF BACTERIOLOGY, Dec. 2001, p. 6763–6770 Vol. 183, No. 23 0021-9193/01/$04.00ϩ0 DOI: 10.1128/JB.183.23.6763–6770.2001 Copyright © 2001, American Society for Microbiology. All Rights Reserved. Benzylsuccinate Synthase of Azoarcus sp. Strain T: Cloning, Sequencing, Transcriptional Organization, and Its Role in Anaerobic Toluene and m-Xylene Mineralization 1 1 1,2 GYPSY R. ACHONG, ANA M. RODRIGUEZ, AND ALFRED M. SPORMANN * Environmental Engineering and Science, Department of Civil and Environmental Engineering,1 and Department of Biological Sciences,2 Stanford University, Stanford, California 94305-4020 Received 18 May 2001/Accepted 23 August 2001 Biochemical studies in Azoarcus sp. strain T have demonstrated that anaerobic oxidation of both toluene and m-xylene is initiated by addition of the aromatic hydrocarbon to fumarate, forming benzylsuccinate and 3-methyl benzylsuccinate, respectively. Partially purified benzylsuccinate synthase was previously shown to catalyze both of these addition reactions. In this study, we identified and sequenced the genes encoding benzylsuccinate synthase from Azoarcus sp. strain T and examined the role of this enzyme in both anaerobic toluene and m-xylene mineralization. Based on reverse transcription-PCR experiments and transcriptional start site mapping, we found that the structural genes encoding benzylsuccinate synthase, bssCAB, together with two additional genes, bssD and bssE, were organized in an operon in the order bssDCABE. bssD is believed to encode an activating enzyme, similar in function to pyruvate formate-lyase activase. bssE shows homology Downloaded from to tutH from Thauera aromatica strain T1, whose function is currently unknown. A second operon that is upstream of bssDCABE and divergently transcribed contains two genes, tdiS and tdiR.
    [Show full text]
  • Dependent Enzyme Moaa and Its Implications for Molybdenum Cofactor Deficiency in Humans
    Crystal structure of the S-adenosylmethionine- dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans Petra Ha¨ nzelmann and Hermann Schindelin* Department of Biochemistry and Center for Structural Biology, State University of New York, Stony Brook, NY 11794-5115 Edited by Douglas C. Rees, California Institute of Technology, Pasadena, CA, and approved July 21, 2004 (received for review June 28, 2004) The MoaA and MoaC proteins catalyze the first step during molyb- neously occupied by N and O atoms from the methionine moiety denum cofactor biosynthesis, the conversion of a guanosine de- of the cofactor. rivative to precursor Z. MoaA belongs to the S-adenosylmethionine MoaA shares 14% and 11% identity in the N-terminal region (SAM)-dependent radical enzyme superfamily, members of which with BioB and HemN, respectively, but is completely unrelated catalyze the formation of protein and͞or substrate radicals by with these proteins in the C-terminal region, which is in MoaA reductive cleavage of SAM by a [4Fe–4S] cluster. A defined in vitro characterized by another Cys-rich signature motif. Recently, it system is described, which generates precursor Z and led to the could be shown that human MOCS1A in fact assembles two -identification of 5؅-GTP as the substrate. The structures of MoaA in oxygen-sensitive [4Fe–4S] clusters, one typical for SAM the apo-state (2.8 Å) and in complex with SAM (2.2 Å) provide dependent radical enzymes and an additional one unique to valuable insights into its mechanism and help to define the defects MoaA proteins (4). The structure of MoaC has been determined caused by mutations in the human ortholog of MoaA that lead to earlier, and the protein was found to be present as a hexamer molybdenum cofactor deficiency, a usually fatal disease accompa- composed of three dimers with a putative active site located at nied by severe neurological symptoms.
    [Show full text]
  • Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-Translationally Modified Peptides (Ripps) Alhosna Benjdia, Clémence Balty, Olivier Berteau
    Radical SAM enzymes in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs) Alhosna Benjdia, Clémence Balty, Olivier Berteau To cite this version: Alhosna Benjdia, Clémence Balty, Olivier Berteau. Radical SAM enzymes in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Frontiers in Chemistry, Frontiers Media, 2017, 5, 10.3389/fchem.2017.00087. hal-02627786 HAL Id: hal-02627786 https://hal.inrae.fr/hal-02627786 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License REVIEW published: 08 November 2017 doi: 10.3389/fchem.2017.00087 Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs) Alhosna Benjdia*, Clémence Balty and Olivier Berteau* Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large and diverse family of natural products. They possess interesting biological properties such as antibiotic or anticancer activities, making them attractive for therapeutic applications. In contrast to polyketides and non-ribosomal peptides, RiPPs derive from ribosomal peptides and are post-translationally modified by diverse enzyme families.
    [Show full text]