Phylogenetic Relationships and an Assessment of Traditionally Used

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Relationships and an Assessment of Traditionally Used Systematics and Biodiversity ISSN: 1477-2000 (Print) 1478-0933 (Online) Journal homepage: https://www.tandfonline.com/loi/tsab20 Phylogenetic relationships and an assessment of traditionally used taxonomic characters in the Sporormiaceae (Pleosporales, Dothideomycetes, Ascomycota), utilising multi‐gene phylogenies Asa Kruys & Mats Wedin To cite this article: Asa Kruys & Mats Wedin (2009) Phylogenetic relationships and an assessment of traditionally used taxonomic characters in the Sporormiaceae (Pleosporales, Dothideomycetes, Ascomycota), utilising multi‐gene phylogenies, Systematics and Biodiversity, 7:4, 465-478, DOI: 10.1017/S1477200009990119 To link to this article: https://doi.org/10.1017/S1477200009990119 Published online: 11 Mar 2010. Submit your article to this journal Article views: 192 View related articles Citing articles: 29 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tsab20 Systematics and Biodiversity 7 (4): 465-478 Issued 1 December 2009 doi:io.ioi7/Si4772oooo999OU9 © The Natural History Museum Phylogenetic relationships and an assessment of traditionally used taxonomic characters in the Sporormiaceae (Pleosporales, Dothideomycetes, Ascomycota), utilising multi-gene phylogenies Asa Kruys1,* & Mats Wedin2 1Department of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden 2Department of Cryptogamic Botany, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden submitted February 2009 accepted June 2009 Contents Abstract 465 Introduction 466 Materials and methods 467 Results 469 Discussion 469 Conclusions and suggestions for the future 475 Taxonomy 476 Preussia alloiomera comb. nov. 476 Preussia antarctica comb. nov. 476 Preussia bipartis comb. nov 476 Preussia borealis comb. nov 476 Preussia dubia comb. nov. 476 Preussia lignicola comb nov. 476 Preussia longisporopsis comb. nov. 476 Preussia minipascua comb. nov. 476 Preussia octomera comb nov. 476 Preussia splendens comb nov. 476 Preussia tenerifae comb nov. 476 Preussia tetramera comb. nov. 476 Westerdykella angulata comb nov. 476 Westerdykella aurantiaca comb nov. 476 Acknowledgements 476 References 476 Abstract The family Sporormiaceae (Pleosporales, Dothideomycetes, Ascomycota) occur worldwide and a majority of the species are coprophilous. The taxonomy and classification of the family are based on a small number of morphological and ecological characters. Several taxa are easily confused by their shared morphological features, and the relationships between genera are poorly known and in need of critical study. The aims of this study were to resolve the phylogenetic relationships within the Sporormiaceae, test the current generic classification, and study the utility of traditional characters for the taxonomy in the group. To resolve these questions, we analysed combined data sets of ITS-nLSU rDNA, mtSSU rDNA and ß-tubulin sequences with parsimony and Bayesian methods. * Corresponding author. Email: [email protected] 465 Published online 11 Mar 2010 466 Asa Kruys and Mats Wedin The results showed that many characters, which previously have been used in the taxonomy and classification of the Sporormiaceae, such as the substrate choice, presence or absence of an ostiole, and presence or absence of germ slits, were all homoplastic and not useful for circumscribing monophyletic groups. A number of characters may be useful for circumscribing smaller clades if used in combination with other features, such as the shape of the ascus with the shape of the ascospores. Our phylogenetic analyses show that Preussia and Sporormiella are non-monophyletic, and a constrained analysis forcing these genera into monophyly resulted in significantly worse trees. Spororminula is nested in Preussia s. lat., and Eremodothis and Pycnidiophora are nested within Westerdykella. Finally, we suggest a new generic classification for the family Sporormiaceae, including Sporormia, Preussia (including Sporomiella and Spororminula) and Westerdykella (including Eremodothis and Pycnidiophora). We also propose 14 new combinations: Preussia alloiomera (S.I. Ahmed & Cain) Kruys, Preussia antarctica (Speg.) Kruys, Preussia bipartis (Cain) Kruys, Preussia borealis (I.Egeland) Kruys, Preussia dubia (S.I. Ahmed & Cain) Kruys, Preussia lignicola (W. Phillips & Plowr.) Kruys, Preussia longisporopsis (S.I. Ahmed & Cain) Kruys, Preussia minipascua (S.I. Ahmed & Cain) Kruys, Preussia octomera (Auersw.) Kruys, Preussia splendens (Cain) Kruys, Preussia tenerifae (Arx & Aa) Kruys, Preussia tetramera (S.I. Ahmed & Cain) Kruys, Westerdykella angulata (A.C. Das) Kruys and Westerdykella aurantiaca (J.N. Rai & J.P. Tewari) Kruys. Keywords ß-tubulin, bitunicate, coprophilous, fungi, loculoascomycete, phylogeny Introduction odothis, has been included in the family since then (Kruys et al., 2006; Lumbsch & Huhndorf, 2007). Also, the hypho- The classification of many groups of Fungi has traditionally mycete Amorosia should be transferred to the Sporormiaceae been based on a few easily observed characteristics, which of- according to Mantle et al. (2006), but its closest relatives are ten reflect aspects of their ecology and thus may be subject to unclear. parallel evolution or extreme specialisation in highly derived The type genus, Sporormia, is characterised by globose groups. There are numerous examples of non-monophyletic pseudothecia, which open with an ostiole. The 16-celled fungal groupings that have remained in classifications un- spores are typically joined together in a bundle with one com- til very recently; like the well-known basidiomycetes in the mon gelatinous sheath, when released from the ascus (Ahmed Aphyllophorales that have been shown to comprise highly un- & Cain, 1972; Dissing, 1992). Germ slits in the spore walls, related groups which all have the crust-like fruiting bodies otherwise common and characteristic for the family, are absent in common (Larsson et al., 2004; Binder et al., 2005), and in the type species Sporormiafimetaria (Ahmed & Cain, 1972). the mazaedia-producing Caliciales among the ascomycetes, Sporormia, Sporormiella and Preussia are considered closely which independently have acquired prototunicate, evanescent related and are easily confused by their shared morphological asci and passive spore dispersal (Tibell, 1984; Wedin & Tibell, features (Munk, 1957; von Arx & Muller, 1975; Eriksson, 1997; Wedin et al., 1998). With the progress of molecular 1981). Sporormiella, the most species-rich genus in the fam- phylogeny, the monophyly of these groups and the potentially ily, includes species with perithecioid ascomata and 4-celled synapomorphic traits defining them can be tested with inde- spores with germ slits (Ahmed & Cain, 1972). Preussia differs pendent means and classifications updated accordingly (e.g. morphologically from 4-celled Sporormiella species only by Hibbet et al., 2007; Lumbsch & Huhndorf, 2007). Still, po- the ascomata being cleistothecioid (Cain, 1961; Barr, 2000). tentially non-monophyletic groups defined on singular ecolo- The taxonomic importance of the ostiole has, however, been gical or morphological traits prevail, particularly among taxa questioned, since its presence in Preussia and Sporormiella on lower systematic levels. One such example is the generic seem to depend on growth conditions (von Arx, 1973; Guarro delimitation within the Sporormiaceae (Pleosporales, Dothi- et al., 1997a). According to experiments in vitro, different diomycetes, Ascomycota). morphs can even be found within the same culture (Guarro The Sporormiaceae occur worldwide and live as sap- etal., 1997a). robes on various substrates including dung, plant debris, soil Substrate choice has been another important diagnostic and wood. Recently, endophytic representatives have also been character for separating Preussia and Sporormiella util- reported (Arenal et al., 2007). Most taxa, however, are copro- ised by von Arx and van der Aa (1987). Preussia, in philous and their ascospores are useful tools in paleoecological their sense, includes species on plant debris, wood or soil, studies, when reconstructing animal abundances in the past while Sporormiella is restricted to coprophilous species (Burney et al., 2003; van Geel et al., 2003, 2007). The charac- with perithecioid ascomata. Doveri (2004) also considered teristic ascospores are thick-walled and dark brown, strongly the preference for a certain substrate an important fea- constricted at septa and often fragmenting into part-spores at ture, together with the shape of the ascus where Sporormi- maturity (Barr, 2000). Germ slits in the spore walls are also ella should have cylindric or cylindric-claviform asci and common features (Fig. 1). The spores are developed in fis- Preussia more or less clavate asci. He also believed that situnicate asci and pseudothecioid ascomata (Fig. 1). In the Preussia in general have more superficial ascomata. Typ- latest treatment (Barr, 2000), the Sporormiaceae comprises ical species of Sporormiella sensu von Arx & van der Aa eight genera, and c. 100 species. One more genus, Erem- occur on substrates other than dung, while for instance Phylogeny of Sporormiaceae 467 à. Figure 1 Ascomata (a) with ostiole (Sporormiella sp.) and (b) without ostiole (Preussia funiculata). (c) Spore with germ slits (Sporormiella sp.). Asci and spores of taxa representing major monophyletic groups in Sporormiaceae. (d) Westerdykella sp. (the Westerdykella
Recommended publications
  • Development and Evaluation of Rrna Targeted in Situ Probes and Phylogenetic Relationships of Freshwater Fungi
    Development and evaluation of rRNA targeted in situ probes and phylogenetic relationships of freshwater fungi vorgelegt von Diplom-Biologin Christiane Baschien aus Berlin Von der Fakultät III - Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. sc. techn. Lutz-Günter Fleischer Berichter: Prof. Dr. rer. nat. Ulrich Szewzyk Berichter: Prof. Dr. rer. nat. Felix Bärlocher Berichter: Dr. habil. Werner Manz Tag der wissenschaftlichen Aussprache: 19.05.2003 Berlin 2003 D83 Table of contents INTRODUCTION ..................................................................................................................................... 1 MATERIAL AND METHODS .................................................................................................................. 8 1. Used organisms ............................................................................................................................. 8 2. Media, culture conditions, maintenance of cultures and harvest procedure.................................. 9 2.1. Culture media........................................................................................................................... 9 2.2. Culture conditions .................................................................................................................. 10 2.3. Maintenance of cultures.........................................................................................................10
    [Show full text]
  • Phaeoseptaceae, Pleosporales) from China
    Mycosphere 10(1): 757–775 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/17 Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China Liu NG1,2,3,4,5, Hyde KD4,5, Bhat DJ6, Jumpathong J3 and Liu JK1*,2 1 School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China 2 Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, P.R. China 3 Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand 4 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 5 Mushroom Research Foundation, Chiang Rai 57100, Thailand 6 No. 128/1-J, Azad Housing Society, Curca, P.O., Goa Velha 403108, India Liu NG, Hyde KD, Bhat DJ, Jumpathong J, Liu JK 2019 – Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China. Mycosphere 10(1), 757–775, Doi 10.5943/mycosphere/10/1/17 Abstract A new hyphomycete genus, Pleopunctum, is introduced to accommodate two new species, P. ellipsoideum sp. nov. (type species) and P. pseudoellipsoideum sp. nov., collected from decaying wood in Guizhou Province, China. The genus is characterized by macronematous, mononematous conidiophores, monoblastic conidiogenous cells and muriform, oval to ellipsoidal conidia often with a hyaline, elliptical to globose basal cell. Phylogenetic analyses of combined LSU, SSU, ITS and TEF1α sequence data of 55 taxa were carried out to infer their phylogenetic relationships. The new taxa formed a well-supported subclade in the family Phaeoseptaceae and basal to Lignosphaeria and Thyridaria macrostomoides.
    [Show full text]
  • Fungal Planet Description Sheets: 716–784 By: P.W
    Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H.
    [Show full text]
  • Biology and Recent Developments in the Systematics of Phoma, a Complex Genus of Major Quarantine Significance Reviews, Critiques
    Fungal Diversity Reviews, Critiques and New Technologies Reviews, Critiques and New Technologies Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance Aveskamp, M.M.1*, De Gruyter, J.1, 2 and Crous, P.W.1 1CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands 2Plant Protection Service (PD), P.O. Box 9102, 6700 HC Wageningen, The Netherlands Aveskamp, M.M., De Gruyter, J. and Crous, P.W. (2008). Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Diversity 31: 1-18. Species of the coelomycetous genus Phoma are ubiquitously present in the environment, and occupy numerous ecological niches. More than 220 species are currently recognised, but the actual number of taxa within this genus is probably much higher, as only a fraction of the thousands of species described in literature have been verified in vitro. For as long as the genus exists, identification has posed problems to taxonomists due to the asexual nature of most species, the high morphological variability in vivo, and the vague generic circumscription according to the Saccardoan system. In recent years the genus was revised in a series of papers by Gerhard Boerema and co-workers, using culturing techniques and morphological data. This resulted in an extensive handbook, the “Phoma Identification Manual” which was published in 2004. The present review discusses the taxonomic revision of Phoma and its teleomorphs, with a special focus on its molecular biology and papers published in the post-Boerema era. Key words: coelomycetes, Phoma, systematics, taxonomy.
    [Show full text]
  • Molecular Systematics of the Marine Dothideomycetes
    available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora.
    [Show full text]
  • An Evolving Phylogenetically Based Taxonomy of Lichens and Allied Fungi
    Opuscula Philolichenum, 11: 4-10. 2012. *pdf available online 3January2012 via (http://sweetgum.nybg.org/philolichenum/) An evolving phylogenetically based taxonomy of lichens and allied fungi 1 BRENDAN P. HODKINSON ABSTRACT. – A taxonomic scheme for lichens and allied fungi that synthesizes scientific knowledge from a variety of sources is presented. The system put forth here is intended both (1) to provide a skeletal outline of the lichens and allied fungi that can be used as a provisional filing and databasing scheme by lichen herbarium/data managers and (2) to announce the online presence of an official taxonomy that will define the scope of the newly formed International Committee for the Nomenclature of Lichens and Allied Fungi (ICNLAF). The online version of the taxonomy presented here will continue to evolve along with our understanding of the organisms. Additionally, the subfamily Fissurinoideae Rivas Plata, Lücking and Lumbsch is elevated to the rank of family as Fissurinaceae. KEYWORDS. – higher-level taxonomy, lichen-forming fungi, lichenized fungi, phylogeny INTRODUCTION Traditionally, lichen herbaria have been arranged alphabetically, a scheme that stands in stark contrast to the phylogenetic scheme used by nearly all vascular plant herbaria. The justification typically given for this practice is that lichen taxonomy is too unstable to establish a reasonable system of classification. However, recent leaps forward in our understanding of the higher-level classification of fungi, driven primarily by the NSF-funded Assembling the Fungal Tree of Life (AFToL) project (Lutzoni et al. 2004), have caused the taxonomy of lichen-forming and allied fungi to increase significantly in stability. This is especially true within the class Lecanoromycetes, the main group of lichen-forming fungi (Miadlikowska et al.
    [Show full text]
  • An Inventory of Lichens in Uttar Pradesh Through Bibliographic Compilation
    National Conference on Forest Biodiversity : Earth’s Living Treasure 22nd May , 2011 An Inventory of Lichens in Uttar Pradesh through Bibliographic Compilation Sanjeeva Nayaka* and Dalip K. Upreti Lichenology Laboratory, National Botanical Research Institute Rana Pratap Marg, Lucknow - 226 001 *Email : [email protected] Introduction monographic studies (Awasthi 1980, Akhtar & Awasthi 1980, Awasthi & Srivastava 1989, Joshi & Lichens are basically fungi that construct self sustainable composite thalli symbiotically in Upreti 2007, 2008, Pant & Upreti 1993, Singh & association with alga and or cyanobacteria. They are Upreti 1984, Upreti 1988, 1997, Upreti & Büdel included in the fungal Kingdom, but have members 1990). In the mean time, lichens growing over of other two kingdoms; Bacteria and Chromista monuments attracted the attention of lichenologists (Cavalier-Smith 2004). Lichens are ubiquitous, and they are studied from some major monuments sensitive indicators of air pollution, microclimate of of Uttar Pradesh (Ayub 2005, Chatterjee et al. 1996, region, anthropogenic disturbances, forest health and Saxena et al. 2004, Singh & Upreti 1991). More continuity, and constitute an important component recently, air pollution studies with the help of of terrestrial biodiversity. It is estimated that in the lichens are being conducted in Faizabad (Dubey et world, there are about 20,000 species (Sipman & al. 1999), Kanpur (Satya & Upreti 2009, 2011), Aptroot ,2001) and in India 2300 species (Singh & Lucknow (Bajpai et al. 2004, Mishra et al. 2003, Sinha 2010). Saxena 2004, Saxena et al. 2007, Upreti & Bajpai 2003), Rae Bareli (Bajpai et al. 2010a, b) districts of In India, most of the lichenological explorations Uttar Pradesh and regarding this some lichens have were under taken in lichen rich regions such as been collected.
    [Show full text]
  • Phylogeny, Taxonomy and Diversification Events in the Caliciaceae
    Fungal Diversity DOI 10.1007/s13225-016-0372-y Phylogeny, taxonomy and diversification events in the Caliciaceae Maria Prieto1,2 & Mats Wedin1 Received: 21 December 2015 /Accepted: 19 July 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Although the high degree of non-monophyly and Calicium pinicola, Calicium trachyliodes, Pseudothelomma parallel evolution has long been acknowledged within the occidentale, Pseudothelomma ocellatum and Thelomma mazaediate Caliciaceae (Lecanoromycetes, Ascomycota), a brunneum. A key for the mazaedium-producing Caliciaceae is natural re-classification of the group has not yet been accom- included. plished. Here we constructed a multigene phylogeny of the Caliciaceae-Physciaceae clade in order to resolve the detailed Keywords Allocalicium gen. nov. Calicium fossil . relationships within the group, to propose a revised classification, Divergence time estimates . Lichens . Multigene . and to perform a dating study. The few characters present in the Pseudothelomma gen. nov available fossil and the complex character evolution of the group affects the interpretation of morphological traits and thus influ- ences the assignment of the fossil to specific nodes in the phy- Introduction logeny, when divergence time analyses are carried out. Alternative fossil assignments resulted in very different time es- Caliciaceae is one of several ascomycete groups characterized timates and the comparison with the analysis based on a second- by producing prototunicate (thin-walled and evanescent) asci ary calibration demonstrates that the most likely placement of the and a mazaedium (an accumulation of loose, maturing spores fossil is close to a terminal node rather than a basal placement in covering the ascoma surface).
    [Show full text]
  • Biodiversity and Chemotaxonomy of Preussia Isolates from the Iberian Peninsula
    Mycol Progress DOI 10.1007/s11557-017-1305-1 ORIGINAL ARTICLE Biodiversity and chemotaxonomy of Preussia isolates from the Iberian Peninsula Víctor Gonzalez-Menendez1 & Jesus Martin1 & Jose A. Siles2 & M. Reyes Gonzalez-Tejero3 & Fernando Reyes1 & Gonzalo Platas1 & Jose R. Tormo1 & Olga Genilloud1 Received: 7 September 2016 /Revised: 17 April 2017 /Accepted: 24 April 2017 # German Mycological Society and Springer-Verlag Berlin Heidelberg 2017 Abstract This work documents 32 new Preussia isolates great richness in flora and fauna, where endemic and singular from the Iberian Peninsula, including endophytic and saprobic plants are likely to be present. Although more than strains. The morphological study of the teleomorphs and 10,000 fungal species have been described in Spain anamorphs was combined with a molecular phylogenetic (Moreno-Arroyo 2004), most of them were mushrooms, leav- analysis based on sequences of the ribosomal rDNA gene ing this environment open to other exhaustive fungal studies. cluster and chemotaxonomic studies based on liquid chroma- Very few examples of fungal endophytes have been described tography coupled to electrospray mass spectrometry. Sixteen from the Iberian Peninsula, suggesting that a large number of natural compounds were identified. On the basis of combined new fungal species will be discovered (Collado et al. 2002; analyses, 11 chemotypes are inferred. Oberwinkler et al. 2006; Bills et al. 2012). Members of the Sporormiaceae are widespread and, de- Keywords Preussia . Chemotypes . Mass spectrometry . spite that they are most commonly found on various types of Secondary metabolites animal dung, they can also be isolated from soil, wood, and plant debris. Fungi of Sporormiaceae form dark brown, sep- tate spores with germ slits, and include approximately 100 Introduction species divided into ten genera, including the recently de- scribed genera Forliomyces and Sparticola (Phukhamsakda et al.
    [Show full text]
  • Relating Dung Fungal Spore Influx Rates to Animal Density in a Temperate Environment: Implications for Palaeoecological Studies
    Relating dung fungal spore influx rates to animal density in a temperate environment: implications for palaeoecological studies Eline N. van Asperen1 Jason R. Kirby2 Helen E. Shaw3 1 School of Natural Sciences and Psychology, Liverpool John Moores University, UK; Current address: Department of Biosciences/Department of Anthropology, Durham University, Stockton Road, Durham, DH1 3LE, UK; [email protected]. 2 School of Natural Sciences and Psychology, Liverpool John Moores University, UK 3 Irish Climate Analysis and Research UnitS (ICARUS), Department of Geography, Maynooth University, Maynooth, Ireland Abstract The management of the remainder of Europe’s once extensive forests is hampered by a poor understanding of the character of the vegetation and drivers of change before the onset of clearance for farming. Pollen data indicate a closed-canopy, mixed-deciduous forest, contrasting with the assertion that large herbivores would have maintained a mosaic of open grassland, regenerating scrub and forested groves. Coprophilous fungal spores from sedimentary sequences are increasingly used as a proxy for past herbivore impact on vegetation, but the method faces methodological and taphonomical issues. Using pollen trap data from a long-running experiment in Chillingham Wild Cattle Park, UK, we investigate the first steps in the mechanisms connecting herbivore density to the incorporation of fungal spores in sediments and assess the effects of environmental variables on this relationship. Herbivore utilization levels correlate with dung fungal spore abundance. Chillingham is densely populated by large herbivores, but dung fungal spore influx is low. Herbivores may thus be present on the landscape but go undetected. The absence of dung fungal spores is therefore less informative than their presence.
    [Show full text]
  • Coprophilous Fungal Community of Wild Rabbit in a Park of a Hospital (Chile): a Taxonomic Approach
    Boletín Micológico Vol. 21 : 1 - 17 2006 COPROPHILOUS FUNGAL COMMUNITY OF WILD RABBIT IN A PARK OF A HOSPITAL (CHILE): A TAXONOMIC APPROACH (Comunidades fúngicas coprófilas de conejos silvestres en un parque de un Hospital (Chile): un enfoque taxonómico) Eduardo Piontelli, L, Rodrigo Cruz, C & M. Alicia Toro .S.M. Universidad de Valparaíso, Escuela de Medicina Cátedra de micología, Casilla 92 V Valparaíso, Chile. e-mail <eduardo.piontelli@ uv.cl > Key words: Coprophilous microfungi,wild rabbit, hospital zone, Chile. Palabras clave: Microhongos coprófilos, conejos silvestres, zona de hospital, Chile ABSTRACT RESUMEN During year 2005-through 2006 a study on copro- Durante los años 2005-2006 se efectuó un estudio philous fungal communities present in wild rabbit dung de las comunidades fúngicas coprófilos en excementos de was carried out in the park of a regional hospital (V conejos silvestres en un parque de un hospital regional Region, Chile), 21 samples in seven months under two (V Región, Chile), colectándose 21 muestras en 7 meses seasonable periods (cold and warm) being collected. en 2 períodos estacionales (fríos y cálidos). Un total de Sixty species and 44 genera as a total were recorded in 60 especies y 44 géneros fueron detectados en el período the sampling period, 46 species in warm periods and 39 de muestreo, 46 especies en los períodos cálidos y 39 en in the cold ones. Major groups were arranged as follows: los fríos. La distribución de los grandes grupos fue: Zygomycota (11,6 %), Ascomycota (50 %), associated Zygomycota(11,6 %), Ascomycota (50 %), géneros mitos- mitosporic genera (36,8 %) and Basidiomycota (1,6 %).
    [Show full text]
  • AR TICLE a Plant Pathology Perspective of Fungal Genome Sequencing
    IMA FUNGUS · 8(1): 1–15 (2017) doi:10.5598/imafungus.2017.08.01.01 A plant pathology perspective of fungal genome sequencing ARTICLE Janneke Aylward1, Emma T. Steenkamp2, Léanne L. Dreyer1, Francois Roets3, Brenda D. Wingfield4, and Michael J. Wingfield2 1Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; corresponding author e-mail: [email protected] 2Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa 3Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa 4Department of Genetics, University of Pretoria, Pretoria 0002, South Africa Abstract: The majority of plant pathogens are fungi and many of these adversely affect food security. This mini- Key words: review aims to provide an analysis of the plant pathogenic fungi for which genome sequences are publically genome size available, to assess their general genome characteristics, and to consider how genomics has impacted plant pathogen evolution pathology. A list of sequenced fungal species was assembled, the taxonomy of all species verified, and the potential pathogen lifestyle reason for sequencing each of the species considered. The genomes of 1090 fungal species are currently (October plant pathology 2016) in the public domain and this number is rapidly rising. Pathogenic species comprised the largest category FORTHCOMING MEETINGS FORTHCOMING (35.5 %) and, amongst these, plant pathogens are predominant. Of the 191 plant pathogenic fungal species with available genomes, 61.3 % cause diseases on food crops, more than half of which are staple crops. The genomes of plant pathogens are slightly larger than those of other fungal species sequenced to date and they contain fewer coding sequences in relation to their genome size.
    [Show full text]