Rutherford and Radon

Total Page:16

File Type:pdf, Size:1020Kb

Rutherford and Radon Rediscovery of the Elements Rutherford and Radon U transmutation of the elements. He was to be (1877-1956) he developed the "transformation U acknowledged as the "leading explorer of the theory" which showed radioactivity was a vast, infinitely complex universe within the nuclear property. From thorium Rutherford atom, a universe that he was the first to pene- observed a gaseous radioactive product, which trate."3 he called "emanation"-he had discovered the Ernest Rutherford, the son of a flax farmer in element radon.' New Zealand, gained his undergraduate train- The British method of developing explicit ing in his native country. In 1895 he moved to descriptive models to explain nature was per- England, where he attended Cambridge Univ- fect for the advance of nuclear chemistry at this ersity; he was entering the scientific scene in moment in history; Lord Kelvin (William Europe just as radioactivity was discovered in Thomson, 1824-1907) said he could not reason 1896 by Henri Becquerel (1852-1908) of Paris. "without making a visualizable picture" of the His first research involved hertzian (radio) phenomenon he wanted to describe. J. J. James L. Marshal, beta Eta 1971, and waves, but he then moved on to the study of Thomson of the Cavendish Laboratory at Virginia R. Marshall, Beta Eta 2003, uranium rays with J. J. Thomson (1856-1940) at Cambridge was using the idea of charged cor- Department of Chemistry, University of Cambridge. Rutherford showed that these ion- puscles to explain cathode rays, and he viewed North Texas, Denton,TX 76203-5070, izing rays consisted of two main types, which the atom as a dynamic, moving mixture of pos- he called alpha and beta "for simplicity."2 itive and negative charges. Scientists on the [email protected] In 1898 Rutherford took a post at McGill continent, by contrast, were not impressed by University, Montreal, Canada, while Marie and this "picture making"-the Curies, for exam- EDITOR'S NOTE: This installment of the Pierre Curie in Paris were discovering polonium ple, considered the British method as"childish, Rediscoven/ series is based in part on recent publi- (1898) and radium (1899). This new phenome- arbitrary, and English."= cations, that appeared in the ACS Division of non of radioactivity mystified many, but From McGill University Rutherford mo ved Histon/, used with pennission, that deal with the Rutherford's incisive mind and fertile imagina- to Manchester University in 1907 and then to historical controversy between Rutherford and tion allowed him to use atoms not only as use- Cambridge University in 1919. Scientists who Dorn regarding the discovery of radon (Figure 1). ful, but also as necessary, models to offer coher- would later become famous in their own right ent explanations. At McGill he came to under- flocked to these laboratories for training and Introduction. At the beginning of the 19th stand radioactive decay and he developed the collaboration-such scientists included century, John Dalton (1766-1844) proposed concept of "half-life"; with Frederick Soddy Frederick Soddv (who invented the term "iso- that the world was composed of atoms with specific masses. Even though there was no Figure 1. Two scientists in the literature associated with the discovery of direct evidence that such discrete particles actu- radon. Right: Ernest Ruthrhord (1871-1937), Macdonald Professor ally existed, his theory was utilized throughout of McGill University, Montreal, the 1800s. Using atoms as models, scientists Canada (portraitat the Dept. of refined these atomic masses and developed Physics, McGill University). theories of organic chemistry, stereochemistry, Rutherford first characterizedema- crystallography, ionic and covalent bonding, nation of a radon isotope (from and electrochemistry. The scientific community thorium) as a gas and an elen'nt generally accepted the fact that chemistry and should be credited with the behaved as if atoms existed. But since no one discovery of radon. Left: Friedrich had ever seen an atom, some scientists could Ernst Dorn (1848-1916), still refute their existence, even into the 20th Geheimer Regierungs-Rat century; Ernst Mach denied them to his death Professor of Friedrichs Universihit, in 1916.2 Ernest Rutherford (1871-1937), how- Halle (Saale). (Portraitat the ever, did not doubt the existence of atoms for a University of Halle; photograph by the authors). He was the first to moment. He used them to explain the mysteri- observe emanation from radium specifically (the etymological source of ous phenomenon of radioactivity, which in turn the name "radon"), but his observations were subsequent to allowed him to determine their structure; even- Rutherford's work. tuall, he was even able to perform artificial 22 THE HEXAGON/SUMMER 2010 Figure 4. Map of - 1%. Rutherford's home s, McGill area of I 1 um*EFORD BLDG f on Rue Sainte-Famille r Montreal, Canada. Rue 6-0 meters [street] University which leads northwest a , into the university/ is c BLDG nr - . IACDONALD BLDG 'Qi 4,r a continuation of 3 Interstate 10. s n ve t. Macdonald Physics O ontrea Building (the old Physics Building), where Rutherford performed his work, * '' m then Macdonald- 1 Stewart Librarn, now called the Shulich Library (Engineering and Science), 809, rue Sherbrooke Ouest-N45 30.30 W730 34.49. Rutherford Building (Modern Physics Building), which holds the Rutherford Musum, 3600 rue University--N45 30.41 W73 34.72. Figure 2. Near the Roddick Gates on Rue "1"= James McGill statue, close to Roddick Gates-N45 30.25 W73 34.54. Sherbrooke in Montreal, Canada, is this statue of "2"= Otto Maass Chemistri Building, modern chemistry building, 801, rue Sherbrooke Ouest-N45 James McGill (1744-1813), whose bequest was 30.31 W730 34.46. responsible for the founding of McGill University "3" [in inset] = Rutherford home during 1900-1907, then No. 152 Rue Sainte Famille Street, now 3702 in 1821. The plaque at the base is inscribed in Rue Sainte Famille (corner of Rue Ste Famille and Rue Basset)-N45 30.75 W73 34.58. both English and French. McGill won his fortune "4" [in inset] = Rutherford Building (Modern Physics Building)-for reference in the inset, sane as above. in the fur trade and went on to other enterprises in property. He was born in Glasgow, Scotland, "Photographs." The creator of the museum was museum (Figures 7 and 8). In the alcove outside and was educated at the University of Glasgow, Dr. Ferdinand Terroux, a student of Rutherford the museum is a bust and plaque in honor of where a plaque exists in his honor recognizing his at Cambridge University, who came to McGill Rutherford (Figure 9), and inside the Otto achievements in Canada. (See next figuure). in 1931, where he became professor of physics. Maass Chemistry Building is a plaque devoted Dr. Terroux established the museum in 1967 to Soddy (Figure 9). tope"), Niels Bohr (who first described the after he assembled Rutherford's apparatus and quantized atom), Otto Hahn (who discovered equipment, which had been in storage for An incorrect ascription of radon's discovery. atomic fission), Henry Moseley (who discov- many decades. The modern museum reputedly In the literature Friedrich Ernst Dorn is com- ered atomic numbers from his X-ray research), houses the world's best collection of Rutherford monly, but incorrectly, ascribed as the discover- Georg von Hevesy (who discovered hafnium), apparatus. Two figures presented here show er of radon; for example, presented for decades James Chadwick (who discovered the neutron), only a meager sampling of the richness of the in the Handbook of Chemistry and Physics is this and Hans Geiger (famed for his eponymous statement: " "The element [radon] was discov- counting device). Rutherford was a giant in his ered in 1900 by Dorn, who called it radium ema- field and was mourned at his premature death nation."This error has been repeated countless at the age of 66 at Cambridge." times in subsequent articles, books, and web sites. In fact, Dorn did not first give the name of Rediscovering Rutherford in McGill. "emanation" to the phenomenon (much less Rutherford's Nobel Prize in 1908 was given in THIS MEMORIAL. STONE "radium emanation"); he did not have the recognition of his work at McGill University cil.N M LL (0 eERSITY faintest idea of the nature of the phenomenon, (Figures 2,3), an English-speaking university and he certainly did not realize that it might be McGiLUv in the center of Montreal, Canada (see Figure JA E S a new element (Note 1). 4). The building where Rutherford and Soddy i SUT N ATS O THE What was the source of the error? Here is performed their work, then called the !t TRADER SOLDIER AND story: TATESMAN IN CANADA Macdonald Physics Building (Figure 5), still ige. In the CEs H( Blso Uiesii \ difficulty in assigning proper credit of FOUNDER OF McGiLL UNWVERSITY t stands (Figure 6). MONTRFAL ion's discoverer was recognized by Nearby is the Rutherford Physics Building, tington who identified an erroneous cita- where a beautiful and complete Rutherford n by George Charles de Hevesy Museum has been established which in fine (1888-1866)., In Hevesy's paper, an incorrect 7 detail describes the experiments performed at Figure 3. In the t Cloisters of Glasgow University is reference was given to Dorn's original paper McGill University. The exhibits include cases this plaque (N5552.26 W04 17.33) devoted to where radium was observed to produce an demonstrating "The Nature and Properties of McGill. Nearby (200 meters northwest; N55 emanation; this faulty reference was copied a-rays," "Emanations from Thorium and 52.37 W040 17.45) is a plaque commemorating into all subsequent works of reference until Radium," "Excited Radioactivity," "Ionization the site where Soddy, who earlier was a postdoc- Partington corrected the error 44 years later.' Studies," "Heating Effectings of Radiation," toral fellow for Rutherford in McGill Universig/, In the meantime, Dorn's paper apparently was "The Radium Decay Series," "Measurement originated the term "Isotope" in 1913 at a dinner not widely read and its exact contents were lost Techniques," "Various Documents," and party held by his parents-in-law.
Recommended publications
  • James Chadwick: Ahead of His Time
    July 15, 2020 James Chadwick: ahead of his time Gerhard Ecker University of Vienna, Faculty of Physics Boltzmanngasse 5, A-1090 Wien, Austria Abstract James Chadwick is known for his discovery of the neutron. Many of his earlier findings and ideas in the context of weak and strong nuclear forces are much less known. This biographical sketch attempts to highlight the achievements of a scientist who paved the way for contemporary subatomic physics. arXiv:2007.06926v1 [physics.hist-ph] 14 Jul 2020 1 Early years James Chadwick was born on Oct. 20, 1891 in Bollington, Cheshire in the northwest of England, as the eldest son of John Joseph Chadwick and his wife Anne Mary. His father was a cotton spinner while his mother worked as a domestic servant. In 1895 the parents left Bollington to seek a better life in Manchester. James was left behind in the care of his grandparents, a parallel with his famous predecessor Isaac Newton who also grew up with his grandmother. It might be an interesting topic for sociologists of science to find out whether there is a correlation between children educated by their grandmothers and future scientific geniuses. James attended Bollington Cross School. He was very attached to his grandmother, much less to his parents. Nevertheless, he joined his parents in Manchester around 1902 but found it difficult to adjust to the new environment. The family felt they could not afford to send James to Manchester Grammar School although he had been offered a scholarship. Instead, he attended the less prestigious Central Grammar School where the teaching was actually very good, as Chadwick later emphasised.
    [Show full text]
  • Physics Connections
    Charles Tracy L P S / y a a w s n e v a R n a v v e l t e D Physics connections Last year we celebrated the International Year of Physics — time and light. In particular, it described how space also known as Einstein Year. In the century since Einstein’s becomes distorted near a massive object such as a star, so that light follows a curved path rather than annus mirabilis (see CATALYST Vol. 16, No. 1) there has travelling in a straight line (Figure 1). been a revolution in the study of physics. This article explores Its publication in wartime and the fact that it was the links between some of the architects of this revolution. written in German meant that few people read it. However, one person who did read it was the British astronomer Arthur Eddington. The story goes that it was Eddington who brought Einstein to the world’s attention — though Einstein might have disagreed. instein did not become instantly famous in Eddington was a conscientious objector. As such, GCSE key words 1905; it took several years before he became a he should have spent the war in jail. Instead, he got Gravity Eglobal icon. In 1915, while Europe was caught official permission to prepare for a trip to observe a Alpha particle scattering up in the First World War, Einstein broadened his total eclipse of the Sun — a rare event. His intention Nuclear fission special theory of relativity. His general theory of was to verify Einstein’s general theory of relativity.
    [Show full text]
  • Case Studies in Environmental Medicine
    ATSDR Case Studies in Environmental Medicine Radon Toxicity CS213021-A AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY CASE STUDIES IN ENVIRONMENTAL MEDICINE (CSEM) Radon Toxicity Course : CB/WB1585 CE Original Date: 06/01/2010 CE Expiration Date: 06/01/2012 Key Concepts • The U. S. Environmental Protection Agency estimates that indoor radon exposure may result in 21,000 lung cancer deaths annually in the United States. • Radon may be second only to smoking as a cause of lung cancer. Increased use of medical radiation also contributes to the annual radiation dose. • The combination of smoking and radon exposure results in a higher health risk. • Current technology can easily decrease the concentration of radon in indoor air, and radon’s associated risk for producing lung cancer. About This This educational case study document is one in a series of and Other self-instructional modules designed to increase the primary Case Studies care provider’s knowledge of hazardous substances in the in environment and to promote the adoption of medical Environmental practices that aid in the evaluation and care of potentially Medicine exposed patients. The complete series of Case Studies in Environmental Medicine is on the ATSDR Web site at: http://www.atsdr.cdc.gov/emes/topics/. In addition, the downloadable PDF version of this educational series and other environmental medicine materials provide content in an electronic, printable format, especially for those who may lack adequate Internet service. How to Apply See Internet address: http://www2.cdc.gov/atsdrce/ for for and more information about continuing medical education Receive credits, continuing nursing education credits, and other Agency for Toxic Substances and Disease Registry Radon Toxicity Case Studies in Environmental Medicine (CSEM) Continuing continuing education units.
    [Show full text]
  • Otto Hahn Otto Hahn
    R.N. 70269/98 Postal Registration No.: DL-SW-1/4082/15-17 ISSN : 0972-169X Date of posting: 26-27 of advance month Date of publication: 24 of advance month May 2017 Vol. 19 No. 8 Rs. 5.00 Otto Hahn Discoverer of Nuclear Fission Editorial: Consolidating 35 science communication activities in our country Otto Hahn: Discoverer of 34 Nuclear Fission Keep Your Eyes Healthy 31 Phenol: A Serious 30 Environmental Threat Accidental Discoveries in 28 Medical Science Cures for haemorrhoids— 24 Simple treatments and Surgeries Recent developments 21 in science and technology 36 Editorial Consolidating science communication activities in our country Dr. R. Gopichandran It is well known that the National Council of Science Museums of India’s leadership in science technology and innovation (STI) across the Ministry of Culture, Government of India, the National Institute the bilateral and multilateral framework also. The news feature service of Science Communication and Information Resources (NISCAIR) and the portal activity have well defined action plans to reach out to of CSIR, the National Council for Science and Technology fellow institutions and citizens with suitably embellished platform Communication (NCSTC) of the Department of Science and and opportunities for all to deliver together. Technology (DST), Government of India and Vigyan Prasar, also While these are interesting and extremely important, especially of DST, have been carrying out excellent science communication because they respond to the call to upscale and value add science activities over the years. It cannot be denied that the reach has been and technology communication, it is equally important to document quite significant collectively.
    [Show full text]
  • Appendix E Nobel Prizes in Nuclear Science
    Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence
    [Show full text]
  • Chapter 1 the Biography of a Trafficking Material
    Trafficking Materials and Maria Rentetzi Gendered Experimental Practices Chapter 1 The Biography of a Trafficking Material In 1904, an article titled "Radium and Radioactivity" appeared in Century 1 Magazine, a monthly popular magazine published from 1881 to 1930. The article presents Marie Curie's personal account of the discovery of radium and radioactivity. In the article, Curie discusses in depth her arduous attempts to study the radiation of the compounds of uranium and that of known chemical elements, hoping to discover more which are endowed with atomic radioactivity. She revels that it was the chemists who supplied her with the materials she needed. "As I desired to make a very thorough investigation, I had resource to different chemists, who put at my disposal specimens—in some cases the only ones in existence—containing very rare elements." Her next step was to examine different minerals, especially the oxide of uranium 2 ore (pitchblende). To her great surprise, this specimen was found to be four times more active than oxide of uranium itself. The explanation was more than obvious. "The ore must contain a substance more radioactive than uranium and thorium, and this substance must necessarily be a chemical element as yet unknown."1 Her attempts to isolate the new element would lead Marie and Pierre Curie, who joined her research shortly after, to the discovery of both polonium and radium, to the Nobel Prize in Physics in 1903, and to a second Nobel Prize in 1911, this time in chemistry. This chapter attempts to present a cultural
    [Show full text]
  • Recollections and Reconstructions
    @ ? Editor's Note: The Society's Nuclear Pioneer Citationfor 1977 goes not to an individual but to a distinguished group of individuals: those who took part in the epochal “ChicagoPile―experiment of Dec. 2, 1942, which produced thefirst successful atomicpile chain reaction. The 42 members ofthe Chicago Pilegroup are listed on page 591. One ofthose named, Harold M. Agnew, now Directorofthe Los Alamos Scient@flc Laboratory, is the Nuclear Pioneer Lecturerfor the 24th Annual Meeting. The guidingforce behind the Chicago Pile experiment was Enrico Fermi, recipient of the Nuclear Pioneer Citation of 1963. In the artick which follows, Laura Fermi recreates the excitement and mystery that surrounded the work ofher husband's research team in the early 1940s in Chicago. @. The FirstAtomic Pile: Recollections and Reconstructions by Laura Fermi @ . @ / - .-i@ ‘@:@ Enrico FermIat work, ca. 1942. As far as I can remember at the distance ofalmost 35 Perhaps not all husbands adhered as strictly as years, the first guests to arrive at our party on that Enrico to the rules of secrecy when talking to their beastly cold December night were the Zinns. Wally wives. He couldn't have been more tight-lipped. Once! and Jean. As they shook the snow off their coats, related some gossip to him: “Peoplesay that you stamping their feet on the floor, Wally turned to scientists at the Met Lab are seeking a cure for Enrico and said: “Congratulations!― I was surprised; cancer. .““Arewe?―he asked with his usual for Enrico had given me no hint that anything unusual imperturbable expression.
    [Show full text]
  • MIT-NSE by the 1930S It Was Time to Discover Fission. We Knew About Isoto
    Prelude to the Manhattan Project Michael V. Hynes – MIT-NSE By the 1930s it was time to discover fission. We knew about isotopes. The Curies and Becquerel had discovered radioactivity. Rutherford had discovered the nucleus. Chadwick had discovered the neutron. Einstein had discovered special relativity and the famous equation E=mc2. Bethe was even publishing about fusion as the source of energy for the Sun. So, it was time. By the 1930s a human drama was unfolding in Europe and in the Pacific – the rise of fascism. The events of this drama engulfed the world in war and created a need on all sides for weaponry that could defeat the enemy by whatever means. The intersection of scientific inevitability and war created the environment for the advent of nuclear weapons. Science was practiced was very differently in the 1920s and 1930s than today. In that era science was highly specialized and compartmentalized. If you were a metallurgist for example it was unlikely that you would have anything to do with a physicist – that all changed in the1940s. In 1933 Leo Szilard (Fig. 1), a Hungarian physicist who took refuge in London from Nazi Germany, read a paper by Rutherford that ridiculed the idea of getting energy from nuclear transmutations. Szilard realized that if you could find an element which is split by neutrons and which would emit two neutrons in the process, then a chain reaction could be started. This is the basic idea of a nuclear weapon -- to generate energy from the chain reaction. Szilard was a chemist by training and knew about the idea of a chemical chain reaction.
    [Show full text]
  • (Owen Willans) Richardson
    O. W. (Owen Willans) Richardson: An Inventory of His Papers at the Harry Ransom Center Descriptive Summary Creator: Richardson, O. W. (Owen Willans), 1879-1959 Title: O. W. (Owen Willans) Richardson Papers Dates: 1898-1958 (bulk 1920-1940) Extent: 112 document boxes, 2 oversize boxes (49.04 linear feet), 1 oversize folder (osf), 5 galley folders (gf) Abstract: The papers of Sir O. W. (Owen Willans) Richardson, the Nobel Prize-winning British physicist who pioneered the field of thermionics, contain research materials and drafts of his writings, correspondence, as well as letters and writings from numerous distinguished fellow scientists. Call Number: MS-3522 Language: Primarily English; some works and correspondence written in French, German, or Italian . Note: The Ransom Center gratefully acknowledges the assistance of the Center for History of Physics, American Institute of Physics, which provided funds to support the processing and cataloging of this collection. Access: Open for research Administrative Information Additional The Richardson Papers were microfilmed and are available on 76 Physical Format reels. Each item has a unique identifying number (W-xxxx, L-xxxx, Available: R-xxxx, or M-xxxx) that corresponds to the microfilm. This number was recorded on the file folders housing the papers and can also be found on catalog slips present with each item. Acquisition: Purchase, 1961 (R43, R44) and Gift, 2005 Processed by: Tessa Klink and Joan Sibley, 2014 Repository: The University of Texas at Austin, Harry Ransom Center Richardson, O. W. (Owen Willans), 1879-1959 MS-3522 2 Richardson, O. W. (Owen Willans), 1879-1959 MS-3522 Biographical Sketch The English physicist Owen Willans Richardson, who pioneered the field of thermionics, was also known for his work on photoelectricity, spectroscopy, ultraviolet and X-ray radiation, the electron theory, and quantum theory.
    [Show full text]
  • Character List
    Character List - Bomb ​ Use this chart to help you keep track of the hundreds of names of physicists, freedom fighters, government officials, and others involved in the making of the atomic bomb. Scientists Political/Military Leaders Spies Robert Oppenheimer - Winston Churchill -- Prime Klaus Fuchs - physicist in ​ ​ ​ designed atomic bomb. He was Minister of England Manhattan Project who gave accused of spying. secrets to Russia Franklin D. Roosevelt -- ​ Albert Einstein - convinced President of the United States Harry Gold - spy and Courier ​ ​ U.S. government that they for Russia KGB. Narrator of the needed to research fission. Harry Truman -- President of story ​ the United States Enrico Fermi - created first Ruth Werner - Russian spy ​ ​ chain reaction Joseph Stalin -- dictator of the ​ Tell Hall -- physicist in Soviet Union ​ Igor Korchatov -- Russian Manhattan Project who gave ​ physicist in charge of designing Adolf Hitler -- dictator of secrets to Russia ​ bomb Germany Haakon Chevalier - friend who ​ Werner Reisenberg -- Leslie Groves -- Military approached Oppenheimer about ​ ​ German physicist in charge of leader of the Manhattan Project spying for Russia. He was designing bomb watched by the FBI, but he was not charged. Otto Hahn -- German physicist ​ who discovered fission Other scientists involved in the Manhattan Project: ​ Aage Niels Bohr George Kistiakowsky Joseph W. Kennedy Richard Feynman Arthur C. Wahl Frank Oppenheimer Joseph Rotblat Robert Bacher Arthur H. Compton Hans Bethe Karl T. Compton Robert Serber Charles Critchfield Harold Agnew Kenneth Bainbridge Robert Wilson Charles Thomas Harold Urey Leo James Rainwater Rudolf Pelerls Crawford Greenewalt Harold DeWolf Smyth Leo Szilard Samuel K. Allison Cyril S. Smith Herbert L. Anderson Luis Alvarez Samuel Goudsmit Edward Norris Isidor I.
    [Show full text]
  • Commentary & Notes Hans Bethe
    J. Natn.Sci.Foundation Sri Lanka 2005 33(1): 57-58 COMMENTARY & NOTES HANS BETHE (1906-2005) Hans Albrecht Bethe who died on 6 March 2005 within the sun is hydrogen which is available in at the age of 98, was one of the most influential tremendous volume. Near the centre of the sun, and innovative theoretical physicists of our time. hydrogen nuclei can be squeezed under enormous pressure to become the element helium. If the Bethe was born in Strasbourg, Alsace- mass of hydrogen nucleus can be written as 1, Lorraine (then part of Germany) on 2 July 1906. Bethe showed that each time four nuclei of His father was a University physiologist and his hydrogen fused together as helium, their sum was mother Jewish, the daughter of a Strasbourg not equal to 4. The helium nucleus weighs about professor of Medicine. Bethe moved to Kiel and 0.7% less, or just 3.993 units of weight. It is this Frankfurt from where he went to Munich to carry missing 0.7% that comes out as a burst of explosive out research in theoretical physics under Arnold energy. The sun is so powerful that it pumps 4 Sommerfeld, who was not only a great teacher, million tons of hydrogen into pure energy every but an inspiring research supervisor as well. second. Einstein's famous equation, E = mc2, Bethe received his doctorate in 1928, for the work provides a clue to the massive energy that reaches he did on electron diffraction. He then went to the earth from the sun, when 4 million tons of the Cavendish laboratory in Cambridge on a hydrogen are multiplied by the figure c2 (square Rockefeller Fellowship, and Rome, before of the speed of light).
    [Show full text]
  • Hitler's Uranium Club, the Secret Recordings at Farm Hall
    HITLER’S URANIUM CLUB DER FARMHALLER NOBELPREIS-SONG (Melodie: Studio of seiner Reis) Detained since more than half a year Ein jeder weiss, das Unglueck kam Sind Hahn und wir in Farm Hall hier. Infolge splitting von Uran, Und fragt man wer is Schuld daran Und fragt man, wer ist Schuld daran, So ist die Antwort: Otto Hahn. So ist die Antwort: Otto Hahn. The real reason nebenbei Die energy macht alles waermer. Ist weil we worked on nuclei. Only die Schweden werden aermer. Und fragt man, wer ist Schuld daran, Und fragt man, wer ist Schuld daran, So ist die Antwort: Otto Hahn. So ist die Antwort: Otto Hahn. Die nuclei waren fuer den Krieg Auf akademisches Geheiss Und fuer den allgemeinen Sieg. Kriegt Deutschland einen Nobel-Preis. Und fragt man, wer ist Schuld daran, Und fragt man, wer ist Schuld daran, So ist die Antwort: Otto Hahn. So ist die Antwort: Otto Hahn. Wie ist das moeglich, fragt man sich, In Oxford Street, da lebt ein Wesen, The story seems wunderlich. Die wird das heut’ mit Thraenen lesen. Und fragt man, wer ist Schuld daran Und fragt man, wer ist Schuld daran, So ist die Antwort: Otto Hahn. So ist die Antwort: Otto Hahn. Die Feldherrn, Staatschefs, Zeitungsknaben, Es fehlte damals nur ein atom, Ihn everyday im Munde haben. Haett er gesagt: I marry you madam. Und fragt man, wer ist Schuld daran, Und fragt man, wer ist Schuld daran, So ist die Antwort: Otto Hahn. So ist die Antwort: Otto Hahn. Even the sweethearts in the world(s) Dies ist nur unsre-erste Feier, Sie nennen sich jetzt: “Atom-girls.” Ich glaub die Sache wird noch teuer, Und fragt man, wer ist Schuld daran, Und fragt man, wer ist Schuld daran, So ist die Antwort: Otto Hahn.
    [Show full text]