System-Level Hardware Synthesis of Dataflow Programs with HEVC As Study Use Case

Total Page:16

File Type:pdf, Size:1020Kb

System-Level Hardware Synthesis of Dataflow Programs with HEVC As Study Use Case THESE INSA Rennes présentée par sous le sceau de l’Université Bretagne Loire pour obtenir le titre de Mariem Abid DOCTEUR DE L’INSA RENNES ECOLE DOCTORALE : MATISSE Spécialité : Traitement du Signal et de l`image LABORATOIRE : IETR Thèse soutenue le 28.04.2016 System-Level Hardware devant le jury composé de : Synthesis of dataflow Mohamed Akil Professeur à l’ESIEE Paris (France) / Président et Rapporteur programs with HEVC as Ahmed Chiheb Ammari Associate Professor à Université du roi Abdulaziz à Jeddah (Arabie study use case Saoudite) / Rapporteur Mohamed Atri Maître de Conférences à Faculté des Sciences de Monastir (Tunisie) / Examinateur Audrey Queudet Maître de conférences à l’université de Nantes (France) / Examinateur Olivier Déforges Professeur à l’INSA de Rennes (France) / Directeur de thèse Mohamed Abid Professeur à l’Ecole Nationale d’Ingénieur de Sfax (Tunisie) / Directeur de thèse System-Level Hardware Synthesis of Dataflow Programs with HEVC as Study Use Case Mariem Abid En partenariat avec Document protégé par les droits d’auteur Dedication i ii Abstract Image and video processing applications are characterized by the processing of a huge amount of data. The design of such complex applications with traditional design methodologies at low- level of abstraction causes increasing development costs. In order to resolve the above mentioned challenges, Electronic System Level (ESL) synthesis or High-Level Synthesis (HLS) tools were proposed. The basic premise is to model the behavior of the entire system using high-level specifications, and to enable the automatic synthesis to low-level specifications for efficient im- plementation in Field-Programmable Gate Array (FPGA). However, the main downside of the HLS tools is the lack of the entire system consideration, i.e. the establishment of the communi- cations between these components to achieve the system-level is not yet considered. The purpose of this thesis is to raise the level of abstraction in the design of embedded sys- tems to the system-level. A novel design flow was proposed that enables an efficient hardware implementation of video processing applications described using a Domain Specific Language (DSL) for dataflow programming. The design flow combines a dataflow compiler for generating C-based HLS descriptions from a dataflow description and a C-to-gate synthesizer for generating Register-Transfer Level (RTL) descriptions. The challenge of implementing the communication channels of dataflow programs relying on Model of Computation (MoC) in FPGA is the mini- mization of the communication overhead. In this issue, we introduced a new interface synthesis approach that maps the large amounts of data that multimedia and image processing applica- tions process, to shared memories on the FPGA. This leads to a tremendous decrease in the latency and an increase in the throughput. These results were demonstrated upon the hardware synthesis of the emerging High-Efficiency Video Coding (HEVC) standard. R´esum´e Les applications de traitement d'image et vid´eosont caractris´eespar le traitement d'une grande quantit´ede donn´ees.La conception de ces applications complexes avec des m´ethodologies de con- ception traditionnelles bas niveau provoque l'augmentation des co^utsde d´eveloppement. Afin de r´esoudreces d´efis,des outils de synth`esehaut niveau ont ´et´epropos´es.Le principe de base est de mod´eliserle comportement de l'ensemble du syst`emeen utilisant des sp´ecificationshaut niveau afin de permettre la synth`eseautomatique vers des sp´ecificationsbas niveau pour impl´ementation efficace en FPGA. Cependant, l'inconv´enient principal de ces outils de synth`esehaut niveau est le manque de prise en compte de la totalit´edu syst`eme,c.-`a-d.la cr´eationde la communication entre les diff´erents composants pour atteindre le niveau syst`emen'est pas consid´er´ee. Le but de cette th`eseest d'´elever le niveau d'abstraction dans la conception des syst`emesem- barqu´esau niveau syst`eme. Nous proposons un flot de conception qui permet une synth`ese mat´erielleefficace des applications de traitement vid´eod´ecritesen utilisant un langage sp´ecifique `aun domaine pour la programmation flot-de-donn´ees.Le flot de conception combine un compi- lateur flot-de-donn´eespour g´en´ererdes descriptions `abase de code C et d'un synth´etiseurpour g´en´ererdes descriptions niveau de transfert de registre. Le d´efimajeur de l'impl´ementation en FPGA des canaux de communication des programmes flot-de-donn´eesbas´essur un mod`ele de calcul est la minimisation des frais g´en´erauxde la communication. Pour cel`a,nous avons introduit une nouvelle approche de synth`esede l'interface qui mappe les grandes quantit´esdes donn´eesvid´eo,`atravers des m´emoirespartag´eessur FPGA. Ce qui conduit `aune diminution consid´erablede la latence et une augmentation du d´ebit.Ces r´esultatsont ´et´ed´emontr´essur la synth`esemat´erielledu standard vid´eo´emergent High-Efficiency Video Coding (HEVC). ii Acknowledgment iii iv Contents List of Figures ix List of Tables xi Acronyms xv 1 Introduction 1 1.1 Context and Motivation . 1 1.2 Problem Statement and Contributions . 2 1.3 Outline . 3 1.4 Publications . 3 I BACKGROUND 5 2 Fundamentals of Embedded Systems Design 7 2.1 Introduction . 7 2.2 The Embedded Systems Design . 7 2.2.1 What is an embedded system? . 7 2.2.1.1 What is an Application-Specific Integrated Circuit (ASIC)? . 8 2.2.1.2 What is a Field-Programmable Gate Array (FPGA)? . 8 2.2.2 Video compression in FPGA ......................... 9 2.2.3 The embedded systems design challenges . 10 2.2.3.1 Design constraints . 10 2.2.3.2 Design productivity gap . 11 2.3 Hardware Design Methodologies . 11 2.3.1 Levels of abstraction . 12 2.3.2 Bottom-up methodology . 13 2.3.3 Top-down methodology . 13 2.3.4 System design process . 13 2.3.5 Design flow and taxonomy of synthesis . 14 2.4 Register-Transfer Level (RTL) Design . 15 2.4.1 What is a Hardware Description Language (HDL)? . 16 2.4.2 What is wrong with RTL design and HDLs? . 17 2.5 High-Level Synthesis (HLS) Design . 18 2.6 System-Level Design . 22 2.7 Conclusion . 24 Bibliography 27 3 Dataflow Programming in the Reconfigurable Video Coding (RVC) Frame- work 33 3.1 Introduction . 33 3.2 Dataflow Programming . 33 3.3 The RVC Standard . 35 3.3.1 Motivation and Objectives . 35 3.3.2 Structure of the Standard . 35 3.3.3 Instantiation Process of a RVC Abstract Decoder Model (ADM)..... 36 3.4 RVC-Caltrop Actor Language (CAL) Dataflow Programming . 37 v CONTENTS vi 3.4.1 RVC-CAL Language . 37 3.4.2 Representation of Different Model of Computations (MoCs) in RVC-CAL 39 3.5 RVC-CAL Code Generators and Related Work . 42 3.5.1 Open Dataflow environment (OpenDF)................... 42 3.5.2 Open RVC-CAL Compiler (Orcc)....................... 43 3.6 Conclusion . 45 Bibliography 47 II CONTRIBUTIONS 51 4 Toward Efficient Hardware Implementation of RVC-based Video Decoders 53 4.1 Introduction . 53 4.2 Limitations of the Current Solution and Problem Statement . 53 4.3 Rapid Prototyping Methodology . 55 4.3.1 Outline of the Prototyping Process . 55 4.3.2 System-Level Synthesis using Orcc ...................... 57 4.3.2.1 Vivado HLS Coding Style . 57 4.3.2.2 Automatic Communication Refinement . 58 4.3.2.3 Automatic Computation Refinement . 59 4.3.3 HLS using Vivado HLS ............................ 61 4.3.4 System-Level Integration . 62 4.3.5 Automatic Validation . 62 4.4 Rapid Prototyping Results: High-Efficiency Video Coding (HEVC) Decoder Case Study . 63 4.4.1 RVC-CAL Implementation of the HEVC Decoder . 63 4.4.1.1 The HEVC standard . 63 4.4.1.2 The RVC-CAL HEVC Decoder . 66 4.4.1.3 Test Sequences . 66 4.4.2 Optimization Metrics . 68 4.4.3 Experimental Setup . 68 4.4.4 Experimental Results . 69 4.4.4.1 The Main Still Picture profile of HEVC case study . 69 4.4.4.2 The IntraPrediction Functional Unit (FU) Case Study . 71 4.4.4.3 Design-Space Exploration (DSE) Through Optimizations Direc- tives . 71 4.5 Conclusion . 73 Bibliography 75 5 Toward Optimized Hardware Implementation of RVC-based Video Decoders 77 5.1 Introduction . 77 5.2 Issues with Explicit Streaming . 78 5.3 Interface Synthesis Optimization . 79 5.3.1 Shared-Memory Circular Buffer . 79 5.3.2 Scheduling Optimization . 81 5.3.3 Synthesis of Arrays . 82 5.3.4 System-Level Integration . 83 5.3.5 Test Infrastructure . 85 5.4 Experimental Results . 85 5.4.1 The Main Still Picture profile of HEVC case study . 85 5.4.2 The Main profile of HEVC case study . 86 5.4.2.1 Throughput Analysis . 87 5.4.2.2 Latency Analysis . 88 5.4.3 Task Parallelism Optimization . 89 5.4.4 Data parallelism optimization . 90 5.4.4.1 YUV-Parallel RVC-CAL HEVC decoder . 90 5.4.4.2 Ref Design vs. YUV Design .................... 90 CONTENTS vii 5.4.5 Comparison with Other Works . 92 5.4.5.1 System-level hardware synthesis versus hand-coded HDL of the HEVC decoder . 92 5.4.5.2 Comparison with other alternative HLS for RVC-CAL ...... 92 5.5 Conclusion . 93 Bibliography 95 6 Conclusion 97 III APPENDIX 101 Appendix A System-Level Design Flow: Tutorial 103 A.1 A User Guide for the C-HLS Backend: Steps and Requirements . 103 A.2 Write a Very Simple Network . 103 A.2.1 Setup a New Orcc Projet . 103 A.2.2 Implements Actors . 103 A.2.3 Build the Orcc Network .
Recommended publications
  • Open Source Synthesis and Verification Tool for Fixed-To-Floating and Floating-To-Fixed Points Conversions
    Circuits and Systems, 2016, 7, 3874-3885 http://www.scirp.org/journal/cs ISSN Online: 2153-1293 ISSN Print: 2153-1285 Open Source Synthesis and Verification Tool for Fixed-to-Floating and Floating-to-Fixed Points Conversions Semih Aslan1, Ekram Mohammad1, Azim Hassan Salamy2 1Ingram School of Engineering, Electrical Engineering Texas State University, San Marcos, Texas, USA 2School of Engineering, Electrical Engineering University of St. Thomas, St. Paul, Minnesota, USA How to cite this paper: Aslan, S., Mo- Abstract hammad, E. and Salamy, A.H. (2016) Open Source Synthesis and Verification Tool for An open source high level synthesis fixed-to-floating and floating-to-fixed conver- Fixed-to-Floating and Floating-to-Fixed Points sion tool is presented for embedded design, communication systems, and signal Conversions. Circuits and Systems, 7, 3874- processing applications. Many systems use a fixed point number system. Fixed point 3885. http://dx.doi.org/10.4236/cs.2016.711323 numbers often need to be converted to floating point numbers for higher accuracy, dynamic range, fixed-length transmission limitations or end user requirements. A Received: May 18, 2016 similar conversion system is needed to convert floating point numbers to fixed point Accepted: May 30, 2016 numbers due to the advantages that fixed point numbers offer when compared with Published: September 23, 2016 floating point number systems, such as compact hardware, reduced verification time Copyright © 2016 by authors and and design effort. The latest embedded and SoC designs use both number systems Scientific Research Publishing Inc. together to improve accuracy or reduce required hardware in the same design.
    [Show full text]
  • Xilinx Vivado Design Suite User Guide: Release Notes, Installation, And
    Vivado Design Suite User Guide Release Notes, Installation, and Licensing UG973 (v2013.3) October 23, 2013 Notice of Disclaimer The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx.
    [Show full text]
  • Vivado Design Suite User Guide: High-Level Synthesis (UG902)
    Vivado Design Suite User Guide High-Level Synthesis UG902 (v2018.3) December 20, 2018 Revision History Revision History The following table shows the revision history for this document. Section Revision Summary 12/20/2018 Version 2018.3 Schedule Viewer Updated information on the schedule viewer. Optimizing the Design Clarified information on dataflow and loops throughout section. C++ Arbitrary Precision Fixed-Point Types: Reference Added note on using header files. Information HLS Math Library Updated information on how hls_math.h is used. The HLS Math Library, Fixed-Point Math Functions Updated functions. HLS Video Library, HLS Video Functions Library Moved the HLS video library to the Xilinx GitHub (https:// github.com/Xilinx/xfopencv) HLS SQL Library, HLS SQL Library Functions Updated hls::db to hls::alg functions. System Calls Added information on using the __SYNTHESIS__ macro. Arrays Added information on array sizing behavior. Command Reference Updated commands. config_dataflow, config_rtl Added the option -disable_start_propagation Class Methods, Operators, and Data Members Added guidance on specifying data width. UG902 (v2018.3) December 20, 2018Send Feedback www.xilinx.com High-Level Synthesis 2 Table of Contents Revision History...............................................................................................................2 Chapter 1: High-Level Synthesis............................................................................ 5 High-Level Synthesis Benefits....................................................................................................5
    [Show full text]
  • Vivado Tutorial
    Lab Workbook Vivado Tutorial Vivado Tutorial Introduction This tutorial guides you through the design flow using Xilinx Vivado software to create a simple digital circuit using Verilog HDL. A typical design flow consists of creating model(s), creating user constraint file(s), creating a Vivado project, importing the created models, assigning created constraint file(s), optionally running behavioral simulation, synthesizing the design, implementing the design, generating the bitstream, and finally verifying the functionality in the hardware by downloading the generated bitstream file. You will go through the typical design flow targeting the Artix-100 based Nexys4 board. The typical design flow is shown below. The circled number indicates the corresponding step in this tutorial. Figure 1. A typical design flow Objectives After completing this tutorial, you will be able to: • Create a Vivado project sourcing HDL model(s) and targeting a specific FPGA device located on the Nexys4 board • Use the provided partially completed Xilinx Design Constraint (XDC) file to constrain some of the pin locations • Add additional constraints using the Tcl scripting feature of Vivado • Simulate the design using the XSim simulator • Synthesize and implement the design • Generate the bitstream • Configure the FPGA using the generated bitstream and verify the functionality • Go through the design flow in batch mode using the Tcl script Procedure This tutorial is broken into steps that consist of general overview statements providing information on the detailed instructions that follow. Follow these detailed instructions to progress through the tutorial. www.xilinx.com/university Nexys4 Vivado Tutorial-1 [email protected] © copyright 2013 Xilinx Vivado Tutorial Lab Workbook Design Description The design consists of some inputs directly connected to the corresponding output LEDs.
    [Show full text]
  • Xilinx Vivado Design Suite 7 Series FPGA and Zynq-7000 All Programmable Soc Libraries Guide (UG953)
    Vivado Design Suite 7 Series FPGA and Zynq-7000 All Programmable SoC Libraries Guide UG953 (v 2013.1) March 20, 2013 Notice of Disclaimer The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx.
    [Show full text]
  • Vivado Design Suite User Guide: Implementation
    See all versions of this document Vivado Design Suite User Guide Implementation UG904 (v2021.1) August 30, 2021 Revision History Revision History The following table shows the revision history for this document. Section Revision Summary 08/30/2021 Version 2021.1 Sweep (Default) Added more information. Incremental Implementation Controls Corrected Block Memory and DSP placement example. Using Incremental Implementation in Project Mode Corrected steps and updated image. Using report_incremental_reuse Updated Reuse Summary example and Reference Run Comparison. Physical Optimization Reports Updated to clarify that report is not cumulative. Available Logic Optimizations Added -resynth_remap. Resynth Remap Added logic optimization. opt_design Added [-resynth_remap] to opt_design Syntax. Physical Synthesis Phase Added entry for Property-Based Retiming. 02/26/2021 Version 2020.2 General Updates General release updates. 08/25/2020 Version 2020.1 Appendix A: Using Remote Hosts and Compute Clusters Updated section. UG904 (v2021.1) August 30, 2021Send Feedback www.xilinx.com Implementation 2 Table of Contents Revision History...............................................................................................................2 Chapter 1: Preparing for Implementation....................................................... 5 About the Vivado Implementation Process............................................................................. 5 Navigating Content by Design Process...................................................................................
    [Show full text]
  • UG908 (V2019.2) October 30, 2019 Revision History
    See all versions of this document Vivado Design Suite User Guide Programming and Debugging UG908 (v2019.2) October 30, 2019 Revision History Revision History The following table shows the revision history for this document. Section Revision Summary 10/30/2019 Version 2019.2 General Updates Updated for Vivado 2019.2 release. 05/22/2019 Version 2019.1 Appendix E: Configuration Memory Support Replaced Configuration Memory Support Tables. Bus Plot Viewer Added new section on Bus Plot Viewer. High Bandwidth Memory (HBM) Monitor Added new section on High Bandwidth (HBM) Monitor. UG908 (v2019.2) October 30, 2019Send Feedback www.xilinx.com Vivado Programming and Debugging 2 Table of Contents Revision History...............................................................................................................2 Chapter 1: Introduction.............................................................................................. 8 Getting Started............................................................................................................................ 8 Debug Terminology.................................................................................................................... 9 Chapter 2: Vivado Lab Edition................................................................................13 Installation................................................................................................................................. 13 Using the Vivado Lab Edition .................................................................................................
    [Show full text]
  • Xilinx Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (IUG973)
    Vivado Design Suite User Guide Release Notes, Installation, and Licensing UG973 (v2013.2) June 19, 2013 Notice of Disclaimer The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx.
    [Show full text]
  • Analýza Síťového Provozu Na Síťové Kartě Fpga Network Traffic Analysis on Fpga Network Card
    VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií BAKALÁŘSKÁ PRÁCE Brno, 2019 Marie Crháková VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION ÚSTAV TELEKOMUNIKACÍ DEPARTMENT OF TELECOMMUNICATIONS ANALÝZA SÍŤOVÉHO PROVOZU NA SÍŤOVÉ KARTĚ FPGA NETWORK TRAFFIC ANALYSIS ON FPGA NETWORK CARD BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS AUTOR PRÁCE Marie Crháková AUTHOR VEDOUCÍ PRÁCE Ing. David Smékal SUPERVISOR BRNO 2019 Bakalářská práce bakalářský studijní obor Teleinformatika Ústav telekomunikací Studentka: Marie Crháková ID: 152417 Ročník: 3 Akademický rok: 2018/19 NÁZEV TÉMATU: Analýza síťového provozu na síťové kartě FPGA POKYNY PRO VYPRACOVÁNÍ: Cílem bakalářské práce je navrhnout vhodné metody pro analýzu síťového provozu a následně je implementovat na síťovou kartu FPGA. Zvolený návrh odsimulujte a následně proveďte základní implementaci na hardwaru. Seznamte se s programovacím jazykem VHDL, FPGA kartami NFB, vývojovým frameworkem NDK a platformou Xilinx Vivado. DOPORUČENÁ LITERATURA: [1] WOLF, Wayne. FPGA based system design. New Jersey: Prentice-Hall, 2004, 530 s. ISBN 0-13-142461-0. [2] PINKER, Jiří, Martin POUPA. Číslicové systémy a jazyk VHDL. 1. vyd. Praha: BEN - technická literatura, 2006, 349 s. ISBN 80-7300-198-5. Termín zadání: 1.2.2019 Termín odevzdání: 27.5.2019 Vedoucí práce: Ing. David Smékal Konzultant: prof. Ing. Jiří Mišurec, CSc. předseda oborové rady UPOZORNĚNÍ: Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI.
    [Show full text]
  • A Parallel Bandit-Based Approach for Autotuning FPGA Compilation
    A Parallel Bandit-Based Approach for Autotuning FPGA Compilation Chang Xu1;∗, Gai Liu2, Ritchie Zhao2, Stephen Yang3, Guojie Luo1, Zhiru Zhang2;y 1 Center for Energy-Efficient Computing and Applications, Peking University, Beijing, China 2 School of Electrical and Computer Engineering, Cornell University, Ithaca, USA 3 Xilinx, Inc., San Jose, USA ∗[email protected], [email protected] Abstract combinatorial optimization problems such as logic synthe- Mainstream FPGA CAD tools provide an extensive collec- sis, technology mapping, placement, and routing [7]. tion of optimization options that have a significant impact To meet the stringent yet diverse design requirements on the quality of the final design. These options together from different domains and use cases, modern FPGA CAD create an enormous and complex design space that cannot tools commonly provide users with a large collection of op- effectively be explored by human effort alone. Instead, we timization options (or parameters) that have a significant propose to search this parameter space using autotuning, impact on the quality of the final design. For instance, the which is a popular approach in the compiler optimization placement step alone in the Xilinx Vivado Design Suite of- fers up to 20 different parameters, translating to a search domain. Specifically, we study the effectiveness of apply- 6 ing the multi-armed bandit (MAB) technique to automat- space of more than 10 design points [3]. In addition, mul- ically tune the options for a complete FPGA compilation tiple options may interact in subtle ways resulting in unpre- flow from RTL to bitstream, including RTL/logic synthe- dictable effects on solution quality.
    [Show full text]
  • Eee4120f Hpes
    The background details to FPGAs were covered in Lecture 15. This Lecture 16 lecture launches into HDL coding. Coding in Verilog module myveriloglecture ( wishes_in, techniques_out ); … // implementation of today’s lecture … endmodule Lecturer: Learning Verilog with Xilinx ISE, Icarus Verilog or Simon Winberg Altera Quartus II Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) Why Verilog? Basics of Verilog coding Exercise Verilog simulators Intro to Verilog in ISE/Vivado Test bench Generating Verilog from Schematic Editors Because it is… Becoming more popular than VHDL!! Verilog is used mostly in USA. VHDL is used widely in Europe, but Verilog is gaining popularity. Easier to learn since it is similar to C Things like SystemC and OpenCL are still a bit clunky in comparison (although in years to come they become common) I think it’s high time for a new & better HDL language!! (Let’s let go of C! And scrap ADA for goodness sake. Maybe I’ll present some ideas in a later lecture.) break free from the constraints of the old language constructs History of Verilog 1980 Verilog developed by Gateway Design Automation (but kept as their own ‘secret weapon’) 1990 Verilog was made public 1995 adopted as IEEE standard 1364-1995 (Verilog 95) 2001 enhanced version: Verilog 2001 Particularly built-in operators +, -, /, *, >>>. Named parameter overrides, always, @* 2005 even more refined version: Verilog 2005 (is not same as SystemVerilog!) SystemVerilog (superset of Verilog-2005) with new features. SystemVerilog and Verilog language standards were merged into SystemVerilog 2009 (IEEE Standard 1800-2009, the current version is IEEE standard 1800-2012).
    [Show full text]
  • Xilinx Vivado Design Suite User Guide: Release Notes, Installation, And
    Vivado Design Suite User Guide Release Notes, Installation, and Licensing UG973 (v2013.1) April 15, 2013 Notice of Disclaimer The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx.
    [Show full text]