The Mathematics Behind Euchre
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pinochle & Bezique
Pinochle & Bezique by MeggieSoft Games User Guide Copyright © MeggieSoft Games 1996-2004 Pinochle & Bezique Copyright ® 1996-2005 MeggieSoft Games All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher. Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks. While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document. Printed: February 2006 Special thanks to: Publisher All the users who contributed to the development of Pinochle & MeggieSoft Games Bezique by making suggestions, requesting features, and pointing out errors. Contents I Table of Contents Part I Introduction 6 1 MeggieSoft.. .Games............ .Software............... .License............. ...................................................................................... 6 2 Other MeggieSoft............ ..Games.......... -
Shuffling the Deck” in CFG Terms by Luci Englert Mckean, NSRF Assistant Director and National Facilitator
6 NSRF® Connections • April 2018 What are the best combinations for CFG teams and in CFG trainings? “Shuffling the Deck” in CFG terms By Luci Englert McKean, NSRF Assistant Director and National Facilitator. [email protected] Imagine your school staff repre- number, various classrooms: several all the time. In contrast, coming to a sented by a stack of playing cards. middle school math teachers of rela- CFG coaches’ training, especially an There are a variety of metaphors you tively equal power working together “open” training with educators of all might choose here, but for instance, on shared curricula, for example. sorts, is the perfect opportunity to let’s have the number cards represent Since most of us are familiar with get vastly different perspectives on grade levels, the suits (hearts, spades, this sort of working group, I have a one’s problems that pushes each one’s clubs, diamonds) represent subject question for you. How many times thinking beyond the silo of their usual matter, and the face cards (king, have you sat in a committee meeting interactions. queen, jack) represent administrators. and, when a problem is introduced, For the sake of discussion, let’s You might even identify a “joker” or you have a pretty good idea of who will stay temporarily with our imaginary two. Depending on the context of the speak first, who may not speak at all, cohort of 15 literacy coaches from the “game,” you might even find a few and approximately what every speaker same district. In that training, when “wild cards” among your colleagues. -
Flexible Games by Which I Mean Digital Game Systems That Can Accommodate Rule-Changing and Rule-Bending
Let’s Play Our Way: Designing Flexibility into Card Game Systems Gifford Cheung A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2013 Reading Committee: David Hendry, Chair David McDonald Nicolas Ducheneaut Jennifer Turns Program Authorized to Offer Degree: Information School ©Copyright 2013 Gifford Cheung 2 University of Washington Abstract Let’s Play Our Way: Designing Flexibility into Card Game Systems Gifford Cheung Chair of the Supervisory Committee: Associate Professor David Hendry Information School In this dissertation, I explore the idea of designing “flexible game systems”. A flexible game system allows players (not software designers) to decide on what rules to enforce, who enforces them, and when. I explore this in the context of digital card games and introduce two design strategies for promoting flexibility. The first strategy is “robustness”. When players want to change the rules of a game, a robust system is able to resist extreme breakdowns that the new rule would provoke. The second is “versatility”. A versatile system can accommodate multiple use-scenarios and can support them very well. To investigate these concepts, first, I engage in reflective design inquiry through the design and implementation of Card Board, a highly flexible digital card game system. Second, via a user study of Card Board, I analyze how players negotiate the rules of play, take ownership of the game experience, and communicate in the course of play. Through a thematic and grounded qualitative analysis, I derive rich descriptions of negotiation, play, and communication. I offer contributions that include criteria for flexibility with sub-principles of robustness and versatility, design recommendations for flexible systems, 3 novel dimensions of design for gameplay and communications, and rich description of game play and rule-negotiation over flexible systems. -
Examining Different Strategies for the Card Game Sueca
Universiteit Leiden Opleiding Informatica & Economie Examining different strategies for the card game Sueca Name: Vanessa Lopes Carreiro Date: July 13, 2016 1st supervisor: Walter Kosters 2nd supervisor: Rudy van Vliet BACHELOR THESIS Leiden Institute of Advanced Computer Science (LIACS) Leiden University Niels Bohrweg 1 2333 CA Leiden The Netherlands Examining different strategies for the card game Sueca Vanessa Lopes Carreiro Abstract Sueca is a point-trick card game with trumps popular in Portugal, Brazil and Angola. There has not been done any research into Sueca. In this thesis we will study the card game into detail and examine different playing strategies, one of them being basic Monte-Carlo Tree Search. The purpose is to see what strategies can be used to play the card game best. It turns out that the basic Monte-Carlo strategy plays best when both team members play that strategy. i ii Acknowledgements I would like to thank my supervisor Walter Kosters for brainstorming with me about the research and support but also for the conversations about life. It was a pleasure working with him. I am also grateful for Rudy van Vliet for being my second reader and taking time to read this thesis and providing feedback. iii iv Contents Abstract i Acknowledgements iii 1 Introduction 1 2 The game 2 2.1 The deck and players . 2 2.2 The deal . 3 2.3 Theplay ................................................... 3 2.4 Scoring . 4 3 Similar card games 5 3.1 Klaverjas . 5 3.2 Bridge . 6 4 How to win Sueca 7 4.1 Leading the first trick . -
Solving an Esoteric Card Game with Reinforcement Learning
Solving an Esoteric Card Game with Reinforcement Learning Andrew S. Dallas Stanford University, Stanford, CA, 94305 A learning strategy was developed to learn optimal policies for the card game Somerset and to develop a prediction of what score to expect given an initial hand. Somerset is a trick- taking, imperfect information game similar to the game Euchre. The state and action space of the game is intractably large, so an approximation to the state and action space is used. A Q- learning algorithm is used to learn the policies and impact of using eligibility traces on the learning algorithm’s performance is examined. The learning algorithm showed moderate improvement over a random strategy, and the learned Q-values revealed predictions that could be made on the final score based on the opening deal. I. Introduction Somerset is a four-player, trick-taking card game similar to Euchre. The game has a variety of decisions that must be made with imperfect information. This work aims to find an ideal decision-making strategy for the game that can be used to inform and estimate how a player might perform once the cards have been dealt. The rules to the game will be described here briefly to provide context for the methodology employed, and a more detailed set of rules can be found in Ref. [1]. Somerset is played with a custom deck of cards. Instead of traditional suits of hearts and spades, there are numerical suits of 2, 4, 6, 8, 10, and 12. There are n+1 cards of each numerical suit n with unique numerator non-negative integers up to the suit value denominator. -
Kirby What If Culture Was Nature
What if Culture was Nature all Along? 55242_Kirby.indd242_Kirby.indd i 222/12/162/12/16 44:59:59 PPMM New Materialisms Series editors: Iris van der Tuin and Rosi Braidotti New Materialisms asks how materiality permits representation, actualises ethi- cal subjectivities and innovates the political. The series will provide a discursive hub and an institutional home to this vibrant emerging fi eld and open it up to a wider readership. Editorial Advisory board Marie-Luise Angerer, Karen Barad, Corinna Bath, Barbara Bolt, Felicity Colman, Manuel DeLanda, Richard Grusin, Vicki Kirby, Gregg Lambert, Nina Lykke, Brian Massumi, Henk Oosterling, Arun Saldanha Books available What if Culture was Nature all Along? Edited by Vicki Kirby Critical and Clinical Cartographies: Architecture, Robotics, Medicine, Philosophy Edited by Andrej Radman and Heidi Sohn Books forthcoming Architectural Materialisms: Non-Human Creativity Edited by Maria Voyatzaki 55242_Kirby.indd242_Kirby.indd iiii 222/12/162/12/16 44:59:59 PPMM What if Culture was Nature all Along? Edited by Vicki Kirby 55242_Kirby.indd242_Kirby.indd iiiiii 222/12/162/12/16 44:59:59 PPMM Edinburgh University Press is one of the leading university presses in the UK. We publish academic books and journals in our selected subject areas across the humanities and social sciences, combining cutting-edge scholarship with high editorial and production values to produce academic works of lasting importance. For more information visit our website: edinburghuniversitypress.com © editorial matter and organisation -
Copyrighted Material
37_599100 bindex.qxd 8/31/05 8:21 PM Page 353 Index basics of card games. See Ninety-Nine, 143–148 • A • also card games; cards Oh Hell!, 137–138 Accordion, 22–26 deck of cards, 10 Partnership Auction aces around, 205, 222 etiquette for playing, 17 Pinochle, 220–221 Alexander the Great (La playing a game, 14–17 Setback, 227–228 Belle Lucie), 31–35 preparing to play, 11–14 Spades, 163–169, 171 all pass (in President), 255 ranking card order, 11 big blind (in Poker), 285 allin (in Poker), 287 selecting a game, 17–19 Black Jack (Switch), American Contract Bridge Beggar My Neighbor (Beat 108–110 League (Web site), 185 Your Neighbor Out of Black Maria, 199 American Cribbage Con- Doors), 45–47 Black Peter card, 57 gress (Web site), 252 beggars (in President), 256 Blackjack Animals, 49–50 beginning to play. See basics aces and going high or announcement, 13 of card games low, 276–277 ante, 112, 285, 302 Benny (Best Bower), 154 betting in Casino auction (in Bridge), 13, 185 bets Blackjack, 271–272 Auction Pinochle anteing up (in Poker), 285 betting in Social bidding, 211–212, 213–214, bidding versus, 13 Blackjack, 265–266 218–219 calling (in Poker), 286 card values, 264 conceding your hand, 219 opening (in Poker), Casino Blackjack, 271–277 dealing, 212 294–296 croupiers, shoes, banks, discarding, 214–215 out of turn (in Poker), 288 pit bosses, 271 kitty, 212, 215–216 seeing (in Poker), 286 dealing in Casino Black- melds, 214–215 Bid Whist, 133–134 jack, 272–273 scoring, 216–218 bidding dealing in Social Black- strategies for play, betting versus, 13 jack, 263, 264–265 218–219 blind nil, 164, 167–168 doubling down, 275 Authors, 53–54 defined, 13 five or sixcard tricks, 269 dropping, 214 kibitzer, 271 listening to, 348 naturals, 267, 268 • B • for nil (zero), 164, origin of, 265 166–169, 171 paying players, 268 balanced hands (in COPYRIGHTED MATERIAL overbids, 214 selecting banker/ Spades), 166 safe, 214 dealer, 263 banker (in Blackjack), shooting the moon, Social Blackjack, 263–270 263–264, 266, 268, 271 196–197, 230, 234 splitting cards, 266, banking card games. -
A Fast Mental Poker Protocol
J. Math. Cryptol. 6 (2012), 39–68 DOI 10.1515/jmc-2012-0004 © de Gruyter 2012 A fast mental poker protocol Tzer-jen Wei and Lih-Chung Wang Communicated by Kwangjo Kim Abstract. In this paper, we present a fast and secure mental poker protocol. The basic structure is the same as Barnett & Smart’s and Castellà-Roca’s protocols but our encryp- tion scheme is different. With this alternative encryption scheme, our shuffle is not only twice as fast, but it also has different security properties. As such, Barnett & Smart’s and Castellà-Roca’s security proof cannot be applied to our protocol directly. Nevertheless, our protocol is still provably secure under the DDH assumption. The only weak point of our protocol is that reshuffling a small subset of cards might take longer than Barnett & Smart’s and Castellà-Roca’s protocols. Therefore, our protocol is more suitable for card games such as bridge, most poker games, mahjong, hearts, or black jack, which do not require much partial reshuffling. Keywords. Mental poker, DDH assumption. 2010 Mathematics Subject Classification. 94A60, 68M12. 1 Introduction 1.1 Mental poker Mental poker is the study of protocols that allow players to play fair poker games over the net without a trusted third party. There are very few assumptions about the behavior of adversaries in mental poker. Adversaries are typically allowed to have a coalition of any size and can conduct active attacks. The main challenge is to design a secure mental poker protocol that is fast enough for practical needs. Numerous mental poker protocols have been proposed ([4,5,10–12,17,18,20,25,26,28,30,34–36]) and many of them are provably secure, but all commercial online poker rooms are still based on client-server architec- tures. -
The Penguin Book of Card Games
PENGUIN BOOKS The Penguin Book of Card Games A former language-teacher and technical journalist, David Parlett began freelancing in 1975 as a games inventor and author of books on games, a field in which he has built up an impressive international reputation. He is an accredited consultant on gaming terminology to the Oxford English Dictionary and regularly advises on the staging of card games in films and television productions. His many books include The Oxford History of Board Games, The Oxford History of Card Games, The Penguin Book of Word Games, The Penguin Book of Card Games and the The Penguin Book of Patience. His board game Hare and Tortoise has been in print since 1974, was the first ever winner of the prestigious German Game of the Year Award in 1979, and has recently appeared in a new edition. His website at http://www.davpar.com is a rich source of information about games and other interests. David Parlett is a native of south London, where he still resides with his wife Barbara. The Penguin Book of Card Games David Parlett PENGUIN BOOKS PENGUIN BOOKS Published by the Penguin Group Penguin Books Ltd, 80 Strand, London WC2R 0RL, England Penguin Group (USA) Inc., 375 Hudson Street, New York, New York 10014, USA Penguin Group (Canada), 90 Eglinton Avenue East, Suite 700, Toronto, Ontario, Canada M4P 2Y3 (a division of Pearson Penguin Canada Inc.) Penguin Ireland, 25 St Stephen’s Green, Dublin 2, Ireland (a division of Penguin Books Ltd) Penguin Group (Australia) Ltd, 250 Camberwell Road, Camberwell, Victoria 3124, Australia -
6Upcards.Pdf
A Deck of Cards • A deck consists of 52 cards Algorithms for Cards • A card has a – Suit: spades, clubs, hearts, or diamonds – Value: 2, 3, 4, ..., 10, Jack, Queen, King, or Ace ♠ ♣ ♦ ♥ • The algorithms we discuss can be made to work with any number of cards Algorithms Come First Some Card Concerns • We'll look at some common card • We'll consider three things manipulations and then simulate them – How can we sort cards in order from • This will help us design classes for smallest to largest (or from largest to representing cards smallest)? – How can you cut a deck of cards? • Rule of thumb: first work out your – How can you shuffle a deck of cards? algorithms by hand, and then use your understanding of them to design good • Each of these questions lead to programs interesting computer science questions Sorting Your Hand Sorting: Method 1 • Deal 7 cards 4♣ T♠ Q♦ 4♥ 9♦ J♦ A♦ • Put the smallest – Ignore suits (for card in your hand 4♣ T♠ Q♦ 4♥ 9♦ J♦ A♦ now!) face-up on the table – Aces are high • Repeat this until all • Put them into sorted your cards are on order, lowest to 4♣ 4♥ 9♦ T♠ J♦ Q♦ A♦ the table ♣ ♥ ♦ ♠ ♦ ♦ ♦ highest, left to right or • Pick up your cards, 4 4 9 T J Q A • Try it! How do you 4♥ 4♣ 9♦ T♠ J♦ Q♦ A♦ they're now sorted! do it? Sorting: Method 2 Two Sorting Methods • Divide your hand into • Method 1 is called selection sort ♣ ♠ ♦ ♥ ♦ ♦ ♦ a sorted and 4 T Q 4 9 J A • Method 2 is called insertion sort unsorted part • Put the smallest card • Both of these algorithms are good for from the unsorted sorting small numbers of objects part onto the end of – If you're sorting thousands or millions of the sorted part 4♣ 4♥ 9♦ T♠ J♦ Q♦ A♦ things, these methods are too slow • Repeat until all your – There are faster ways to sort: quicksort, cards are sorted mergesort, heapsort, etc. -
Coherent Electron Transport in Triple Quantum Dots
Coherent Electron Transport in Triple Quantum Dots Adam Schneider Centre for the Physics of Materials Department of Physics McGill University Montreal. Quebec Canada A Thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science © Adam Schneider. 2008 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de ['edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-53766-4 Our file Notre reference ISBN: 978-0-494-53766-4 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. -
Who Would Have Thought Card Shuffling Was So Involved?
Who would have thought card shuffling was so involved? Leah Cousins August 26, 2019 Abstract In this paper we present some interesting mathematical results on card shuffling for two types of shuffling: the famous riffle shuffle and the random-to-top shuffle. A natural question is how long it takes for a deck to be randomized under a particular shuffling technique. Mathematically, this is the mixing time of a Markov chain. In this paper we present these results for both the riffle shuffle and the random-to-top shuffle. For the same two shuffles, we also include natural results for card shuffling which directly relate to well-known combinatorial objects such as Bell numbers and Young tableaux. Contents 1 Introduction 2 2 What is Card Shuffling, Really? 3 2.1 Shuffles are Bijective Functions . .3 2.2 Random Walks and Markov Chains . .4 2.3 What is Randomness? . .5 2.4 There are even shuffle algebras ?.........................6 3 The Riffle Shuffle 7 3.1 The Mixing Time . .8 3.2 Riffle Shuffling for Different Card Games . 11 3.3 Carries and Card Shuffles . 14 4 The Random-to-top Shuffle 17 4.1 Lifting Cards . 17 4.2 Properties of the Lifting Process . 18 4.3 Bell Numbers and the Random-to-top Shuffle . 18 4.4 Young Diagrams . 22 4.5 The Mixing Time . 29 5 Concluding Remarks 36 1 1 Introduction Humans have been shuffling decks of cards since playing cards were first invented in 1000AD in Eastern Asia [25]. It is unclear when exactly card shuffling theory was first studied, but since card shuffling theory began with magicians' card tricks, it is fair to think that it was around the time that magicians were studying card tricks.