Shorter Contributions to C*L Y •

Total Page:16

File Type:pdf, Size:1020Kb

Shorter Contributions to C*L Y • Shorter Contributions to C*L y • GEOLOGICAL Shorter Contributions to Mineralogy and Petrology, 1979 The Vermilion Granitic Complex—A New Name for Old Rocks in Northern Minnesota By D. L. SOUTHWICK and P. K. SIMS Potassium-Argon Ages from the Mount Taylor Volcanic Field, New Mexico By PETER W. LIPMAN and HARALD H. MEHNERT Crystals of Coexisting Alunite and Jarosite, Goldfield, Nevada By WILLIAM J. KEITH, LEWIS CALK, and R. P. ASHLEY Zeolitization of Tertiary Tuffs in Lacustrine and Alluvial Deposits in the Ray- San Manuel Area, Pinal and Gila Counties, Arizona By MEDORA H. KRIEGER Drake Peak-A Structurally Complex Rhyolite Center in Southeastern Oregon By RAY E. WELLS Palladium, Platinum, and Rhodium Concentrations in Mafic and Ultramafic Rocks from the Zhob Valley and Dargai Complexes, Pakistan By NORMAN J. PAGE, JOSEPH HAFFTY, and ZAKI AHMAD GEOLOGICAL SURVEY PROFESSIONAL PAPER 1124-A-F UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1980 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Meiiard, Director Library of Congress catalog-card No. 79-600186 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-03247-3 CONTENTS [Letters designate the chapters] (A) The Vermilion Granitic Complex—A New Name for Old Rocks in Northern Minnesota, by D. L. Southwick and P. K. Sims (B) Potassium-Argon Ages from the Mount Taylor Volcanic Field, New Mexico, by Peter W. Lipman and Harald H. Mehnert (C) Crystals of Coexisting Alunite and Jarosite, Goldfield, Nevada, by William J. Keith, Lewis Calk, and R. P. Ashley (D) Zeolitization of Tertiary Tuffs in Lacustrine and Alluvial Deposits in the Ray-San Manuel Area, Final and Gila Counties, Arizona, by Medora H. Krieger (E) Drake Peak-A Structurally Complex Rhyolite Center in Southeastern Oregon, by Ray E. Wells (F) Palladium, Platinum, and Rhodium Concentrations in Mafic and Ultramafic Rocks from the Zhob Valley and Dargai Complexes, Pakistan, by Norman J. Page, Joseph Haffty, and Zaki Ahmad CONVERSION FACTORS Metric unit Inch-Pound equivalent Metric unit Inch-Pound equivalent Length Specific combinations— Continued millimeter (mm) = 0.03937 inch (in) liter per second (L/s) = .0353 cubic foot per second meter (m) = 3.28 feet (ft) cubic meter per second = 91.47 cubic feet per second per kilometer (km) = .62 mile (mi) per square kilometer square mile [(ft3/s)/mi2] [(mVs)/km2] meter per day (m/d) = 3.28 feet per day (hydraulic Area conductivity) (ft/d) square meter (m2) = 10.76 square feet (ft2) meter per kilometer = 5.28 feet per mile (ft/mi) square kilometer (km2 ) = .386 square mile (mi2 ) (m/km) hectare (ha) = 2.47 acres kilometer per hour — .9113 foot per second (ft/s) Volume (km/h) meter per second (m/s) — 3.28 feet per second cubic centimeter (cm3 ) = 0.061 cubic inch (in3) meter squared per day = 10.764 feet squared per day (ft2/d) liter (L) = 611.03 cubic inches (m2/d) (transmissivity) cubic meter (m3) = 35.31 cubic feet (ft») cubic meter per second = 22.826 million gallons per day cubic meter = .00081 acre-foot (acre-ft) (m.3/s) (Mgal/d) cubic hectometer (hm3) = 810.7 acre-feet liter = 2.113 pints (pt) cubic meter per minute = 264.2 gallons per minute (gal/min) liter = 1.06 quarts (qt) (m3/min) liter = .26 gallon (gal) liter per second (L/s) = 15.85 gallons per minute cubic meter = .00026 million gallons (Mgal or liter per second per = 4.83 gallons per minute per foot 109 gal) meter [(L/s)/m] [(gal/min) /ft] cubic meter = 6.290 barrels (bbl) (1 bbl = 42 gal) kilometer per hour — .62 mile per hour (mi/h) Weight (km/h) meter per second (m/s) — 2.237 miles per hour gram (g) = 0.035 ounce, avoirdupois (oz avdp) gram per cubic = 62.43 pounds per cubic foot (Ib/ft3) gram ;= .0022 pound, avoirdupois (Ib avdp) centimeter (g/crn3 ) metric tons (t) = 1.102 tons, short (2,000 Ib) gram per square = 2.048 pounds per square foot (lb/ft2) metric tons = 0.9842 ton, long (2,240 Ib) centimeter (g/cm2 ) gram per square = .0142 pound per square inch (lb/in2) Specific combinations centimeter kilogram per square _ 0.96 atmosphere (atm) centimeter (kg/ cm2 ) Temperature kilogram per square — .98 bar (0.9869 atm) centimeter degree Celsius (°C) = 1.8 degrees Fahrenheit (°F) cubic meter per second = 35.3 cubic feet per second (ft3/s) degrees Celsius = [(1.8X°C)+32] degrees Fahrenheit (m3/s) (temperature) The Vermilion Granitic Complex A New Name for Old Rocks in Northern Minnesota By D. L. SOUTHWICK and P. K. SIMS SHORTER CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 1979 GEOLOGICAL SURVEY PROFESSIONAL PAPER 1 1 2 4 - A Prepared with the cooperation of the Minnesota Geological Survey CONTENTS Page Abstract _______________________________________ — ____-- A! Introduction ______________________________________________________________ 1 Subdivisions of the Vermilion Granitic Complex ______________-___-_----_— 4 Note on the terminology of migmatites _______________ — _______________ 5 Lac La Croix Granite ___________________________ — ______ — _______ 5 Granite-rich migmatite related to the Lac La Croix Granite _____ — _______ 6 Schist-rich migmatite related to the Lac La Croix Granite _____ — __ — _____ 7 Amphibolite and amphibolite migmatite _______________ — ______ — — _____ 7 Intrusive rocks that are geologically older than the Lac La Croix Granite __ 8 Migmatite geologically older than the gray granodiorite __________________ 8 Burntside Gneiss _________________________________________________ 8 Biotite schist _____________________________________________________ 9 Pegmatite _________________________________________________ — _____— 9 Age of the complex _________________________________ ——— _——— 10 References cited __________________________________________________ 10 ILLUSTRATIONS Page FIGURE 1. Generalized geologic map, showing the Vermilion Granitic Complex ________________________________ A2 2. Schematic diagram of the interrelationships among the lithologic subdivisions of the Vermilion Granitic Complex __________________________________________________________________________________ 4 TABLES Page TABLE 1. Average modal composition of the Lac La Croix Granite and neosome of granite-rich migmatite _________ A6 2. Chemical analyses of the Lac La Croix Granite (includes neosome of granite-rich migmatite) _______ 6 3. Average modal composition of gray granodiorite, tonalite, and trondhjemite _______________ 8 4. Chemical analyses of gray granodiorite and trondhjemite, including the Burntside Gneiss ____________ 9 in SHORTER CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 1979 THE VERMILION GRANITIC COMPLEX— A NEW NAME FOR OLD ROCKS IN NORTHERN MINNESOTA By D. L. SouTHWiCK1 and P. K. SIMS ABSTRACT Granite as defined by Grout 1923) ; it includes some The name Vermilion Granitic Complex is introduced for rocks previously included in the abandoned terms the heterogeneous granitic and migmatitic rocks of Archean "Vermilion series, Vermilion schist, and Vermilion (formerly called Precambrian W) age that occur north of the Vermilion district and south of the Kabetogama peninsula in group," as used by Winchell and Winchell (1887, northern Minnesota. The complex consists of the following p. 4, 192, 355, 357) and Van Hise and Clements subdivisions: Lac La Croix Granite, granite-rich migmatite, (1901). schist-rich migmatite, quartz-feldspar gneiss, hornblende The greater part of the Vermilion Granitic Com­ quartz diorite and diorite, granodiorite and trondhjemite, amphibolite and amphibolite migmatite, older migmatite, bio- plex consists of pink to grayish-pink biotite granite tite schist, Burntside Gneiss, and pegmatite. Because the (as classified by Streckeisen (1973) and as used by name Vermilion Granitic Complex is proposed as a more Minnesota geologists for decades), and genetically inclusive group term, the more restricted name Vermilion associated granite-rich migmatite. These rocks con­ Granite (Grout, 1923) is hereby abandoned. The new name stitute the Vermilion Granite of Grout (1923). Lac La Croix Granite is proposed for the uniform, light-pink biotite granite that occurs widely in the eastern and central Within the area dominated by granite, lesser vol­ parts of the complex. It is denned as having less than 5 per­ umes of other igneous and metamorphic rocks are cent of schistose or gneissic inclusions and is therefore more intimately involved with the granite; moreover, on restricted than the Vermilion Granite of Grout (1926), which the north and west the granitic terrane passes gra- included sustantial amounts of migmatitic rocks. The name dationally through migmatites rich in schist into Burntside Gneiss is adopted as a replacement for the older term Burntside Granite Gneiss, originally named by Grout nonmigmatized biotite schist. We view the minor (1926). This change is required by the conclusion that the lithologies within and the migmatite around the rock is a metamorphosed dacite and not a metamorphosed granitic terrane to be logically parts of a larger rock granite, as formerly interpreted. body. Accordingly, we recommend the Vermilion Granite as used by Grout (1923) be elevated in rank INTRODUCTION and broadened to the Vermilion Granitic Complex, The name Vermilion Granitic Complex is pro­ as described below. The complex is named for the posed for the heterogeneous granitic and migmatitic Vermilion River, along which most of its lithologic rocks of Archean (formerly called Precambrian W) subdivisions are exposed. age that occur niorth of the Vermilion district and The northern boundary
Recommended publications
  • Tectono-Metamorphic Evolution and Timing of The
    TECTONO-METAMORPHIC EVOLUTION AND TIMING OF THE MELTING PROCESSES IN THE SVECOFENNIAN TONALITE-TRONDHJEMITE MIGMATITE BELT: AN EXAMPLE FROM LUOPIOINEN, TAMPERE AREA, SOUTHERN FINLAND H. MOURI, K. KORSMÄN and H. HUHMA MOURI, H., KORSMAN, K. and HUHMA. H. 1999. Tectono-metamorphic evolution and timing of the melting processes in the Svecofennian Tonalite- Trondhjemite Migmatite Belt: An example from Luopioinen, Tampere area, southern Finland. Bulletin of the Geological Society of Finland 71, Part 1, 31- 56. The Svecofennian Orogen is in southern Finland characterized by two major migmatite belts. These are the so-called Granite Migmatite Belt, in which Kfs- rich leucosomes predominate, and the Tonalite-Trondhjemite Migmatite Belt, which is characterized by Kfs-poor leucosomes and borders the former belt in the north. The present paper deals with selected migmatitic rocks from the lat- ter belt. It is aimed to study the temporal and structural relationships of the dif- ferent leucosome generations, and to establish the pressure-temperature-time paths of this belt. The Tonalite-Trondhjemite Migmatite Belt consists mainly of migmatitic rocks with various types of synorogenic granitoids and minor mafic and ultramafic rocks. The mesosome of the migmatites consist of garnet-sillimanite-biotite-pla- gioclase-cordierite-quartz assemblages with rare K-feldspar and late andalusite. The oldest leucosomes are dominated by plagioclase and quartz, and the con- tent of K-feldspar increases in later leucosomes. Microtextural analysis in con- junction with THERMOCALC calculations and geothermometry shows that these rocks were metamorphosed at peak conditions of 700-750°C at 4-5 kbar and aH,0 = 0.4-0.7.
    [Show full text]
  • Field Trip Guide: a Profile from Migmatites to Spodumene Pegmatites (Styria, Austria) 1-29
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Berichte der Geologischen Bundesanstalt Jahr/Year: 2019 Band/Volume: 134 Autor(en)/Author(s): Schuster Ralf, Knoll Tanja, Mali Heinrich, Huet Benjamin, Griesmeier Gerit E. U. Artikel/Article: Field trip guide: A profile from migmatites to spodumene pegmatites (Styria, Austria) 1-29 Field trip guide: A profile from migmatites to spodumene pegmatites (Styria, Austria) 7th April 2019 St. Radegund, Austria RALF SCHUSTER, TANJA KNOLL, HEINRICH MALI, BENJAMIN HUET & GERIT E.U. GRIESMEIER Berichte der Geologischen Bundesanstalt, 134 ISSN 1017-8880 Field trip guide: A profile from migmatites to spodumene pegmatites (Styria, Austria) Ralf Schuster, Tanja Knoll, Heinrich Mali, Benjamin Huet & Gerit E.U. Griesmeier Ralf Schuster, Tanja Knoll, Benjamin Huet & Gerit E.U. Griesmeier: Geologische Bundesanstalt, Neulinggasse 38, 1030 Vienna, Austria. Heinrich Mali: Montanuniversität Leoben, Department Applied Geosciences and Geophysics, Peter-Tunner-Straße 5, 8700 Leoben Recommended citation / Zitiervorschlag Schuster, R., Knoll, T., Mali, H., Huet, B. & Griesmeier, G.E.U. (2019): Field trip guide: A profile from migmatites to spodumene pegmatites (Styria, Austria). – Berichte der Geologischen Bundesanstalt, 134, 29 p., Vienna. Cover design: Monika Brüggemann-Ledolter (Geologische Bundesanstalt). Cover pictures: Spodumene pegmatite at Garrach (Styria, Austria) (upper picture: Christine Hörfarter, lower picture: Ralf Schuster) Wien, November 2019 Alle Rechte für das In- und Ausland vorbehalten. © Geologische Bundesanstalt, Wien Technische Redaktion: Christoph Janda Medieninhaber, Herausgeber und Verleger: Geologische Bundesanstalt, Wien Neulinggasse 38, 1030 Wien www.geologie.ac.at Druck: Riegelnik Ges.m.b.H, Piaristengasse 17–19, 1080 Wien Ziel der „Berichte der Geologischen Bundesanstalt“ ist die Verbreitung wissenschaftlicher Ergebnisse durch die Geologische Bundesanstalt.
    [Show full text]
  • Geochemistry and Genesis of Beryl Crystals in the LCT Pegmatite Type, Ebrahim-Attar Mountain, Western Iran
    minerals Article Geochemistry and Genesis of Beryl Crystals in the LCT Pegmatite Type, Ebrahim-Attar Mountain, Western Iran Narges Daneshvar 1 , Hossein Azizi 1,* , Yoshihiro Asahara 2 , Motohiro Tsuboi 3 , Masayo Minami 4 and Yousif O. Mohammad 5 1 Department of Mining Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj 66177-15175, Iran; [email protected] 2 Department of Earth and Environmental Sciences, Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan; [email protected] 3 Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda 669-1337, Japan; [email protected] 4 Division for Chronological Research, Institute for Space-Earth Environmental Research, Nagoya University, Nagoya 464-8601, Japan; [email protected] 5 Department of Geology, College of Science, Sulaimani University, Sulaimani 46001, Iraq; [email protected] * Correspondence: [email protected]; Tel.: +98-918-872-3794 Abstract: Ebrahim-Attar granitic pegmatite, which is distributed in southwest Ghorveh, western Iran, is strongly peraluminous and contains minor beryl crystals. Pale-green to white beryl grains are crystallized in the rim and central parts of the granite body. The beryl grains are characterized by low contents of alkali oxides (Na2O = 0.24–0.41 wt.%, K2O = 0.05–0.17 wt.%, Li2O = 0.03–0.04 wt.%, Citation: Daneshvar, N.; Azizi, H.; and Cs2O = 0.01–0.03 wt.%) and high contents of Be2O oxide (10.0 to 11.9 wt.%). The low contents Asahara, Y.; Tsuboi, M.; Minami, M.; of alkali elements (oxides), low Na/Li (apfu) ratios (2.94 to 5.75), and variations in iron oxide Mohammad, Y.O.
    [Show full text]
  • Migmatites & Their Origin
    MIGMATITES & THEIR ORIGIN PAPER- METAMORPHIC PETROLOGY PAPER CODE- MGELCC-7, SEMESTER- 2ND PREPARED BY: Dr. K. Bijendra Pratap Rahi. Guest Assistant Professor Department of Geology Patna University, Patna E mail ID- [email protected] MOBILE NO- 8789608216 • Definition: • Sederholm (1908) introduced the term migmatite to designate certain gneissic rocks “which look like mixed rocks”. • Coarse grained, heterogeneous and megascopically composite rocks, comprising portions of granitic material (quartz + feldspar) called leucosome, and dark coloured portions of the metamorphic rocks containing mafic minerals, e.g., biotite, garnet, sillimanite, cordierite etc., which is called melanosome. • lit-par-lit gneiss, composite gneiss, injection gneiss etc. • Field relations and Occurrence: • Migmatites are associated with metamorphic rocks of the highest temperature part of the amphibolite facies and granulite facies. • “One of the most firmly established facts in metamorphic geology is the close association in field of highest grade metamorphic rocks and migmatites” Read (1957) • This worldwide observation suggests that the spatial association of these rocks is due to processes occurring at similar temperature and pressure conditions in the deeper part of the crust and giving rise to high-grade metamorphic rocks and migmatites. • The origin of migmatites in deep seated parts of orogenic belts must be considered as directly connected with high-grade metamorphism. Origin of migmatites in light of experimental work: • Shales and greywackes are common sediments deposited in a geosyncline. • The metamorphism of these sediments was experimentally investigated by Winkler and his coworkers. • The experimental anatexis of quartz-albite-K- feldspar (granite) system was investigated by Tuttle and Bowen(1958) and their data are plotted in Fig.1.
    [Show full text]
  • Geochemical Characterization of Migmatites in Funtua Sheet 78 North-East, Scale 1:50,000 North Western Nigeria
    International Journal of Innovative Research in Education, Technology & Social Strategies p-ISSN: 2465-7298 | e-ISSN: 2467-8163 IJIRETSS Volume 7, Number 1 February, 2020 Geochemical Characterization of Migmatites in Funtua Sheet 78 North-East, Scale 1:50,000 North Western Nigeria 1Kankara, I. A. & 2Galadanchi, K. M. 1Department of Geology, Federal University Dutsin-Ma 2Department of Chemistry, Umaru Musa Yar'adua University, Katsina A b s t r a c t n this present study detailed chemical analyses for major and trace elements were done on a total of 20 samples of the rocks investigated using the AAS, IXRF and FP (Flame Photometry) The study area is shown to extend into the north western areas of northern Nigeria and even beyond. The age of D1 and D2 deformations and metamorphisms in the FTNE is therefore shown to be Pan- African. At least two geotectonic episodes or intense phases of ductile deformation were identified in the field to have affected the rocks. The rocks have been strongly foliated with crystals showing strong preferred orientations. Fresh and partly weathered rocks exhibited on the extent and effects of wall-rock alterations that must have accompanied the Pan-African orogeny. The harmonized Analytical results showed that the rocks are saturated with respect to silica, and contain moderate to elevated concentrations of Al2O3, comparable to most pelitic rocks. There appears to be no consistency in the relative concentration of Alkalis in the rocks, and this possibly indicates a mixed nature of the source materials. Both MgO and CaO compositions portray sedimentary character of the protoliths of the rocks.
    [Show full text]
  • Gneiss/ Migmatite (ID:052) GEOLOGICAL CLASSIFICATION (Genetic Classification) Introductory Gneiss: This Rock Is a Gneiss of Banded Colours
    Gneiss/ Migmatite (ID:052) GEOLOGICAL CLASSIFICATION (Genetic classification) Introductory Gneiss: This rock is a gneiss of banded colours. The lightest-colored part of rock definition (visu) corresponds to quartz and feldspars whereas whereas the darker part contains to biotite. Mig: This rock is a migmatite of banded colours. The lightest-colored part of migmatite corresponds to quartz and feldspars whereas the darker part contains to biotite. Petrologist's Gneiss: This rock is a gneiss. This banded rock present lightest-colored quartz and definition feldspars with fine to medium crystal size (0.5-1mm) whereas whereas the darker part contains to biotite of fine size. Mig: This rock is a migmatite, which is a mixture of metamorphic rock and igneous rock. It is created when a metamorphic rock that partially melts, and then that melt recrystallizes into an igneous rock, creating a mixture of the unmelted metamorphic part with the recrystallized igneous part. The lightest-colored part of migmatite (quartz and feldspars) was partially melted whereas the darker part (biotites) remnants of the more or less unmodified parent rock. Quartz and feldspars presents a fine to medium crystal size (0.5-1mm) and bioites have a fine size. Commercial In the Natural Stone Industry, this rock is known as Black Swell. definition (if any) GEOMECHANICAL CLASSIFICATION (Behavioural classification, Goodman, 1989) II. Clastic texture A. Stably cemented. DESCRIPTION OF LOCAL SAMPLE Geological Not available description of local sample Other information Not available about the outcrop Weathering grade of Not available sampling outcrop (ISRM, 1981) Location Not available ENGINEERING CLASSIFICATION OF INTACT ROCKS (General classification) ISRM classification R0 R1 R2 R3 R4 R5 R6 by strength.
    [Show full text]
  • Explanatory Notes for the Time–Space Diagram and Stratotectonic Elements Map of Tasmania
    Tasmanian Geological Survey TASMANIA DEVELOPMENT Record 1995/01 AND RESOURCES Tasgo NGMA Project Sub-Project 1: Geological Synthesis Explanatory notes for the Time–Space Diagram and Stratotectonic Elements Map of Tasmania by D. B. Seymour and C. R. Calver Tasmanian Geological Survey Record 1995/01 1 CONTENTS INTRODUCTION ..................................................................................................................... 4 KING ISLAND.......................................................................................................................... 5 ?Mesoproterozoic ............................................................................................................... 5 Neoproterozoic orogenesis and granitoid intrusive rocks ................................................ 5 ?Neoproterozoic sequences ................................................................................................ 5 Early Carboniferous granitoid intrusive rocks ................................................................ 6 ROCKY CAPE ELEMENT....................................................................................................... 7 ?Mesoproterozoic: Rocky Cape Group ............................................................................... 7 Burnie and Oonah Formations ........................................................................................ 7 Smithton Synclinorium .................................................................................................... 7 Ahrberg Group .................................................................................................................
    [Show full text]
  • Geochemical Characterisation of Anatexite Within High Grade Migmatite Complex Terrain from Ogbomoso, Southwest of the Nigerian Precambrian Basement Complex
    American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) ISSN (Print) 2313-4410, ISSN (Online) 2313-4402 © Global Society of Scientific Research and Researchers http://asrjetsjournal.org/ Geochemical Characterisation of Anatexite within High Grade Migmatite Complex Terrain from Ogbomoso, Southwest of the Nigerian Precambrian Basement Complex Adegoke Olukayode Afolabia*, Rukayat Omobolanle Lawalb, Esther Olufunmilayo Ogunmiyidec, Kolade Adeosund a,b,c,dDepartment of Earth Sciences, Ladoke Akintola University of Technology, Ogbomoso, 210214, Nigeria aEmail: [email protected] bEmail: [email protected] cEmail: [email protected] dEmail: [email protected] Abstract Migmatite rocks are complex rocks largely due to the degree of partial melting and nature of parent rocks of this rock type. Partial melting or anatexis yield metatexite and diatexite components with variable mineralogical and chemical compositions. The nature of fractionation of elements during anatexis is not clearly understood. The migmatite quartzite gneiss complex of southwestern Nigeria exposed at Ogbomoso was studied in order to constrain the geochemical character of its metatexite and diatexite components. Field mapping revealed migmatite with stromatic, surreitic and dictyonitic structures represented the metatexite while parts of the migmatite with schollen structure and granitic component represent the diatexite. Several sections of representative samples were cut and examined for mineralogical compositions. Thin section
    [Show full text]
  • Transition from Gneiss to Migmatite and the Relationship of Leucosome to Peraluminous Granodiorite in the Cooma Complex, SE Australia R.H
    Transition from gneiss to migmatite and the relationship of leucosome to peraluminous granodiorite in the Cooma Complex, SE Australia R.H. VERNON AND S.E. JOHNSON 1 School of Earth Sciences, Macquarie University Sydney, NSW 2109, Australia 1 Now at: Department of Geological Sciences, University of Maine, Orono, ME 04469-5790, USA e-mail: [email protected]; [email protected] Table of contents Abstract Introduction Field Relationships Microstructural Relationships Metamorphic History Melting of the Cooma Metapsammites Origin of the Cooma Granite Conclusions References Previous Section Home Next Section Abstract In the Cooma Complex, SE Australia, leucosomes first appear as small patches and veinlets in high-grade, muscovite-free gneisses containing cordierite, andalusite and K-feldspar. Simultaneously, fibrous sillimanite appears in discontinuous folia. The leucosomes consist of quartz, microperthitic K-feldspar and cordierite, rarely with minor andalusite or biotite. Plagioclase is absent, apart from exsolution lamellae in the K-feldspar. Breakdown of biotite probably produced the leucosomes. The leucosomes are largely confined to the metapelitic beds, which are plagioclase-poor; this explains the calcium-poor composition of the leucosomes. Most of the melting occurred during D3, which is responsible for most of the macroscopic folding in the area, though some leucosomes may predate D3. The metapelite leucosome is compositionally unsuitable as a source of the Cooma Granodiorite magma. Leucosome rich in plagioclase, which could be a source for the Cooma Granodiorite magma, was produced later (probably early during D5) by partial melting of quartzofeldspathic metapsammitic rocks. It intrudes and disaggregates the metapelitic leucosomes, confirming that melting of the local metapelites did not produce the Cooma Granodiorite.
    [Show full text]
  • Geochemical Characteristics of Crustal Anatexis During the Formation of Migmatite at the Southern Sierra Nevada, California
    Contrib Mineral Petrol (2005) DOI 10.1007/s00410-005-0010-2 ORIGINAL PAPER Lingsen Zeng Æ Jason B. Saleeby Æ Mihai Ducea Geochemical characteristics of crustal anatexis during the formation of migmatite at the Southern Sierra Nevada, California Received: 6 October 2003 / Accepted: 10 March 2005 Ó Springer-Verlag 2005 Abstract We provide data on the geochemical and iso- tively high Rb, Pb, Ba, and K2O contents, Rb/Sr ratios topic consequences of nonmodal partial melting of a (0.15<Rb/Sr<1.0), and initial eNd values . Group B thick Jurassic pelite unit at mid-crustal levels that pro- leucosomes have relatively low Rb, Pb, Ba, and K2O duced a migmatite complex in conjunction with the contents, Rb/Sr ratios (<0.15), and initial eNd values. intrusion of part of the southern Sierra Nevada batho- The low Rb concentrations and Rb/Sr ratios of the lith at ca. 100 Ma. Field relations suggest that this pelitic group B leucosomes together suggest that partial melting migmatite formed and then abruptly solidified prior to was dominated by water-saturated or H2O-fluxed melt- substantial mobilization and escape of its melt products. ing of quartz + feldspar assemblage with minor Hence, this area yields insights into potential mid-crustal involvement of muscovite. Breakdown of quartz and level contributions of crustal components into Cordil- plagioclase with minor contributions from muscovite leran-type batholiths. Major and trace-element analyses resulted in low Rb/Sr ratios characterizing both group A in addition to field and petrographic data demonstrate and group B leucosomes. In contrast, group A leuco- that leucosomes are products of partial melting of the somes have greater contributions from K-feldspar, pelitic protolith host.
    [Show full text]
  • Rocks and Geology in the San Francisco Bay Region
    Rocks and Geology in the San Francisco Bay Region ������� ����� ��������� �������� ���� ������ ��� ��������� �������� ��������� �������� ������ ������ ������ ����� ����� ������ ����������� ����� ����������� ����� ��������� ������������ ���� ���� ������� ���� ������ ���� ������� �������� ������ ��� ����� �� ����� ������ ��� ����� ������ Bulletin 2195 U.S. Department of the Interior U.S. Geological Survey This page intentionally left blank Rocks and Geology in the San Francisco Bay Region By Philip Stoffer Bulletin 2195 U.S. Department of the Interior U.S. Geological Survey 1 U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. U.S. Geological Survey, Reston, Virginia: 2002 Electronic copies of this publication are available online at http://geopubs.wr.usgs.gov/bulletin/b2195/ Additional USGS publications can be found online at http://geology.usgs.gov/products.html For more information about the USGS and its products: Telephone: 1-888-ASK-USGS (1–888–275–8747) World Wide Web: http://www.usgs.gov/ Published in the Western Region, Menlo Park, California Manuscript approved for publication, September 30, 2002 Text and illustrations edited by James W. Hendley II Production and design by Susan Mayfield III Contents Introduction..............................................................................................................................................................
    [Show full text]
  • Structural Development of Migmatites Near Skåldö, Southwest Finland
    STRUCTURAL DEVELOPMENT OF MIGMATITES NEAR SKÅLDÖ, SOUTHWEST FINLAND A. M. HOPGOOD, D. R. BOWES and J. ADDISON HOPGOOD, A. M., BOWES, D, R, and ADDISON, J. 1976: Structural development of migmatites near Skåldö, southwest Finland. Bull. Geol. Soc. Finland 48, 43—62. The migmatites of the Skåldö area show the effects of an extensive polyphase deformational history at relatively deep crustal levels during the Svecokarelian episode. Despite the complexity of the fold patterns it is possible to establish a deformational sequence into which the many phases of igneous emplacement in the rocks can be placed. There are at least seven successive fold sets and a number of phases of both basic and acidic igneous activity as well as the effects of metamorphism which reached a peak, under amphibolite facies conditions, early in the deformational history. Taken together the various features comprise a complex framework which can be used as a basis for comparison and correlation with the products of the Svecokarelian orogenic episode in other parts of the Baltic Shield. The characteristics of these migmatites in this classic area, viz. their »mixed» aspect as described by J. J. Sederholm, is shown to result from their extensive deformational, metamorphic and igneous history in which tectonic and igneous activity played prominent roles. A. M. Hopgood, Department of Geology, University of St. Andrews, Fife, KY 16 9TS, Scotland. D. R. Bowes and J. Addison, Department of Geology, University of Glasgow, G12 8QQ, Scotland. Introduction it is evident that the migmatites also have undergone popyphase deformation and mul- In southwest Finland, a classic region for tiple igneous injection.
    [Show full text]