Fullerene Nanoparticle Counter Using Quartz Crystal Microbalance National Exposure Research Laboratory U.S

Total Page:16

File Type:pdf, Size:1020Kb

Fullerene Nanoparticle Counter Using Quartz Crystal Microbalance National Exposure Research Laboratory U.S Fullerene Nanoparticle Counter Using Quartz Crystal Microbalance National Exposure Research Laboratory U.S. Environmental Protection Agency Katrina Varner presenting Photo image area measures 2” H x 6.93” W and can be masked by a collage strip of one, two or three images. The photo image area is located 3.19” from left and 3.81” from top of page. Each image used in collage should be reduced or cropped to a maximum of 2” high, stroked with a 1.5 pt white frame and positioned edge-to-edge with accompanying images. Office of Research and Development National Exposure Research Laboratory Project Goals • Our research addresses the issues of how best to apply identification, quantitation, and size characterization of fullerene nanomaterials in environmental media which is key to: – establishing a baseline for the distribution of these materials and trends in concentration as engineered nanomaterials are increasingly introduced into the environment – understanding transport and fate of fullerene nanomaterials, as well dose metrics for exposure, bioaccumulation, and toxicity studies – providing inputs to environmental models, as well as verification of those models – monitoring environmental concentration and migration of fullerenes used in remediation. • Electrochemical project goals: • Conduct electrochemical detection analysis (a highly sensitive and rapid method) to measure: – mass change – charge change – current potential – resistance change Office of Research and Development 1 National Exposure Research Laboratory Approach • Directly monitor double-gyroid nanostructured material (DGN) polymers for: – Chemical interactions – Time-dependent changes in series resonant frequency using QCM sensor –Quantity of nanomaterial comparison via TEM and HRSEM (I) Toluene 0.7 (II)Toluene+424 ng C60 (III)Toluene + 212 ng C70 0.6 0.5 0.4 0.3 (III) Absorbance(AU) 0.2 0.1 (II) 0 (I) -0.1 270 320 370 420 470 520 570 wavelength(nm) Office of Research and Development 2 National Exposure Research Laboratory Method • Explore the solubility & electrochemistry of fullerenes by manipulating electrochemical properties in order to develop an electrochemical detection method. Sensor design protocol scheme Office of Research and Development 3 National Exposure Research Laboratory 89569000 QCM-S-(CH2)2 –CO-NH--CD + CONTROL(TOLUENE) 89568000 t=60 min 89567000 Figure shows : QCM (Au)-S –(CH2)2- t=30 CONH- –CD frequency vs. Time changes 89566000 ϐ A of (A) 1.9 mM C60 Freq.Hz in presence of 200 μL 89565000 t=0 in toluene and (B) absence of C60 (toluene 89564000 only) 89563000 0 200 400 600 800 Time(s) 89744800 QCM-S-(CH2)2 –CO-NH--CD + C60 89744600 89744400 t=0 min 89744200 89744000 B 89743800 t=30 min Freq.Hz 89743600 89743400 t=60 min 89743200 89743000 89742800 0 200 400 600 800 Office of Research and Development 4 National Exposure Research Laboratory Time(s) 2000 C70 y 0 Control -2000 -4000 -6000 -8000 -10000 -12000 C60 Change in Frequenc in Change -14000 0 100 200 300 400 500 600 700 Time(s) Frequency vs time for QCM (Au)-S–(CH2)2-CONH-beta–CD sensor, in presence of fullerene C60, C70 and control (toluene) Office of Research and Development 5 National Exposure Research Laboratory Time of Flight Secondary Ion Mass Spectrometry False color ToF-SIMS chemical image of QCM (Au)-S-(CH2)2- CONH-beta-CD after soaking in fullerene/toluene solution (a-d) or soak in toluene solution (e-h) (a) C60 (b) Gold (Au) (c) Cyclodextrin (d) Overlay of three colored images. Colored overlay image prepared using IonImage® Software Package, scale bar added using ImageJ. Office of Research and Development 6 National Exposure Research Laboratory Implication Using a quartz crystal microbalance (QCM), one can measure fullerenes. Measurement of mass changes as well as the in-situ measurements of charge, current, potential and the resistance changes following the isolation of the particles to determine the presence of nanomaterials were identified. Determination is made by frequency decrease or mass increase used to measure the adsorption of C60 fullerenes by the beta-cyclodextrin cavity attached on the QCM. Successful demonstrations of the synthesis of ß–CD-NH2, its attachment and modification of QCM transducer via DCC/NHS chemistry were shown. The QCM sensor showed specificity to C60 extraction when compared to the control. Current work is focusing on selective surfaces for both natural and synthetic particles. Office of Research and Development 7 National Exposure Research Laboratory Acknowledgements • Samuel Kikandi, PhD under EPA Student Services Contract EP08D000465 • Professor Omowuni Sadik, PhD SUNY-Binghamton Notice: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy. Office of Research and Development 8 National Exposure Research Laboratory.
Recommended publications
  • The Era of Carbon Allotropes Andreas Hirsch
    commentary The era of carbon allotropes Andreas Hirsch Twenty-five years on from the discovery of 60C , the outstanding properties and potential applications of the synthetic carbon allotropes — fullerenes, nanotubes and graphene — overwhelmingly illustrate their unique scientific and technological importance. arbon is the element in the periodic consist of extended networks of sp3- and 1985, with the advent of fullerenes (Fig. 1), table that provides the basis for life sp2 -hybridized carbon atoms, respectively. which were observed for the first time by Con Earth. It is also important for Both forms show unique physical properties Kroto et al.3. This serendipitous discovery many technological applications, ranging such as hardness, thermal conductivity, marked the beginning of an era of synthetic from drugs to synthetic materials. This lubrication behaviour or electrical carbon allotropes. Now, as we celebrate role is a consequence of carbon’s ability conductivity. Conceptually, many other buckminsterfullerene’s 25th birthday, it is to bind to itself and to nearly all elements ways to construct carbon allotropes are also the time to reflect on a growing family in almost limitless variety. The resulting possible by altering the periodic binding of synthetic carbon allotropes, which structural diversity of organic compounds motif in networks consisting of sp3-, sp2- includes the synthesis of carbon nanotubes and molecules is accompanied by a broad and sp-hybridized carbon atoms1,2. As a in 19914 and the rediscovery of graphene range of
    [Show full text]
  • Carbon Allotropes
    LABORATORIES Lab- Carbon Allotropes Background: Carbon occurs in several different forms known as allotropes. These allotropes are characterized by differences in bonding patterns which result in substances with distinctly different properties. The three allotropes that will be studied in this lab are: graphite, diamond and fullerene. Diamonds are a colorless, crystalline solid where each carbon atom is bonded to four others in a network pattern. This bonding structure makes diamond the hardest material known. Graphite is a soft , black crystalline solid of carbon where the carbon atoms are bonded together in layers. Within each layer, each carbon atom is bonded to 3 other carbon atoms. Because the adjacent layers are held together by weak London dispersion forces graphite is very soft. The most recently discovered allotrope of carbon is the fullerene. Fullerenes are a cage like spherical structure of bonded carbon atoms. The fullerene bonding pattern resembles a soccer ball. Fullerene particles are also referred to as nanoparticles and are being explored for a variety of applications. Objective: Students will be able to: 1. Describe how elements can exist as 2 or more different structures. 2. Distinguish between different allotropes based on structural analysis and properties. 3. Analyze how the bonding structure could influence the properties. 4. Distinguish between crystalline and amorphous structures. 5. Compare and contrast the 3 different carbon allotropes. Materials: Molecular model kits digital camera Procedure: 1. Students at each lab table will work as a group using 3 model sets. 2. Build two sheets of graphite using 15 carbon atoms for each sheet 3. Take a digital picture of the model created and include it in your report 4.
    [Show full text]
  • On Photodynamic Therapy of Alzheimer's Disease Using
    Journal of Scientific Research & Reports 2(1): 206-227, 2013; Article no. JSRR.2013.015 SCIENCEDOMAIN international www.sciencedomain.org On Photodynamic Therapy of Alzheimer’s Disease Using Intrathecal Nanorobot Drug Delivery of Curcuma Longa for Enhanced Bioavailability Kal Renganathan Sharma 1* 1Lone Star College University Park20515 State Hwy 249 Houston, TX77070, USA. Author’s Contribution The only author performed the whole research work. Author KRS wrote the first draft of the paper. Author KRS read and approved the final manuscript. Received 28 th December 2012 th Research Article Accepted 19 February 2013 Published 22nd March 2013 ABSTRACT Robotics was first instructed as a collegiate course about 20 years ago at Stanford University, Stanford, CA. From the first IRB6 the electrically powered robot in 1974 over a 30 year period the industry has grown. A leading supplier of robots has put out over 100,000 robots by year 2001. Robot capable of handling 500 kg load was introduced in 2001, IRB 7000. A number of advances have been made in nanostructuring. About 40 different nanostructuring methods were reviewed recently [2]. Nanorobots can be developed that effect cures of disorders that are difficult to treat. Principles from photodynamic therapy, fullerene chemistry, nanostructuring, x-rays, computers, pharmacokinetics and robotics are applied in developing a strategy for nanorobot, treatment of Alzheimer’s disease. The curcuma longa that has shown curative effects in rats’ brain with Alzheimers is complexed with fullerenes. The drug is inactive when caged. It is infused intrathecallyinto the cerebrospinal system. Irradiation of the hypothalamous and other areas of the brain where Alzheimer’s disease is prevalent lead to breakage of fullerenes and availability of the drug with the diseased cells.
    [Show full text]
  • Graphene Molecule Compared with Fullerene C60 As Circumstellar
    arXiv.org 1904.xxxxx (arXiv: 1904.xxxxx by Norio Ota) page 1 of 9 Graphene Molecule Compared With Fullerene C60 As Circumstellar Carbon Dust Of Planetary Nebula Norio Ota Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tenoudai Tsukuba-city 305-8571, Japan, E-mail: [email protected] It had been understood that astronomically observed infrared spectrum of carbon rich planetary nebula as like Tc 1 and Lin 49 comes from fullerene (C60). Also, it is well known that graphene is a raw material for synthesizing fullerene. This study seeks some capability of graphene based on the quantum-chemical DFT calculation. It was demonstrated that graphene plays major role rather than fullerene. We applied two astrophysical conditions, which are void creation by high speed proton and photo-ionization by the central star. Model molecule was ionized void-graphene (C23) having one carbon pentagon combined with hexagons. By molecular vibrational analysis, we could reproduce six major bands from 6 to 9 micrometer, large peak at 12.8, and largest peak at 19.0. Also, many minor bands could be reproduced from 6 to 38 micrometer. Also, deeply void induced molecules (C22) and (C21) could support observed bands. Key words: graphene, fullerene, C60, infrared spectrum, planetary nebula, DFT 1. Introduction Soccer ball like carbon molecule fullerene-C60 was discovered in 1985 and synthesized in 1988 by H. Kroto and their colleagues1-2). In these famous papers, they also pointed out another important message “Fullerene may be widely distributed in the Universe”. After such prediction, many efforts were done for seeking C60 in interstellar space3-4).
    [Show full text]
  • Quantum Dot and Electron Acceptor Nano-Heterojunction For
    www.nature.com/scientificreports OPEN Quantum dot and electron acceptor nano‑heterojunction for photo‑induced capacitive charge‑transfer Onuralp Karatum1, Guncem Ozgun Eren2, Rustamzhon Melikov1, Asim Onal3, Cleva W. Ow‑Yang4,5, Mehmet Sahin6 & Sedat Nizamoglu1,2,3* Capacitive charge transfer at the electrode/electrolyte interface is a biocompatible mechanism for the stimulation of neurons. Although quantum dots showed their potential for photostimulation device architectures, dominant photoelectrochemical charge transfer combined with heavy‑metal content in such architectures hinders their safe use. In this study, we demonstrate heavy‑metal‑free quantum dot‑based nano‑heterojunction devices that generate capacitive photoresponse. For that, we formed a novel form of nano‑heterojunctions using type‑II InP/ZnO/ZnS core/shell/shell quantum dot as the donor and a fullerene derivative of PCBM as the electron acceptor. The reduced electron–hole wavefunction overlap of 0.52 due to type‑II band alignment of the quantum dot and the passivation of the trap states indicated by the high photoluminescence quantum yield of 70% led to the domination of photoinduced capacitive charge transfer at an optimum donor–acceptor ratio. This study paves the way toward safe and efcient nanoengineered quantum dot‑based next‑generation photostimulation devices. Neural interfaces that can supply electrical current to the cells and tissues play a central role in the understanding of the nervous system. Proper design and engineering of such biointerfaces enables the extracellular modulation of the neural activity, which leads to possible treatments of neurological diseases like retinal degeneration, hearing loss, diabetes, Parkinson and Alzheimer1–3. Light-activated interfaces provide a wireless and non-genetic way to modulate neurons with high spatiotemporal resolution, which make them a promising alternative to wired and surgically more invasive electrical stimulation electrodes4,5.
    [Show full text]
  • Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms
    Biosensors 2015, 5, 712-735; doi:10.3390/bios5040712 OPEN ACCESS biosensors ISSN 2079-6374 www.mdpi.com/journal/biosensors/ Review Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms Sanaz Pilehvar * and Karolien De Wael AXES Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +32-3265-3338. Academic Editors: Prabir Patra and Ashish Aphale Received: 9 September 2015 / Accepted: 14 October 2015 / Published: 23 November 2015 Abstract: Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing. Keywords: nanotechnology; nanostructures; nano-bio hybrids; fullerene-biomolecule; biosensors 1. Introduction Bio-nanotechnology is a new emerging field of nanotechnology and combines knowledge from engineering, physics, and molecular engineering with biology, chemistry, and biotechnology aimed at the development of novel devices, such as biosensors, nanomedicines, and bio-photonics [1].
    [Show full text]
  • Carbon-Based Nanomaterials/Allotropes: a Glimpse of Their Synthesis, Properties and Some Applications
    materials Review Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications Salisu Nasir 1,2,* ID , Mohd Zobir Hussein 1,* ID , Zulkarnain Zainal 3 and Nor Azah Yusof 3 1 Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia 2 Department of Chemistry, Faculty of Science, Federal University Dutse, 7156 Dutse, Jigawa State, Nigeria 3 Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; [email protected] (Z.Z.); [email protected] (N.A.Y.) * Correspondence: [email protected] (S.N.); [email protected] (M.Z.H.); Tel.: +60-1-2343-3858 (M.Z.H.) Received: 19 November 2017; Accepted: 3 January 2018; Published: 13 February 2018 Abstract: Carbon in its single entity and various forms has been used in technology and human life for many centuries. Since prehistoric times, carbon-based materials such as graphite, charcoal and carbon black have been used as writing and drawing materials. In the past two and a half decades or so, conjugated carbon nanomaterials, especially carbon nanotubes, fullerenes, activated carbon and graphite have been used as energy materials due to their exclusive properties. Due to their outstanding chemical, mechanical, electrical and thermal properties, carbon nanostructures have recently found application in many diverse areas; including drug delivery, electronics, composite materials, sensors, field emission devices, energy storage and conversion, etc. Following the global energy outlook, it is forecasted that the world energy demand will double by 2050. This calls for a new and efficient means to double the energy supply in order to meet the challenges that forge ahead.
    [Show full text]
  • A Multiparametric Study of Internalization of Fullerenol C60(OH)
    International Journal of Molecular Sciences Article A Multiparametric Study of Internalization of Fullerenol C60(OH)36 Nanoparticles into Peripheral Blood Mononuclear Cells: Cytotoxicity in Oxidative Stress Induced by Ionizing Radiation Anna Lichota 1, Ireneusz Piwo ´nski 2 , Sylwia Michlewska 3,4 and Anita Krokosz 5,* 1 Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland 2 Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, 90-236 Lodz, Poland 3 Laboratory of Electron Microscopy, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland 4 Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland 5 Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland * Correspondence: [email protected]; Tel.: +48-42-635-4475 Received: 29 February 2020; Accepted: 24 March 2020; Published: 26 March 2020 Abstract: The aim of this study was to investigate the uptake and accumulation of fullerenol C60(OH)36 into peripheral blood mononuclear cells (PBMCs). Some additional studies were also performed: measurement of fullerenol nanoparticle size, zeta potential, and the influence of fullerenol on the ionizing radiation-induced damage to PMBCs. Fullerenol C60(OH)36 demonstrated an ability to accumulate in PBMCs. The accumulation of fullerenol in those cells did not have a significant effect on cell survival, nor on the distribution of phosphatidylserine in the plasma membrane. However, fullerenol-induced depolarization of the mitochondrial membrane proportional to the compound level in the medium was observed.
    [Show full text]
  • Electronic and Thermodynamic Properties of the Amino- and Carboxamido- Functionalized C-60-Based Fullerenes: Towards Non-Volatil
    Electronic and Thermodynamic Properties of the Amino- and Carboxamido- Functionalized C-60-Based Fullerenes: Towards Non-Volatile Carbon Dioxide Scavengers Nadezhda A. Andreeva(1) and Vitaly V. Chaban(2) (1) PRAMO, Saint Petersburg, Leningrad oblast, Russian Federation. (2) P.E.S., Vasilievsky Island, Saint Petersburg, Leningrad oblast, Russian Federation. Abstract. Development of new greenhouse gas scavengers is actively pursued nowadays. Volatility-caused solvent consumption and significant regeneration costs associated with the aqueous amine solutions motivate search for more technologically and economically advanced solutions. We hereby used hybrid density functional theory to characterize thermodynamics, structure, electronic and solvation properties of amino- and carboxamido-functionalized C60 fullerene. C60 is non-volatile and supports a large density of amino groups on its surface. Attachment of polar groups to fullerene C60 adjusts its dipole moment and band gap quite substantially, ultimately resulting in systematically better hydration thermodynamics. Reaction of polyaminofullerenes with CO2 is favored enthalpically, but prohibited entropically at standard conditions. Free energy of the CO2 capture by polyaminofullerenes is non-sensitive to the number of amino groups per fullerene. This result fosters consideration of polyaminofullerenes for CO2 fixation. Key words: buckyball; amine-functionalization; carbamate; CO2 capture; thermodynamics; DFT. 1 TOC image 2 Introduction Climate change constitutes one of the most significant global problems, which the humanity faces nowadays. According to some hypotheses, global warming is triggered by the concentration of the greenhouse gases (particularly carbon dioxide CO2) increase in the atmosphere. As CO2 has a number of industrial sources, many countries develop programs, which would allow them to decrease emission levels of CO2 during the next decades.
    [Show full text]
  • Sub-Kelvin Transport Spectroscopy of Fullerene Peapod Quantum Dots Pawel Utko, Jesper Nygård, Marc Monthioux, Laure Noé
    Sub-Kelvin transport spectroscopy of fullerene peapod quantum dots Pawel Utko, Jesper Nygård, Marc Monthioux, Laure Noé To cite this version: Pawel Utko, Jesper Nygård, Marc Monthioux, Laure Noé. Sub-Kelvin transport spectroscopy of fullerene peapod quantum dots. Applied Physics Letters, American Institute of Physics, 2006, 89 (23), pp.233118. 10.1063/1.2403909. hal-01764467 HAL Id: hal-01764467 https://hal.archives-ouvertes.fr/hal-01764467 Submitted on 12 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sub-Kelvin transport spectroscopy of fullerene peapod quantum dots Pawel Utko, Jesper Nygård, Marc Monthioux, and Laure Noé Citation: Appl. Phys. Lett. 89, 233118 (2006); doi: 10.1063/1.2403909 View online: https://doi.org/10.1063/1.2403909 View Table of Contents: http://aip.scitation.org/toc/apl/89/23 Published by the American Institute of Physics Articles you may be interested in Quantum conductance of carbon nanotube peapods Applied Physics Letters 83, 5217 (2003); 10.1063/1.1633680 APPLIED PHYSICS LETTERS 89, 233118 ͑2006͒ Sub-Kelvin transport spectroscopy of fullerene peapod quantum dots ͒ Pawel Utkoa and Jesper Nygård Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark Marc Monthioux and Laure Noé Centre d’Elaboration des Matériaux et d’Etudes Structurales (CEMES), UPR A-8011 CNRS, B.P.
    [Show full text]
  • Predicting the New Carbon Nanocages, Fullerynes: a DFT Study Mohammad Qasemnazhand1, Farhad Khoeini1* & Farah Marsusi2
    www.nature.com/scientificreports OPEN Predicting the new carbon nanocages, fullerynes: a DFT study Mohammad Qasemnazhand1, Farhad Khoeini1* & Farah Marsusi2 In this study, based on density functional theory, we propose a new branch of pseudo-fullerenes which contain triple bonds with sp hybridization. We call these new nanostructures fullerynes, according to IUPAC. We present four samples with the chemical formula of C4nHn, and the structures derived from fulleranes. We compare the structural and electronic properties of these structures with those of two common fullerenes and fulleranes systems. The calculated electron afnities of the sampled fullerynes are negative, and much smaller than those of fullerenes, so they should be chemically more stable than fullerenes. Although fulleranes also exhibit higher chemical stability than fullerynes, but pentagon or hexagon of the fullerane structures cannot pass ions and molecules. Applications of fullerynes can be included in the storage of ions and gases at the nanoscale. On the other hand, they can also be used as cathode/anode electrodes in lithium-ion batteries. Carbon is an element that has the potential to adapt to diferent molecular structures, and can form various molecular orbitals, such as sp, sp2, sp3, and so on. Diamond and graphite are the best-known bulk allotropes of carbon which their structures are made of sp3 and sp2 hybridization, respectively. Recently, cumulene and carbyne have been introduced as new carbon allotropes, having pure structures consisting of sp hybridization1–7. Some structures have more than one type of hybridization in their structures; for example, fullerene, which in addition to sp2 hybridization, has a slight hybridization of sp3, because of its curvature 8–11.
    [Show full text]
  • Fullerene-Based Amino Acid Nanoparticle Interactions with Human Epidermal Keratinocytes
    Toxicology in Vitro 20 (2006) 1313–1320 www.elsevier.com/locate/toxinvit Fullerene-based amino acid nanoparticle interactions with human epidermal keratinocytes Jillian G. Rouse a,b, Jianzhong Yang c, Andrew R. Barron c, Nancy A. Monteiro-Riviere a,b,* a Center for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA b Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27606, USA c Department of Chemistry and the Richard E. Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, TX 77005, USA Received 1 March 2006; accepted 6 April 2006 Available online 3 May 2006 Abstract The functionalization of C60 with such complexes as amino acids has the potential to provide greater interaction between the fullerene and the biological environment yielding potential new medical and pharmacological applications. Although scientific research in the past decade has revealed much about the chemical and physical properties of C60, the biological activities of this compound and its derivatives are still relatively unclear. In an attempt to understand the biological activity of functionalized C60, human epidermal keratinocytes (HEK) were exposed to fullerene-based amino acid (Baa) solutions ranging in concentrations of 0.4–0.00004 mg/mL in a humidified 5% CO2 atmosphere at 37 °C. MTT cell viability after 48 h significantly decreased (p < 0.05) for concentrations of 0.4 and 0.04 mg/ mL. In an additional study, human cytokines IL-6, IL-8, TNF-a, IL-1b, and IL-10 were assessed for concentrations ranging from 0.4–0.004 mg/mL.
    [Show full text]