New Approaches to the Treatment of Opioid-Induced Constipation

Total Page:16

File Type:pdf, Size:1020Kb

New Approaches to the Treatment of Opioid-Induced Constipation European Review for Medical and Pharmacological Sciences 2008; 12(Suppl 1): 119-127 New approaches to the treatment of opioid-induced constipation P. HOLZER Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz (Austria) Abstract. – Opiates are indispensable Introduction for the treatment of moderate to severe pain. The gastrointestinal tract is one of the major Opium derived from the unripe seed capsules victims of the undesired effects of opiates, be- cause the enteric nervous system expresses of Papaver somniferum has been used since an- all major subtypes of opioid receptors. As a cient times to treat diarrhoea. We now know that result, propulsive motility and secretory the biological effects of opium are due not only processes in the gut are inhibited by opioid to morphine and codeine but also other drugs analgesics, and the ensuing constipation is such as papaverine, all of which affect the func- one of the most frequent and troublesome ad- tion of the gastrointestinal (GI) tract. Despite verse reactions. Many treatments involving laxatives, prokinetic drugs and opioid-sparing many attempts to develop other strong pain ther- regimens have been explored to circumvent apeutics, opioid analgesics have remained the opioid-induced bowel dysfunction, but the mainstay of therapy in many patients with mod- outcome has in general been unsatisfactory. erate to severe pain. However, the use of opioid Specific antagonism of peripheral opioid re- analgesics is associated with a number of adverse ceptors offers a more rational approach to the effects among which those on the GI tract are management of the adverse actions of opioid most troublesome in terms of frequency and analgesics in the gut. This goal is currently addressed by the use of opioid receptor an- severity. The constipation associated with opioid tagonists with limited absorption such as oral medication can be disabling to a degree that opi- naloxone and by the development of peripher- oid treatment needs to be reduced or even aban- ally restricted opioid receptor antagonists doned. The traditional approach to ameliorate such as methylnaltrexone and alvimopan. opioid-induced constipation is laxative co-med- These investigational drugs hold considerable ication which, however, can be both ineffective promise in preventing constipation due to opi- 1-3 ate treatment, whereas the analgesic action of and distasteful to the patient . opiates remains unabated. Postoperative ileus The spectrum of adverse opioid actions on the associated with opioid-induced postsurgical gut reflects the ability of these analgesic drugs to pain control is likewise ameliorated by the directly interact with pathways of the enteric ner- compounds. With this proof of concept, sever- vous system that regulate GI motility and secre- al phase III studies are under way to define op- tion4-8. In addition, there is evidence that some GI timal dosage, dosing regimen as well as long- effects of opioid receptor agonists can be mediat- term efficacy and safety of methylnaltrexone 9 and alvimopan. In addition, there is prelimi- ed by opioid receptors in the brain . However, ex- nary evidence that these peripherally restrict- perimental and clinical studies with opioid recep- ed opioid receptor antagonists may act as tor antagonists that are unable to enter the brain prokinetic drugs in their own right. have shown that the adverse GI effect profile of opioid receptor agonists is essentially peripheral Key Words: in origin9. Consequently, peripherally restricted Alvimopan, Methylnaltrexone, Naloxone, Opioid opioid receptor antagonists (PRORAs) such as peptides, Enteric nervous system, Opioid-induced N-methylnaltrexone and alvimopan represent a bowel dysfunction, Constipation, Peripherally re- significant advance in improving opiate therapy stricted opioid receptor antagonists, Prokinetic ef- of pain2,7. The current review starts by providing fects. a brief overview of the neurobiological mecha- Corresponding Author: Peter Holzer, PhD; e-mail: [email protected] 119 P. Holzer nisms whereby opioids cause constipation. After The presence of an elaborate opioid system (Fig- describing the clinical features of opioid-induced ure 1) in the gut explains why exogenous opioid bowel dysfunction (OBD) the article goes on to analgesics inhibit GI function. Met-enkephalin, discuss the emerging strategies to avoid OBD leu-enkephalin, β-endorphin and dynorphin are and the expanding range of indications in which among the endogenous opioid peptides occurring PRORAs are likely to be of therapeutic benefit. in the GI tract where they have been localized to both neurons and endocrine cells of the mu- cosa2,4,5,8,13. Further analysis has revealed that The Opioid System in opioid peptides are present in distinct classes of the Gastrointestinal Tract enteric neurons, notably in myenteric neurons projecting to the circular muscle and in neurons Independently of their plant, mammalian or of descending enteric pathways11-13. Opioid re- synthetic origin, opioids are neuroactive sub- ceptors of the µ-, κ- and δ-subtype have been lo- stances, the actions of which are mediated by the calized to the GI tract of rodents and humans, but principal µ-, κ- and δ-opioid receptors. Many their relative distribution varies with GI layer, GI neuroactive drugs act on the gut because the ali- region and species2,8,13. In the human gut, µ-opi- mentary canal is equipped with the largest collec- oid receptors are present on myenteric and sub- tion of neurons outside the brain, known as the mucosal neurons and on immune cells in the enteric nervous system (ENS). The enteric neu- lamina propria13. rons originate from the myenteric and submucos- al plexuses, supply all layers of the alimentary canal and thus are in a position to regulate virtu- Opioid Physiology and Pharmacology in ally each aspect of digestion10-12. Many of the the Gastrointestinal Tract transmitters and neuropeptides occurring in the brain are also expressed by the ENS, and the When released from enteric neurons, opioid same is true for transmitter and neuropeptide re- peptides modify GI function by interaction with ceptors. Thus, enteric neurons synthesize and re- opioid receptors present on the enteric circuitry lease not only acetylcholine, substance P, nitric controlling motility and secretion. The inhibitory oxide, adenosine triphosphate, vasoactive intesti- effect of opioid receptor agonists on peristalsis in nal polypeptide and 5-hydroxytryptamine but al- the guinea-pig small intestine is thought to arise so opioid peptides as their transmitters. primarily from interruption of transmission with- Figure 1. Schematic overview of the gastrointestinal opioid system rele- vant to constipation. 120 New approaches to the treatment of opioid-induced constipation in enteric nerve pathways governing muscle ac- duced inhibition of muscle activity2,8. Propulsive tivity7,8,14. Transmission is blocked both via motility in the rat intestine is blocked by δ- and µ-, presynaptic and postsynaptic sites of action on but not κ-, opioid receptor agonists5, whereas enteric neurons, whereby the release and action peristalsis in the guinea-pig intestine is sup- of transmitters are attenuated5,14. It is important pressed by activation of κ- and µ-, but not δ-, opi- to realize that opioid receptor agonists can inter- oid receptors18, much as opiate-induced inhibition rupt both excitatory and inhibitory neural inputs of cholinergic transmission in the guinea-pig gut to GI muscle14. Suppression of excitatory neural is mediated by µ- and κ-opioid receptors. inputs causes inhibition of the release of excitato- Although the available evidence indicates that ry transmitters such as acetylcholine and block- OBD is mediated by opioid receptors in the ade of distension-induced peristaltic contrac- gut2,8, there are experimental data to show that tions, whereas blockade of inhibitory neural in- opioids acting within the brain can also influence puts results in depression of nitric oxide release GI function. Thus, intradural injection of opioid from inhibitory motor neurons, disinhibition of analgesics delays intestinal transit at doses that GI muscle activity, elevation of resting muscle are considerably lower than equieffective intra- tone and non-propulsive motility patterns5,7,8,14,15. venous doses9. However, opiate-induced block- Depending on whether interruption of excita- ade of gut motility correlates better with opiate tory or inhibitory neural pathways is prevailing, concentrations in the gut than with opiate con- muscle relaxation or spasm will ensue in re- centrations in the brain19. In addition, the N- sponse to opiate administration. In addition, opi- methyl quaternary analogues of naloxone and oids may directly activate the interstitial naltrexone, which do not cross the blood-brain cell–muscle network. As a result, µ-opioid recep- barrier, are able to fully antagonize the effects of tor agonists inhibit gastric emptying, increase py- morphine in the canine and rat intestine2,9. It fol- loric muscle tone, induce pyloric and duodenoje- lows that the adverse influence of opiates on GI junal phasic pressure activity, disturb the migrat- function results primarily from interaction with ing myoelectrical complex, delay transit through opioid receptors in the gut, an inference that is the small and large intestine, and elevate the rest- backed by the experimental and clinical effects ing anal sphincter pressure2,8,14.
Recommended publications
  • RELISTOR, INN: Methylnaltrexone Bromide
    The European Medicines Agency Evaluation of Medicines for Human Use EMEA/CHMP/10906/2008 ASSESSMENT REPORT FOR RELISTOR International Nonproprietary Name: METHYLNALTREXONE BROMIDE Procedure No. EMEA/H/C/870 Assessment Report as adopted by the CHMP with all information of a commercially confidential nature deleted. 7 Westferry Circus, Canary Wharf, London, E14 4HB, UK Tel. (44-20) 74 18 84 00 Fax (44-20) 74 18 8613 E-mail: [email protected] http://www.emea.eu.int TABLE OF CONTENTS Page 1 BACKGROUND INFORMATION ON THE PROCEDURE......................................... 3 1.1 Submission of the dossier ...................................................................................................... 3 1.2 Steps taken for the assessment of the product ....................................................................... 3 2 SCIENTIFIC DISCUSSION............................................................................................... 4 2.1 Introduction............................................................................................................................ 4 2.2 Quality aspects....................................................................................................................... 5 2.3 Non-clinical aspects............................................................................................................... 7 2.4 Clinical aspects .................................................................................................................... 13 2.5 Pharmacovigilance...............................................................................................................41
    [Show full text]
  • Albany-Molecular-Research-Regulatory
    PRODUCT CATALOGUE API COMMERCIAL US EU Japan US EU Japan API Name Site CEP India API Name Site CEP India DMF DMF DMF DMF DMF DMF A Abiraterone Malta • Benztropine Mesylate Cedarburg • Adenosine Rozzano - Quinto de' Stampi • • * Betaine Citrate Anhydrous Bon Encontre • Betametasone-17,21- Alcaftadine Spain Spain • • Dipropionate Sterile • Alclometasone-17, 21- Spain Betamethasone Acetate Spain Dipropionate • • Altrenogest Spain • • Betamethasone Base Spain Amphetamine Aspartate Rensselaer Betamethasone Benzoate Spain * Monohydrate Milled • Betamethasone Valerate Amphetamine Sulfate Rensselaer Spain * • Acetate Betamethasone-17,21- Argatroban Rozzano - Quinto de' Stampi Spain • • Dipropionate • • • Atenolol India • • Betamethasone-17-Valerate Spain • • Betamethasone-21- Atracurium Besylate Rozzano - Quinto de' Stampi Spain • Phosphate Disodium Salt • • Bromfenac Monosodium Atropine Sulfate Cedarburg Lodi * • Salt Sesquihydrate • • Azanidazole Lodi Bromocriptine Mesylate Rozzano - Quinto de' Stampi • • • • • Azelastine HCl Rozzano - Quinto de' Stampi • • Budesonide Spain • • Aztreonam Rozzano - Valle Ambrosia • • Budesonide Sterile Spain • • B Bamifylline HCl Bon Encontre • Butorphanol Tartrate Cedarburg • Beclomethasone-17, 21- Spain Capecitabine Lodi Dipropionate • C • 2 *Please contact our Accounts Managers in case you are interested in this API. 3 PRODUCT CATALOGUE API COMMERCIAL US EU Japan US EU Japan API Name Site CEP India API Name Site CEP India DMF DMF DMF DMF DMF DMF Dexamethasone-17,21- Carbimazole Bon Encontre Spain • Dipropionate
    [Show full text]
  • 204760Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 204760Orig1s000 OTHER REVIEW(S) MEMORANDUM DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR DRUG EVALUATION AND RESEARCH DATE: September 16, 2014 FROM: Julie Beitz, MD SUBJECT: Approval Action TO: NDA 204760 Movantik (naloxegol) tablets AstraZeneca Pharmaceuticals LP Summary Naloxegol is an antagonist of opioid binding at the muͲopioid receptor. When administered at the recommended dose levels, naloxegol functions as a peripherallyͲacting opioid receptor antagonist in tissues such as the gastrointestinal tract, thereby decreasing the constipating effects of opioids. Naloxegol is a PEGylated derivative of naloxone and a new molecular entity. Pegylation confers the following properties: naloxegol has reduced passive permeability across membranes compared to naloxone; naloxegol is a PͲglycoprotein (PͲgp) efflux transporter substrate; and naloxegol is orally bioavailable. The reduced passive permeability and PͲgp efflux transporter properties limit CNS entry of naloxegol compared to naloxone. This memo documents my concurrence with the Division of Gastroenterology and Inborn Errors Product’s recommendation for approval of NDA 204760 for Movantik (naloxegol) tablets for the treatment of opioidͲinduced constipation (OIC) in adult patients with chronic nonͲcancer pain. Discussions regarding product labeling, and postmarketing study requirements and commitments have been satisfactorily completed. There are no inspectional issues that preclude approval. Dosing The recommended dose of Movantik (naloxegol) tablets is 25 mg taken once daily in the morning on an empty stomach. Patients who do not tolerate this dose, may reduce the dose to 12.5 mg once daily. Maintenance laxatives should be discontinued prior to initiation of therapy with Movantik.
    [Show full text]
  • Design and Synthesis of Cyclic Analogs of the Kappa Opioid Receptor Antagonist Arodyn
    Design and synthesis of cyclic analogs of the kappa opioid receptor antagonist arodyn By © 2018 Solomon Aguta Gisemba Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Chair: Dr. Blake Peterson Co-Chair: Dr. Jane Aldrich Dr. Michael Rafferty Dr. Teruna Siahaan Dr. Thomas Tolbert Date Defended: 18 April 2018 The dissertation committee for Solomon Aguta Gisemba certifies that this is the approved version of the following dissertation: Design and synthesis of cyclic analogs of the kappa opioid receptor antagonist arodyn Chair: Dr. Blake Peterson Co-Chair: Dr. Jane Aldrich Date Approved: 10 June 2018 ii Abstract Opioid receptors are important therapeutic targets for mood disorders and pain. Kappa opioid receptor (KOR) antagonists have recently shown potential for treating drug addiction and 1,2,3 4 8 depression. Arodyn (Ac[Phe ,Arg ,D-Ala ]Dyn A(1-11)-NH2), an acetylated dynorphin A (Dyn A) analog, has demonstrated potent and selective KOR antagonism, but can be rapidly metabolized by proteases. Cyclization of arodyn could enhance metabolic stability and potentially stabilize the bioactive conformation to give potent and selective analogs. Accordingly, novel cyclization strategies utilizing ring closing metathesis (RCM) were pursued. However, side reactions involving olefin isomerization of O-allyl groups limited the scope of the RCM reactions, and their use to explore structure-activity relationships of aromatic residues. Here we developed synthetic methodology in a model dipeptide study to facilitate RCM involving Tyr(All) residues. Optimized conditions that included microwave heating and the use of isomerization suppressants were applied to the synthesis of cyclic arodyn analogs.
    [Show full text]
  • Opioids in Palliative Care: Evidence Update May 2014
    Opioids in palliative care Evidence Update May 2014 A summary of selected new evidence relevant to NICE clinical guideline 140 ‘Opioids in palliative care: safe and effective prescribing of strong opioids for pain in palliative care of adults’ (2012) Evidence Update 58 Contents Introduction ................................................................................................................................ 3 Key points .................................................................................................................................. 4 1 Commentary on new evidence .......................................................................................... 5 1.1 Communication .......................................................................................................... 5 1.2 Starting strong opioids – titrating the dose ................................................................ 5 1.3 First-line maintenance treatment ............................................................................... 6 1.4 First-line treatment if oral opioids are not suitable – transdermal patches ................ 6 1.5 First-line treatment if oral opioids are not suitable – subcutaneous delivery ............. 7 1.6 First-line treatment for breakthrough pain in patients who can take oral opioids ...... 7 1.7 Management of constipation ..................................................................................... 8 1.8 Management of nausea ..........................................................................................
    [Show full text]
  • A Review of Unique Opioids and Their Conversions
    A Review of Unique Opioids and Their Conversions Jacqueline Cleary, PharmD, BCACP Assistant Professor Albany College of Pharmacy and Health Sciences Adjunct Professor SAGE College of Nursing DISCLOSURES • Kaleo • Remitigate, LLC OBJECTIVES • Compare and contrast unique pharmacotherapy options for the treatment of chronic pain including: methadone, buprenoprhine, tapentadol, and tramadol • Select methadone, buprenorphine, tapentadol, or tramadol based on patient specific factors • Apply appropriate opioid conversion strategies to unique opioids • Understand opioid overdose risk surrounding opioid conversions and the use of unique opioids UNIQUE OPIOIDS METHADONE, BUPRENORPHINE, TRAMADOL, TAPENTADOL METHADONE My favorite drug because….? METHADONE- INDICATIONS • FDA labeled indications – (1) chronic pain (2) detoxification Oral soluble tablets for suspension NOT indicated for chronic pain treatment • Initial inpatient detoxification of opioids by a licensed trained provider with methadone and supportive care is appropriate • Methadone maintenance provider must have special credentialing and training as required by state Outpatient prescription must be for pain ONLY and say “for pain” on RX • Continuation of methadone maintenance from outside provider while patient is inpatient for another condition is appropriate http://cdn.atforum.com/wp-content/uploads/SAMHSA-2015-Guidelines-for-OTPs.pdf MECHANISM OF ACTION • Potent µ-opioid agonist • NMDA receptor antagonist • Norepinephrine reuptake inhibitor • Serotonin reuptake inhibitor ADVERSE EVENTS
    [Show full text]
  • Methylnaltrexone Nonf
    Methylnaltrexone Bromide Subcutaneous Injection and Tablets Criteria for Use May 2020 VA Pharmacy Benefits Management Services, Medical Advisory Panel, and VISN Pharmacist Executives The following recommendations are based on medical evidence, clinician input, and expert opinion. The content of the document is dynamic and will be revised as new information becomes available. The purpose of this document is to assist practitioners in clinical decision-making, to standardize and improve the quality of patient care, and to promote cost- effective drug prescribing. THE CLINICIAN SHOULD USE THIS GUIDANCE AND INTERPRET IT IN THE CLINICAL CONTEXT OF THE INDIVIDUAL PATIENT. INDIVIDUAL CASES THAT ARE EXCEPTIONS TO THE EXCLUSION AND INCLUSION CRITERIA SHOULD BE ADJUDICATED AT THE LOCAL FACILITY ACCORDING TO THE POLICY AND PROCEDURES OF ITS P&T COMMITTEE AND PHARMACY SERVICES. The Product Information should be consulted for detailed prescribing information. Exclusion Criteria If ANY item below applies, the patient should NOT receive methylnaltrexone subcutaneous injections. Known or suspected mechanical gastrointestinal obstruction or other condition that may compromise drug action or cause bowel dysfunction (e.g., acute abdomen, ostomy, active diverticulitis, ischemic bowel, etc.) Placement of peritoneal catheter for chemotherapy or dialysis (not studied) End-stage renal impairment on dialysis (not studied) Use of methylnaltrexone solely for prevention of opioid-induced constipation or impaction (no supporting evidence). Use of methylnaltrexone for postoperative ileus (preliminary results showed inefficacy). Use of methylnaltrexone for constipation that is not opioid-related (not studied) Concomitant use of other opioid antagonists (potential for increased risks of additive effects and opioid withdrawal) Inclusion Criteria for Opioid-induced Constipation in Adults with Chronic Noncancer Pain All of the following criteria must be fulfilled.
    [Show full text]
  • Therapeutic Class Overview Irritable Bowel Syndrome and Constipation Agents
    Therapeutic Class Overview Irritable Bowel Syndrome and Constipation Agents INTRODUCTION Irritable bowel syndrome (IBS) is a gastrointestinal disorder that most commonly manifests as chronic abdominal pain and altered bowel habits in the absence of any organic disorder (Wald 2017). IBS may consist of diarrhea-predominant (IBS-D), constipation-predominant (IBS-C), IBS with a mixed symptomatology (IBS-M), or unclassified IBS (IBS-U). Switching between the subtypes of IBS is also possible (Ford et al 2014). IBS is a functional disorder of the gastrointestinal tract characterized by abdominal pain, discomfort, and bloating, as well as disturbed bowel habit. The exact pathogenesis of the disorder is unknown; however, it is believed that altered gastrointestinal tract motility, visceral hypersensitivity, autonomic dysfunction, and psychological factors indicate disturbances within the enteric nervous system, which controls the gastrointestinal system (Andresen et al 2008, Ford et al 2009). Prevalence estimates of IBS range from 5 to 15%, and it typically occurs in young adulthood (Ford et al 2014). IBS-D is more common in men, and IBS-C is more common in women (World Gastroenterology Organization [WGO], 2015). Symptoms of IBS often interfere with daily life and social functioning (WGO 2015). The general goals of therapy are to alleviate the patient’s symptoms and to target any specific exacerbating factors (eg, medications, dietary changes), concerns about serious illness, stressors, or potential psychiatric comorbidities that may exist (Wald 2015). Non-pharmacological interventions to combat IBS symptoms include dietary modifications such as exclusion of gas- producing foods (eg, beans, prunes, Brussel sprouts, bagels, etc.), trials of gluten avoidance, and consumption of probiotics, as well as psychosocial therapies (eg, hypnosis, biofeedback, etc.) (Ford et al 2014).
    [Show full text]
  • 208854Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 208854Orig1s000 SUMMARY REVIEW OND=Office of New Drugs OPQ=Office of Pharmaceutical Quality OPDP=Office of Prescription Drug Promotion OSI=Office of Scientific Investigations CDTL=Cross-Discipline Team Leader COA=Clinical Outcome Assessment CSS=Controlled Substance Staff DAAAP= Division of Anesthesia, Analgesia, and Addiction Products OSE= Office of Surveillance and Epidemiology DEPI= Division of Epidemiology DMEPA=Division of Medication Error Prevention and Analysis DPMH = Division of Pediatric and Maternal Health MHT=Maternal Health Team Quality Review Team DISCIPLINE REVIEWER BRANCH/DIVISION Drug Substance Joseph Leginus CDER/OPQ/ONDP/ DNDAPI/NDBII Drug Product Sarah Ibrahim CDER/OPQ/ONDP/ DNDPII/NDPBV Process Zhao Wang CDER/OPQ/OPF/ DPAI/PABI Microbiology Zhao Wang CDER/OPQ/OPF/ DPAI/PABI Facility Donald Lech CDER/OPQ/OPF/DIA/IABIII Biopharmaceutics Peng Duan CDER/OPQ/ONDP/ DB/BBII Regulatory Business Cheronda Cherry-France CDER/OND/ODEIII/ DGIEP Process Manager Application Technical Lead Hitesh Shroff CDER/OPQ/ONDP/ DNDPII/NDPBV Laboratory (OTR) N/A N/A ORA Lead Paul Perdue Jr. ORA/OO/OMPTO/ DMPTPO/MDTP Environmental Analysis James Laurenson CDER/OPQ/ONDP (EA) 2 Reference ID: 4073992 1. Benefit-Risk Assessment I concur with the reviewers’ conclusions that the benefit/risk of naldemedine is favorable in the population for which this product will be approved and that the risks can be managed with labeling. The applicant proposed the following indication for naldemedine, an orally administered peripheral mu opioid receptor antagonist: Symproic is indicated for the treatment of opioid-induced constipation (OIC) in adult patients with chronic non-cancer pain.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0245287 A1 Holaday Et Al
    US 20110245287A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0245287 A1 Holaday et al. (43) Pub. Date: Oct. 6, 2011 (54) HYBRD OPOD COMPOUNDS AND Publication Classification COMPOSITIONS (51) Int. Cl. A6II 3/4748 (2006.01) C07D 489/02 (2006.01) (76) Inventors: John W. Holaday, Bethesda, MD A6IP 25/04 (2006.01) (US); Philip Magistro, Randolph, (52) U.S. Cl. ........................................... 514/282:546/45 NJ (US) (57) ABSTRACT Disclosed are hybrid opioid compounds, mixed opioid salts, (21) Appl. No.: 13/024,298 compositions comprising the hybrid opioid compounds and mixed opioid salts, and methods of use thereof. More particu larly, in one aspect the hybrid opioid compound includes at (22) Filed: Feb. 9, 2011 least two opioid compounds that are covalently bonded to a linker moiety. In another aspect, the hybrid opioid compound relates to mixed opioid salts comprising at least two different Related U.S. Application Data opioid compounds or an opioid compound and a different active agent. Also disclosed are pharmaceutical composi (60) Provisional application No. 61/302,657, filed on Feb. tions, as well as to methods of treating pain in humans using 9, 2010. the hybrid compounds and mixed opioid salts. Patent Application Publication Oct. 6, 2011 Sheet 1 of 3 US 2011/0245287 A1 Oral antinociception of morphine, oxycodone and prodrug combinations in CD1 mice s Tigkg -- Morphine (2.80 mg/kg (1.95 - 4.02, 30' peak time -- (Oxycodone (1.93 mg/kg (1.33 - 2,65)) 30 peak time -- Oxy. Mor (1:1) (4.84 mg/kg (3.60 - 8.50) 60 peak tire --MLN 2-3 peak, effect at a hors 24% with closes at 2.5 art to rigg - D - MLN 2-45 (6.60 mg/kg (5.12 - 8.51)} 60 peak time Figure 1.
    [Show full text]
  • Pain Management & Palliative Care
    Guidelines on Pain Management & Palliative Care A. Paez Borda (chair), F. Charnay-Sonnek, V. Fonteyne, E.G. Papaioannou © European Association of Urology 2013 TABLE OF CONTENTS PAGE 1. INTRODUCTION 6 1.1 The Guideline 6 1.2 Methodology 6 1.3 Publication history 6 1.4 Acknowledgements 6 1.5 Level of evidence and grade of guideline recommendations* 6 1.6 References 7 2. BACKGROUND 7 2.1 Definition of pain 7 2.2 Pain evaluation and measurement 7 2.2.1 Pain evaluation 7 2.2.2 Assessing pain intensity and quality of life (QoL) 8 2.3 References 9 3. CANCER PAIN MANAGEMENT (GENERAL) 10 3.1 Classification of cancer pain 10 3.2 General principles of cancer pain management 10 3.3 Non-pharmacological therapies 11 3.3.1 Surgery 11 3.3.2 Radionuclides 11 3.3.2.1 Clinical background 11 3.3.2.2 Radiopharmaceuticals 11 3.3.3 Radiotherapy for metastatic bone pain 13 3.3.3.1 Clinical background 13 3.3.3.2 Radiotherapy scheme 13 3.3.3.3 Spinal cord compression 13 3.3.3.4 Pathological fractures 14 3.3.3.5 Side effects 14 3.3.4 Psychological and adjunctive therapy 14 3.3.4.1 Psychological therapies 14 3.3.4.2 Adjunctive therapy 14 3.4 Pharmacotherapy 15 3.4.1 Chemotherapy 15 3.4.2 Bisphosphonates 15 3.4.2.1 Mechanisms of action 15 3.4.2.2 Effects and side effects 15 3.4.3 Denosumab 16 3.4.4 Systemic analgesic pharmacotherapy - the analgesic ladder 16 3.4.4.1 Non-opioid analgesics 17 3.4.4.2 Opioid analgesics 17 3.4.5 Treatment of neuropathic pain 21 3.4.5.1 Antidepressants 21 3.4.5.2 Anticonvulsant medication 21 3.4.5.3 Local analgesics 22 3.4.5.4 NMDA receptor antagonists 22 3.4.5.5 Other drug treatments 23 3.4.5.6 Invasive analgesic techniques 23 3.4.6 Breakthrough cancer pain 24 3.5 Quality of life (QoL) 25 3.6 Conclusions 26 3.7 References 26 4.
    [Show full text]
  • WO 2012/109445 Al 16 August 2012 (16.08.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/109445 Al 16 August 2012 (16.08.2012) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/485 (2006.01) A61P 25/04 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US20 12/024482 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (22) International Filing Date: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, ' February 2012 (09.02.2012) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 13/024,298 9 February 201 1 (09.02.201 1) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): QRX- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, PHARMA LTD.
    [Show full text]