AMRI India Pvt
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bipolar Androgen Therapy (BAT) in Men with Prostate Cancer
Bipolar Androgen Therapy (BAT) in men with prostate cancer Samuel Denmeade, MD Professor of Oncology, Urology and Pharmacology The Johns Hopkins University School of Medicine, Baltimore, MD Presentation Overview • Androgen and Androgen Signaling 101 • Rationale For Bipolar Androgen Therapy (BAT) • Results from the RESTORE study testing BAT in Castration Resistant Prostate Cancer • The multi-center TRANSFORMER Trial • Future Directions • Results of BATMAN trial testing BAT as part of Intermittent Hormone Therapy strategy Testosterone Replacement Anabolic Steroids Trenbolone Acetate (Fina-Finaplix H pellets) High Dose Testosterone as Treatment for Prostate Cancer What Are Androgens? • Steroid hormone which can bind to Androgen Receptor – Testosterone, Dihydrotestosterone (DHT), DHEA, Androstenedione… • Sexual Differentiation – Needed to make a Male (Female is Default) • Primary Sex Characteristics: – Spermatogenesis – Accessory Sex Tissue Maintenance • Penis, Prostate... • Secondary Sex Characteristics: – Bone density – Muscle mass – Libido – Hair growth – Hematopoiesis What is a Steroid Hormone? Testosterone (T) Dihydrotestosterone (DHT) Estrogen How are Androgens Made? Androgen Receptor Signaling 101 Androgen Active Androgen Receptor (Testosterone) Androgen Receptor How Do Androgens Effect the Prostate Cell? NTD- Signaling Part DBD- DNA Binding Part LBD- Androgen Binding Part Cytoplasm Cell Nucleus Binds and activates genes: -Cell Growth -Cell Survival -Make prostate stuff like PSA, Acid Phosphatase, etc. DNA The Devilish Prostate • Physiologic -
Betamethasone Valerate Foam: a Look at the Clinical Data
Review: Clinical Trial Outcomes Betamethasone valerate foam: a look at the clinical data Clin. Invest. (2014) 4(3), 259–267 Topical corticosteroids and especially betamethasone valerate (BMV) have Avner Shemer1, Nicole Sakka1 & been used topically to relieve many inflammatory skin conditions such as Dov Tamarkin*2 psoriasis and atopic dermatitis. The vehicle used to deliver topical drugs 1Department of Dermatology, the Chaim Sheba Medical Center, Affiliated with the can influence the performance of these topical applications. BMV has Tel-Aviv University, Sackler School of Medicine, traditionally been available in creams, ointments, lotions and sprays. In Tel Hashomer, Israel the early 2000s, a topical hydroethanolic BMV foam became commercially 2Foamix Ltd., 2 Holzman Street, Weizmann available. Subsequently, alcohol-free emulsion- and petrolatum-based Science Park, Rehovot 76704, Israel foam formulations were also developed. This manuscript reviews the *Author for correspondence: Tel.: +972 52 457 5677 properties of BMV foams and clinical studies that have been conducted Fax: +972 8 853 1102 to assess their efficacy and safety as treatments for scalp and non-scalp [email protected] psoriasis, as well as other dermatological inflammatory conditions. Keywords: betamethasone valerate • foam • psoriasis • topical corticosteroids Topical corticosteroids have been ranked in four groups consisting of seven classes ranging from ultra-high potency preparations (class 1) to low-potency prepara- tions (class 7). Betamethasone valerate (BMV) is a mid-potency corticosteroid (class 3–5, depending on the dosage form), used topically to relieve inflammatory skin conditions. It is used as a treatment for psoriasis, atopic dermatitis and other corticosteroid-responsive dermatoses. The vehicle used to deliver topical drugs can influence the performance of these drugs. -
RELISTOR, INN: Methylnaltrexone Bromide
The European Medicines Agency Evaluation of Medicines for Human Use EMEA/CHMP/10906/2008 ASSESSMENT REPORT FOR RELISTOR International Nonproprietary Name: METHYLNALTREXONE BROMIDE Procedure No. EMEA/H/C/870 Assessment Report as adopted by the CHMP with all information of a commercially confidential nature deleted. 7 Westferry Circus, Canary Wharf, London, E14 4HB, UK Tel. (44-20) 74 18 84 00 Fax (44-20) 74 18 8613 E-mail: [email protected] http://www.emea.eu.int TABLE OF CONTENTS Page 1 BACKGROUND INFORMATION ON THE PROCEDURE......................................... 3 1.1 Submission of the dossier ...................................................................................................... 3 1.2 Steps taken for the assessment of the product ....................................................................... 3 2 SCIENTIFIC DISCUSSION............................................................................................... 4 2.1 Introduction............................................................................................................................ 4 2.2 Quality aspects....................................................................................................................... 5 2.3 Non-clinical aspects............................................................................................................... 7 2.4 Clinical aspects .................................................................................................................... 13 2.5 Pharmacovigilance...............................................................................................................41 -
Albany-Molecular-Research-Regulatory
PRODUCT CATALOGUE API COMMERCIAL US EU Japan US EU Japan API Name Site CEP India API Name Site CEP India DMF DMF DMF DMF DMF DMF A Abiraterone Malta • Benztropine Mesylate Cedarburg • Adenosine Rozzano - Quinto de' Stampi • • * Betaine Citrate Anhydrous Bon Encontre • Betametasone-17,21- Alcaftadine Spain Spain • • Dipropionate Sterile • Alclometasone-17, 21- Spain Betamethasone Acetate Spain Dipropionate • • Altrenogest Spain • • Betamethasone Base Spain Amphetamine Aspartate Rensselaer Betamethasone Benzoate Spain * Monohydrate Milled • Betamethasone Valerate Amphetamine Sulfate Rensselaer Spain * • Acetate Betamethasone-17,21- Argatroban Rozzano - Quinto de' Stampi Spain • • Dipropionate • • • Atenolol India • • Betamethasone-17-Valerate Spain • • Betamethasone-21- Atracurium Besylate Rozzano - Quinto de' Stampi Spain • Phosphate Disodium Salt • • Bromfenac Monosodium Atropine Sulfate Cedarburg Lodi * • Salt Sesquihydrate • • Azanidazole Lodi Bromocriptine Mesylate Rozzano - Quinto de' Stampi • • • • • Azelastine HCl Rozzano - Quinto de' Stampi • • Budesonide Spain • • Aztreonam Rozzano - Valle Ambrosia • • Budesonide Sterile Spain • • B Bamifylline HCl Bon Encontre • Butorphanol Tartrate Cedarburg • Beclomethasone-17, 21- Spain Capecitabine Lodi Dipropionate • C • 2 *Please contact our Accounts Managers in case you are interested in this API. 3 PRODUCT CATALOGUE API COMMERCIAL US EU Japan US EU Japan API Name Site CEP India API Name Site CEP India DMF DMF DMF DMF DMF DMF Dexamethasone-17,21- Carbimazole Bon Encontre Spain • Dipropionate -
New Rules Pertaining to the Banning of Anabolic Steroids in the Western Australian Harness Racing Industry to Be Introduced 1St September 2014
NEW RULES PERTAINING TO THE BANNING OF ANABOLIC STEROIDS IN THE WESTERN AUSTRALIAN HARNESS RACING INDUSTRY TO BE INTRODUCED 1ST SEPTEMBER 2014 Notice is hereby given that the Board of Racing and Wagering WA have resolved that the RWWA Rules of Harness Racing 2004 be amended. In accordance with section 45 (1) (b) of the Racing and Wagering Western Australia Act 2003 the Board of Racing and Wagering WA on the 10th April 2014 resolved that these amendments be adopted accordingly into the RWWA Rules of Harness Racing. The Harness Racing Board had advised of these amendments and the RWWA Board has determined that these amendments will come into effect on 1st September 2014. The details of the relevant rules pertaining to this ban of anabolic steroids for reference can be found following this advice. There are many implications arising from the introduction of these rules, and to assist trainers and veterinarians to comply with the new rules the following explanatory statement has been prepared. Which steroids are banned under these rules? The new rules ban the use of "anabolic androgenic steroids" in Standardbred horses at any time from birth until retirement. "Anabolic androgenic steroids" include those that are currently registered in Australia by the APVMA for use in horses, such as boldenone, ethylestrenol (in Nitrotain), methandriol, nandrolone, stanozolol and testosterone. Exogenous anabolic androgenic steroids that are banned also include but are not limited to those listed in the WADA prohibited list, such as 1-androstenediol; 1-androstenedione; -
(12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig. -
Expression of Recombinant Human Androgen Receptor and Its Use for Screening Methods
Institut für Physiologie FML Weihenstephan Technische Universität München Expression of recombinant human androgen receptor and its use for screening methods Ellinor Rose Sigrid Bauer Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. B. Hock Prüfer der Dissertation: Univ.-Prof. Dr. H. H. D. Meyer Univ.-Prof. Dr. H. Sauerwein (Rheinische Friedrich-Wilhelms-Universität Bonn) Die Dissertation wurde am 31.10.2002 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 03.12.2002 angenommen. Introduction Content 1. INTRODUCTION ..................................................................................................................................... 5 1.1. ENDOCRINE DISRUPTERS 5 1.2. ANDROGENS AND ANTIANDROGENS 7 1.2.1. DEFINITIONS 7 1.2.2. MODE OF ACTION 8 1.3. STRUCTURES OF ENDOCRINE DISRUPTERS 10 1.4. STRATEGIES FOR MONITORING ANDROGEN ACTIVE SUBSTANCES 13 1.4.1. IN VIVO METHODS 13 1.4.2. IN VITRO METHODS 15 1.5. OBJEKTIVE OF THE STUDIES 18 2. MATERIALS AND METHODS ................................................................................................................. 19 2.1. PREPARATION OF RECEPTORS 19 2.2. ASSAY SYSTEMS 19 2.2.1. IN SOLUTION AR ASSAY 19 2.2.2. IMMUNO-IMMOBILISED RECEPTOR ASSAY (IRA) 20 2.2.3. PR AND SHBG ASSAYS 21 2.2.4. DATA EVALUATION 21 2.3. ANALYTES 22 3. RESULTS AND DISCUSSION ................................................................................................................. 23 3.1. DEVELOPMENT OF NEW ASSAY SYSTEMS 23 3.1.1. BAR ASSAY 23 3.1.2. CLONING OF THE HUMAN AR AND PRODUCTION OF FUNCTIONAL PROTEIN 24 3.1.3. DEVELOPMENT OF A SCREENING ASSAY ON MICROTITRE PLATES (IRA) 25 3.2. -
Design and Synthesis of Cyclic Analogs of the Kappa Opioid Receptor Antagonist Arodyn
Design and synthesis of cyclic analogs of the kappa opioid receptor antagonist arodyn By © 2018 Solomon Aguta Gisemba Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Chair: Dr. Blake Peterson Co-Chair: Dr. Jane Aldrich Dr. Michael Rafferty Dr. Teruna Siahaan Dr. Thomas Tolbert Date Defended: 18 April 2018 The dissertation committee for Solomon Aguta Gisemba certifies that this is the approved version of the following dissertation: Design and synthesis of cyclic analogs of the kappa opioid receptor antagonist arodyn Chair: Dr. Blake Peterson Co-Chair: Dr. Jane Aldrich Date Approved: 10 June 2018 ii Abstract Opioid receptors are important therapeutic targets for mood disorders and pain. Kappa opioid receptor (KOR) antagonists have recently shown potential for treating drug addiction and 1,2,3 4 8 depression. Arodyn (Ac[Phe ,Arg ,D-Ala ]Dyn A(1-11)-NH2), an acetylated dynorphin A (Dyn A) analog, has demonstrated potent and selective KOR antagonism, but can be rapidly metabolized by proteases. Cyclization of arodyn could enhance metabolic stability and potentially stabilize the bioactive conformation to give potent and selective analogs. Accordingly, novel cyclization strategies utilizing ring closing metathesis (RCM) were pursued. However, side reactions involving olefin isomerization of O-allyl groups limited the scope of the RCM reactions, and their use to explore structure-activity relationships of aromatic residues. Here we developed synthetic methodology in a model dipeptide study to facilitate RCM involving Tyr(All) residues. Optimized conditions that included microwave heating and the use of isomerization suppressants were applied to the synthesis of cyclic arodyn analogs. -
Efficiency of Different Methods of Estrus Synchronization Followed by Fixed Time Artificial Insemination in Persian Downy Does
DOI: 10.21451/1984-3143-AR825 Anim. Reprod., v.14, n.2, p.413-417, Apr./Jun. 2017 Efficiency of different methods of estrus synchronization followed by fixed time artificial insemination in Persian downy does Majid Hashemi1, 2, 3, Mazaher Safdarian2 1Razi Vaccine and Serum Research Institute, Shiraz Branch, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran. 2Animal Science Research Department, Fars Agricultural and Natural Resource Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran. Abstract estrus synchronization can play an important role for managing production system, allowing the density of For evaluating different methods of long term estrous mating and kidding and production of meat and milk synchronization followed by fixed time artificial during specific times of the year for strategic marketing insemination and to select the most efficient method, and other purposes (Baldassarre and Karatzas, 2004, during the breeding season 160 Persian downy does Zhao et al., 2010). In small ruminants, hormonal estrus were equally allocated to groups (n = 20/group). Estrus synchronization is achieved either by reducing the was synchronized using controlled internal drug release length of the luteal phase of the estrous cycle with devices alone (CIDR) or with equine chorionic prostaglandin F2α or by extending the cycle artificially gonadotropin (CIDR-eCG), intravaginal sponge with exogenous progesterone or more potent impregnated with 45 mg fluorgestone acetate alone progestagens (Hashemi et al., 2006, Abecia et al., (Sponge) or with eCG (Sponge-eCG), subcutaneous 2012). Progestogen administration is common and has auricular implant of 2 mg norgestomet alone (Implant) been used with or without accompanying treatments or with eCG (Implant-eCG) or two intramuscular such as gonadatropins or prostaglandin analogs. -
Steroid Use in Prednisone Allergy Abby Shuck, Pharmd Candidate
Steroid Use in Prednisone Allergy Abby Shuck, PharmD candidate 2015 University of Findlay If a patient has an allergy to prednisone and methylprednisolone, what (if any) other corticosteroid can the patient use to avoid an allergic reaction? Corticosteroids very rarely cause allergic reactions in patients that receive them. Since corticosteroids are typically used to treat severe allergic reactions and anaphylaxis, it seems unlikely that these drugs could actually induce an allergic reaction of their own. However, between 0.5-5% of people have reported any sort of reaction to a corticosteroid that they have received.1 Corticosteroids can cause anything from minor skin irritations to full blown anaphylactic shock. Worsening of allergic symptoms during corticosteroid treatment may not always mean that the patient has failed treatment, although it may appear to be so.2,3 There are essentially four classes of corticosteroids: Class A, hydrocortisone-type, Class B, triamcinolone acetonide type, Class C, betamethasone type, and Class D, hydrocortisone-17-butyrate and clobetasone-17-butyrate type. Major* corticosteroids in Class A include cortisone, hydrocortisone, methylprednisolone, prednisolone, and prednisone. Major* corticosteroids in Class B include budesonide, fluocinolone, and triamcinolone. Major* corticosteroids in Class C include beclomethasone and dexamethasone. Finally, major* corticosteroids in Class D include betamethasone, fluticasone, and mometasone.4,5 Class D was later subdivided into Class D1 and D2 depending on the presence or 5,6 absence of a C16 methyl substitution and/or halogenation on C9 of the steroid B-ring. It is often hard to determine what exactly a patient is allergic to if they experience a reaction to a corticosteroid. -
Etats Rapides
List of European Pharmacopoeia Reference Standards Effective from 2015/12/24 Order Reference Standard Batch n° Quantity Sale Information Monograph Leaflet Storage Price Code per vial Unit Y0001756 Exemestane for system suitability 1 10 mg 1 2766 Yes +5°C ± 3°C 79 ! Y0001561 Abacavir sulfate 1 20 mg 1 2589 Yes +5°C ± 3°C 79 ! Y0001552 Abacavir for peak identification 1 10 mg 1 2589 Yes +5°C ± 3°C 79 ! Y0001551 Abacavir for system suitability 1 10 mg 1 2589 Yes +5°C ± 3°C 79 ! Y0000055 Acamprosate calcium - reference spectrum 1 n/a 1 1585 79 ! Y0000116 Acamprosate impurity A 1 50 mg 1 3-aminopropane-1-sulphonic acid 1585 Yes +5°C ± 3°C 79 ! Y0000500 Acarbose 3 100 mg 1 See leaflet ; Batch 2 is valid until 31 August 2015 2089 Yes +5°C ± 3°C 79 ! Y0000354 Acarbose for identification 1 10 mg 1 2089 Yes +5°C ± 3°C 79 ! Y0000427 Acarbose for peak identification 3 20 mg 1 Batch 2 is valid until 31 January 2015 2089 Yes +5°C ± 3°C 79 ! A0040000 Acebutolol hydrochloride 1 50 mg 1 0871 Yes +5°C ± 3°C 79 ! Y0000359 Acebutolol impurity B 2 10 mg 1 -[3-acetyl-4-[(2RS)-2-hydroxy-3-[(1-methylethyl)amino] propoxy]phenyl] 0871 Yes +5°C ± 3°C 79 ! acetamide (diacetolol) Y0000127 Acebutolol impurity C 1 20 mg 1 N-(3-acetyl-4-hydroxyphenyl)butanamide 0871 Yes +5°C ± 3°C 79 ! Y0000128 Acebutolol impurity I 2 0.004 mg 1 N-[3-acetyl-4-[(2RS)-3-(ethylamino)-2-hydroxypropoxy]phenyl] 0871 Yes +5°C ± 3°C 79 ! butanamide Y0000056 Aceclofenac - reference spectrum 1 n/a 1 1281 79 ! Y0000085 Aceclofenac impurity F 2 15 mg 1 benzyl[[[2-[(2,6-dichlorophenyl)amino]phenyl]acetyl]oxy]acetate -
Summary of Product Characteristics 1. Name Of
Revised: July 2020 AN: 00391/2020 SUMMARY OF PRODUCT CHARACTERISTICS 1. NAME OF THE VETERINARY MEDICINAL PRODUCT Chronogest CR, 20 mg controlled release vaginal sponge for sheep. 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each polyester polyurethane sponge contains Active substance(s) Flugestone acetate, 20 mg. List of excipients Excipients qsp 1 sponge. For a full list of excipients, see section 6.1 3. PHARMACEUTICAL FORM Vaginal sponge. White cylindrical polyester polyurethane foam equipped with string. 4. CLINICAL PARTICULARS 4.1 Target species Sheep (ewes and ewe-lambs). 4.2 Indications for use In ewes and ewe lambs, in combination with PMSG (Pregnant Mare Serum Gonadotrophin) - Induction and synchronization of oestrus and ovulation (non cycling ewes during seasonal anoestrus and ewe lambs). - Synchronization of oestrus and ovulation (cycling ewes and ewe-lambs). 4.3 Contraindications Please refer to section 4.7 and section 4.8. 4.4 Special warnings None. Page 1 of 5 Revised: July 2020 AN: 00391/2020 4.5 Special precautions for use (i) Special precautions for use in animals - The repeated treatment with the product combined with PMSG may trigger the appearance of PMSG antibodies in some ewes. This in turn may affect the time of ovulation and result in reduced fertility when combined with fixed time artificial insemination at 55h following sponge removal. - The repeated use of sponges within one year has not been studied. - The use of a vaginal applicator designed for ewes or ewe lambs is recommended to correctly insert sponges and to avoid vaginal injuries. (ii) Special precautions to be taken by the person administering the medicinal product to animals - Direct contact with the skin should be avoided.